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Brief descriptions of the chapter-opening photos and how they relate to statics 
are given below.

Chapter 1: The Millau Viaduct is a cable-stayed bridge that spans the River 
Tarn near Millau in southern France. Concepts from statics formed the basis 
for the analysis and design of this bridge.

Chapter 2: A skyward view of the cables supporting the Leonard P. Zakim 
Bunker Hill Bridge, in Boston, Massachusetts. Each of the cables supports a 
tensile force whose size and direction can be described using a vector.

Chapter 3: Tower cranes lifting beams and other items at a construction site in 
Houston, Texas. Many of the components in this photo can be idealized as 
particles in equilibrium.

Chapter 4: A hovering rescue helicopter lifting a man to safety. Concepts of 
the moment of a force and equivalent force systems are needed to determine 
the forces developed by the main rotor and tail rotor of the helicopter. 

Chapter 5: The Space Shuttle Columbia sits on a launch pad at Kennedy Space 
Center, Florida, before its maiden fl ight in 1981. For many purposes, the Space 
Shuttle with its attached external fuel tank and two solid fuel rocket boosters 
may be modeled as a single body.

Chapter 6: The Prince Felipe Science Museum at the City of Arts and Sci-
ences, in Valencia, Spain. The building is supported by an arrangement of 
trusses that surround its exterior. 

Chapter 7: Hoover Dam, in Boulder City, Nevada. Concepts of centroid, cen-
ter of mass, center of gravity, and fl uid pressure loading were needed to design 
this structure.

Chapter 8: The glass roof at Canada Place, Vancouver, British Columbia, 
Canada. The design of the beams that support the weight of the roof and the 
forces from wind, rain, and snow requires determination of the internal forces 
throughout all of the beams in the roof system.

Chapter 9: The driver of a car spins its tires before a drag race, generating 
intense heat due to frictional slip between the tires and pavement. The increase 
in temperature of the tires increases the frictional resistance between the tires 
and pavement, thus improving performance during the race.

Chapter 10: A precast section of the Bay Bridge Skyway, near Oakland, Cali-
fornia, is raised into position after being lifted nearly 200 ft from a barge. The 
area moment of inertia for the precast section is one of the factors controlling 
the strength of the bridge and its defl ection due to the weight of vehicles and 
other forces.
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Welcome to statics! We assume you are embarking on the study of statics be-
cause you are interested in engineering and science. The major objectives of 
this book are to help you

1. learn the fundamental principles of statics; and
2.  gain the skills needed to apply these principles in the modeling of real-life 

problems and for carrying out engineering design.

The need for thorough coverage of the fundamental principles is paramount, and, 
as such, a substantial portion of this book is devoted to these principles. Because 
the development of problem-solving skills is equally important, we focus a great 
deal of attention to these skills, especially in the context of real-life problems. 
Indeed, the emphasis on problem-solving skills is a major difference in the treat-
ment of statics between engineering and physics. It is only through the mastering 
of these skills that a true, deep understanding of fundamentals can be achieved. 
You must be fl awless in your ability to apply the concepts of statics to real-life 
problems. When mistakes are made, structures and machines will fail, money 
and time will be lost, and worst of all, people may be hurt or killed.

What should you take away from this book?
First and foremost, you should gain a thorough understanding of the fundamen-
tal principles, and, at a minimum, key points should remain in your memory for 
the rest of your life. We say this with a full appreciation that some of you will 
have careers with new and unexpected directions. Regardless of your eventual 
professional responsibilities, knowledge of the fundamentals of statics will help 
you to be technically literate. By contrast, if you are actively engaged in the 
practice of engineering and/or the sciences, then your needs go well beyond 
mere technical literacy. In addition to understanding the fundamentals, you 
must also be accomplished at applying these fundamentals. This ability is need-
ed so that you can study more advanced subjects that build on statics, and be-
cause you will apply concepts of statics on a daily basis in your career.

Why Another Statics and Dynamics Series?
These books provide thorough coverage of all the pertinent topics traditionally 
associated with statics and dynamics. Indeed, many of the currently available 
texts also provide this. However, the new books by Plesha/Gray/Costanzo offer 
several major innovations that enhance the learning objectives and outcomes in 
these subjects.

What Then Are the Major Differences between  Plesha/Gray/
Costanzo and Other Engineering Mechanics Texts?
● A Consistent Approach to Problem Solving
The example problems in Plesha/Gray/Costanzo follow a structured fi ve-step 
problem-solving methodology that will help you develop your problem- solving 
skills not only in statics and dynamics, but also in almost all other mechanics 

P R E F A C E
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xiv Preface

subjects that follow. This structured problem-solving approach consists of the 
following steps: Road Map, Modeling, Governing Equations, Computation, 
and Discussion & Verifi cation. The Road Map provides some of the general 
objectives of the problem and develops a strategy for how the solution will be 
developed. Modeling is next, where a real-life problem is idealized by a model. 
This step results in the creation of a free body diagram and the selection of the 
balance laws needed to solve the problem. The Governing Equations step is 
devoted to writing all the equations needed to solve the problem. These equa-
tions typically include the Equilibrium Equations, and, depending upon the 
particular problem, Force Laws (e.g. spring law, failure criteria, frictional slid-
ing criteria) and Kinematic Equations. In the Computation step, the governing 
equations are solved. In the fi nal step, Discussion & Verifi cation, the solution 
is interrogated to ensure that it is meaningful and accurate. This fi ve-step prob-
lem-solving methodology is followed for all examples that involve equilibrium 
concepts. Some problems (e.g., determination of the center of mass for an ob-
ject) do not involve equilibrium concepts, and for these the Modeling step is 
not needed.

● Contemporary Examples, Problems, and Applications
The examples, problem sets, and design problems were carefully constructed 
to help show you how the various topics of statics and dynamics are used in 
engineering practice. Statics and dynamics are immensely important subjects 
in modern engineering and science, and one of our goals is to excite you about 
these subjects and the career that lies ahead of you.

● A Focus on Design
A major difference between Plesha/Gray/Costanzo and other books is the sys-
tematic incorporation of design and modeling of real-life problems throughout. 
Topics include important discussions on design, ethics, and professional 
responsibility. These books show you that meaningful engineering design is 
possible using the concepts of statics and dynamics. Not only is the ability to 
develop a design very satisfying, but it also helps you develop a greater under-
standing of basic concepts and helps sharpen your ability to apply these con-
cepts. Because the main focus of statics and dynamics textbooks should be the 
establishment of a fi rm understanding of basic concepts and correct problem-
solving techniques, design topics do not have an overbearing presence in the 
books. Rather, design topics are included where they are most appropriate. 
While some of the discussions on design could be described as “common 
sense,” such a characterization trivializes the importance and necessity for dis-
cussing pertinent issues such as safety, uncertainty in determining loads, the 
designer’s responsibility to anticipate uses, even unintended uses, communica-
tions, ethics, and uncertainty in workmanship. Perhaps the most important fea-
ture of our inclusion of design and modeling topics is that you get a glimpse of 
what engineering is about and where your career in engineering is headed. The 
book is structured so that design topics and design problems are offered in a 
variety of places, and it is possible to pick when and where the coverage of 
design is most effective. 
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● Problem-Based Introductions
Many topics are presented using a problem-based introduction. By this ap-
proach, we hope to pique your interest and curiosity with a problem that has 
real-life signifi cance and/or offers physical insight into the phenomena to be 
discussed. Using an interesting problem as a springboard, the necessary theory 
and/or tools needed to address the problem are developed. Problem-based in-
troductions are used where they are especially effective, namely, topics that are 
challenging to visualize or understand.

● Computational Tools
Some examples and problems are appropriate for solution using computer soft-
ware. The use of computers extends the types of problems that can be solved 
while alleviating the burden of solving equations. Such examples and problems 
give you insight into the power of computer tools and further insight into how 
statics and dynamics are used in engineering practice.

● Modern Pedagogy
Numerous modern pedagogical elements have been included. These elements 
help reinforce concepts and they provide you with additional information to 
help you understand concepts. Marginal notes (including Helpful Information, 
Common Pitfalls, Interesting Facts, and Concept Alerts) help place topics, 
ideas, and examples in a larger context. These notes will help you study (e.g., 
Helpful Information and Common Pitfalls), will provide real-world examples 
of how different aspects of statics and dynamics are used (e.g., Interesting 
Facts), and will drive home important concepts or dispel misconceptions (e.g., 
Concept Alerts and Common Pitfalls). Mini Examples are used throughout the 
text to immediately and quickly illustrate a point or concept without having to 
wait for the worked-out examples at the end of the section. 

● Answers to Problems
Answers to most even-numbered problems are posted as a freely downloadable 
PDF fi le at www.mhhe.com/pgc. Providing answers in this manner allows for 
the inclusion of more complex information than would otherwise be possible. 
In addition to fi nal numerical or symbolic answers, selected problems have 
more extensive information such as free body diagrams and/or shear and mo-
ment diagrams. This feature not only provides more complete answers in se-
lected circumstances, but also provides a kick start that might help you on 
some homework problems. Furthermore, the multitude of free body diagram 
answers give you ample opportunity to practice constructing these on your own 
for extra problems. Appendix B gives an example of the additional information 
provided for a particular problem.

A Note To The Instructor
Statics is the fi rst engineering course taken by most students en route to an 
undergraduate degree in engineering. As such, you are presented with numer-
ous challenges when choosing the text you use. Because statics is so funda-

www.mhhe.com/pgc
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mental to subsequent engineering coursework and professional practice, a text 
must be accurate, thorough, and comprehensive. Statics also presents an op-
portunity to excite students and show them what engineering is about early in 
their education. Further, if this opportunity is missed and students do not re-
ceive an accurate picture of where their career is heading, they may make a 
poorly-informed decision to change their major away from engineering. These 
statements are recognized in the current Accreditation Board for Engineering 
and Technology (ABET) criteria for accreditation of engineering programs, 
which requires design to be integrated throughout an engineering curriculum. 
This book provides thorough coverage of the principles of statics. It also in-
cludes discussions on the theory and the more subtle points of statics. Such 
discussions usually follow an introductory treatment of a topic so that students 
have a grasp of concepts and their application before covering more subtle top-
ics. For example, the concepts of particle equilibrium are presented in Section 
3.1, with common assumptions such as cables being inextensible and pulleys 
being frictionless. In that section, the emphasis is on drawing free body dia-
grams, writing equilibrium equations, solution of equations, application of 
failure criteria, and interrogation of solutions. In Section 3.2, the reasons for 
the typical assumptions are thoroughly discussed, including the limitations of 
these assumptions for modeling real-life problems. This will help students de-
velop an appreciation for the fact that, despite these assumptions, statics is an 
immensely useful and widely applicable subject. Further, the discussion in 
Section 3.2 is used to present more advanced topics such as springs and static 
indeterminacy.
 Design topics include ethics, professional responsibility, pertinent codes 
and standards, and much more. Design problems are open ended and allow 
students to show creativity in developing solutions that solve important and 
realistic engineering problems. The design problems in this book may take 
students several hours to complete. It is recommended that students write a 
short report, suitable for reading by an engineer. A brief discussion of technical 
writing is included in Appendix A since many students have not yet studied 
technical writing. Perhaps the most important feature of our inclusion of de-
sign and modeling topics is that students get a glimpse of what engineering is 
about and where their career in engineering is headed. The book is structured 
so that you may pick when and where design is most appropriately covered.

McGraw-Hill’s 360° Development 
McGraw-Hill’s 360° Development Process is a continuous, market-oriented 
approach to building accurate and innovative print and digital products. It is 
dedicated to continual improvement driven by multiple customer feedback 
loops and checkpoints. This is initiated during the early planning stages of our 
new products and intensifi es during the development and production stages, 
then begins again upon publication, in anticipation of the next edition.
 This process is designed to provide a broad, comprehensive spectrum of 
feedback for refi nement and innovation of our learning tools for both student 
and instructor. The 360° Development Process includes market research, con-
tent reviews, faculty and student focus groups, course- and product-specifi c 
symposia, accuracy checks, art reviews, and a Board of Advisors.
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 Here is a brief overview of the initiatives included in the 360° Develop-
ment Process of the new statics and dynamics books. 

Board of Advisors A hand-picked group of trusted instructors active in 
teaching engineering mechanics courses served as chief advisors and consul-
tants to the authors and editorial team during manuscript development. The 
Board of Advisors reviewed parts of the manuscript; served as a sounding 
board for pedagogical, media, and design concerns; and consulted on organiza-
tional changes.

Manuscript Review Panels Numerous instructors reviewed the vari-
ous drafts of the manuscript to give feedback on content, design, pedagogy, 
and organization. This feedback was summarized by the book team and used to 
guide the direction of the text.

Symposia McGraw-Hill conducted several engineering mechanics sym-
posia attended by instructors from across the country. These events are an op-
portunity for McGraw-Hill editors and authors to gather information about the 
needs and challenges of instructors teaching these courses. They also offered a 
forum for the attendees to exchange ideas and experiences with colleagues 
they might not have otherwise met.

Focus Group In addition to the symposia, McGraw-Hill held a focus 
group with the authors and selected engineering mechanics professors. These 
engineering mechanics professors provided ideas on improvements and sug-
gestions for fi ne tuning the content, pedagogy, and art. 

Accuracy Check A select group of engineering mechanics instructors 
reviewed the entire fi nal manuscript for accuracy and clarity of the text and 
solutions.

Class Tests Over a number of years, both books have been class tested by 
thousands of students at schools such as Texas A&M University, Penn State, 
and the University of Wisconsin-Madison. In addition to the class testing done 
by the authors, the books have been class tested by David M. Hoerr at the 
 University of Wisconsin and Arun R. Srinivasa at Texas A&M University. We 
are especially grateful to Professor Srinivasa for the excellent suggestions he 
has made as a result of his extensive class testing.

Student Focus Groups Student focus groups provided the editorial 
team with an understanding of how content and the design of a textbook im-
pacts students’ homework and study habits in the engineering mechanics 
course area.

Manuscript Preparation The authors developed the manuscripts on 
Apple Macintosh laptop computers using LaTeX and Adobe Illustrator. This 
approach is novel to the publishing industry. The code generated by the authors 
was used to typeset the fi nal manuscript. This approach eliminates the usual 
source of errors where the original authors’ manuscript is rekeyed by the pub-
lisher to obtain the fi nal manuscript. 
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4 Moment of a Force and Equivalent
Force Systems

Additional concepts of forces and systems of
forces are discussed in this chapter. These con-
cepts are used extensively in the analysis of
equilibrium and motion of bodies and through-
out more advanced mechanics subjects.

4.1 Moment of a Force

To help demonstrate some of the features of the moment of a force, we will
consider an example of a steering wheel in a car. Figure 4.1 shows a classic
Ferrari sports car, and Fig. 4.2 shows the steering wheel in this car. The wheel

Figure 4.1

Ferrari 250 GTO sports car, circa 1962–1964.

lies in a plane that is perpendicular to the steering column AB (it would not
be very comfortable to use if this were not the case), and the steering wheel
offers “resistance” to being turned (for most vehicles, this resistance increases
for slower speeds and as a turn becomes sharper). Imagine you are driving this
car, and you wish to execute a right-hand turn. Figure 4.2 shows two possible
locations where you could position your left hand to turn the steering wheel,
and the directions of forces F1 and F2 that you would probably apply, where
both of these forces lie in the plane of the steering wheel. For a given speed
and sharpness of turn, clearly position C will require a lower force to turn the
wheel than position D (i.e., F1 < F2). Both forces F1 and F2 produce a mo-
ment (i.e., twisting action) about line AB of the steering column, and the size
of this moment increases as the force becomes larger and/or as the distance
from the force’s line of action to line AB increases. If the line of action of F1

is perpendicular to line AB (as we have assumed here), and if we let d be the
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Fiigurure 4 1e 4.1

Ferrari 250 GTO sports car, circa 1962–1964.
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Computation This system of equations is not as easy to solve as that in Part (a).
Systems of equation that are difficult to solve are a fact of life in engineering, and you
must be proficient in solving them. The basic strategy for hand computation (where one
of the equations is solved for one of the unknowns in terms of the others and then this
result is substituted into the remaining equations, and so on) is workable for systems
of three equations, but it rapidly becomes very tedious for larger systems of equations.

➠ You should take this opportunity to use a programmable calculator or one of
the software packages mentioned earlier to find the solutions to Eqs. (14)–(16), which
are

FAB D 1027 lb; FAC D 930 lb; and FAO D �1434 lb: (17)

➠

In addition to the results in Eq. (17), the force supported by cable AD is equal to W ,
therefore FAD D 1000 lb.

Chapter Introduction
Each chapter begins with an introductory 
section setting the purpose and goals of the 
chapter. 

Computer Solutions
We make use of computer solutions in some problems and it is important that you be able to easily identify 
when this is the case. Therefore, anywhere a computer is used for a solution, you will see the symbol . 
If this occurs within part of an example problem or within the discussion, then the part requiring the use of a 
computer will be enclosed in the following symbols  . If one of the exercises requires a computer 
for its solution, then the computer symbol and its mirror image will appear on either side of the problem 
heading.

G U I D E D  T O U R



� Mini-Example. Express the vector shown in Fig. 2.13(a), using Cartesian
representation.

Figure 2.13

Determination of the Cartesian components of
a 120 N force vector.

Solution. Let EF denote the 120 N magnitude force vector shown in Fig. 2.13(a)
and let Fx and Fy denote the components of EF in the x and y directions, re-
spectively. Components Fx and Fy are obtained by constructing projections

of EF that are parallel to the x and y axes, respectively, with the resulting mag-
nitudes .120 N/ cos 30ı and .120 N/ sin 30ı, as shown in Fig. 2.13(b). We next
use these projections to assign vector components in the x and y directions,
paying careful notice that Fx and Fy are positive when acting in the positive
x and y directions, respectively, and are negative when acting in the negative
x and y directions. Thus,

Fx D .120 N/ cos 30ı D 104 N;

Fy D .120 N/ sin 30ı D 60 N:
(2.15)

Thus, the Cartesian representation for EF is

EF D .104 O{ C 60 O|/ N: (2.16)

Some useful checks. There are a few useful checks that may help you
avoid errors when resolving a vector into Cartesian components. Foremost is
to verify that the components have reasonable size and are in proper directions.
The next check is to verify that the vector’s components give the correct mag-
nitude. Thus, for Eq. (2.16), we evaluate

p
.104 N/2 C .60 N/2 D 120 N to

find that indeed it has the correct magnitude. While these checks are reassur-
ing, they do not guarantee the components are correct. Nonetheless, if we find
an incorrect magnitude, then certainly an error has been made. �
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E X A M P L E 3.10 Engineering Design

Figure 1

A large construction company plans to add plastic 60 L water coolers to the back of
most of its trucks, as shown in Fig. 1. Your supervisor asks you to use the model shown
in Fig. 2 to specify the dimension h and the diameter of round steel bars to be used for
members AB , AC , and AD. Although a more refined model is possible using concepts
discussed in Chapter 5, the model shown in Fig. 2 is useful for this design problem. In
this model, load P is vertical and member AB is parallel to the y axis. Your supervisor
also tells you to allow for loads up to twice the weight of the cooler in a crude attempt
to allow for dynamic forces, and to use the allowable loads given in Table 3.2.

Figure 2

Model for the water cooler support shown in
Fig. 1.

S O L U T I O N

Road Map The most poorly defined part of this problem is the loading the water
cooler support will be subjected to. Thus, assumptions on the size of loads will need
to be made. Furthermore, different loading conditions may need to be considered, and
our design should be safe for all of these. Finally, this design problem does not have a
unique solution. That is, there is not a single value of h that will work. Rather, we may
need to assume reasonable values for some parameters and then calculate the values of
others based on this.

Modeling When full, the weight of water in the cooler is�

W D 1000
kg

m3„ ƒ‚ …
�

60 L
.0:1 m/3

L„ ƒ‚ …
V

9:81
m

s2„ ƒ‚ …
g

D 589 N: (1)

We next use our judgment to add to the above value a nominal amount of 60 N to
account for the weight of the container itself. Thus, the total weight to be supported is
589 N C 60 N D 649 N.

Doubling the weights (or use of other multiplicative factors) is an imprecise but
common approach to account for inertial forces produced when the truck hits bumps
in the road. Thus, we obtain the approximate load P D 1300 N. Before continuing
with this load, we should consider other possible load scenarios. For example, if the
cooler is removed, the support might make a convenient step for a worker to use while
climbing on or off the truck. Consider a person weighing 890 N (200 lb). Since it is
extremely unlikely a person would be standing on the support when the truck is moving
and hitting bumps, it is not necessary to further increase this value as was done earlier.
Since the weight of this person is lower than the force determined earlier, we will
proceed with the design, using P D 1300 N.

Small values of dimension h will lead to large forces in all members, while larger
values of h will decrease these forces. However, the allowable load data in Table 3.2
shows that allowable compressive load decreases rapidly as the length of members
increases. Thus, we will select for an initial design the value h D 250 mm, in which
case the length of members AC and AD is 716 mm.

The FBD for point A is shown in Fig. 3.

Figure 3

Free body diagram for point A.

Governing Equations Vector expressions for forces are

EP D 1300 N .� Ok/; (2)

� One liter (1 L) is defined to be the volume of 1 kg of pure water at 4ıC and pressure of 76 cm
of mercury. For practical purposes, however, the transformation 1 L D 1000 cm3 D 0:001 m3

may be used with less than 0.003% error.

Mini-Examples 
Mini-examples are used throughout the text 
to immediately and quickly illustrate a point 
or concept without having to wait for the 
worked-out examples at the end of the 
section. Mini-examples begin with the text 
■ Mini-Example. and end with the 
symbol ■. 

Examples
Consistent Problem-Solving Methodology

Every problem in the text employs a care-
fully defi ned problem-solving methodology 
to encourage systematic problem formulation 
while reinforcing the steps needed to arrive 
at correct and realistic solutions. 

Each example problem contains these fi ve 
steps:

 • Road Map
 • Modeling
 • Governing Equations
 • Computation
 • Discussion & Verifi cation

Some examples include a Closer Look 
(noted with a magnifying glass icon ) 
that offers additional information about the 
example.

xxiiiGuided Tour
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Concept Alerts and Concept Problems
Two additional features are the Concept Alert and the Concept Problems. These 
have been included because research has shown (and it has been our experience) 
that even though you may do quite well in a science or engineering course, your 
conceptual understanding may be lacking. Concept Alerts are marginal notes 
and are used to drive home important concepts (or dispel misconceptions) that 
are related to the material being developed 
at that point in the text. Concept Problems 
are mixed in with the problems that appear at 
the end of each section. These are questions 
designed to get you thinking about the applica-
tion of a concept or idea presented within that 
section. They should never require calculation 
and should require answers of no more than a 
few sentences. 

Problem 2.94

Describe how the cross product operation can be used to determine (or “test”) whether
two vectors EA and EB are orthogonal. Is this test as easy to use as the test based on the
dot product? Explain, perhaps using an example to support your remarks.
Note: Concept problems are about explanations, not computations.

Problem 2.95

Imagine a left-hand coordinate system has inadvertently been used for a problem. That
is, if the x and y directions have been selected first, the ´ direction has been taken in the
wrong direction for a right-hand coordinate system. What consequences will this have
for dot products and cross products? Perhaps use an example to support your remarks.
Note: Concept problems are about explanations, not computations.

b d d i ( “ ”) h h

Concept Alert

Applications of the cross product. The
cross product between two vectors pro-
duces a result that is a vector. The cross
product is frequently used to determine
the normal direction to a surface, the area
of a parallelogram formed by two vectors,
and (as discussed in Chapter 4) the mo-
ment produced by a force. The last appli-
cation is especially important in statics and
mechanics.

Common Pitfall

Failure loads. A common error in solv-
ing problems with failure criteria, such as
Part (b) of this example, is to assume that
all members are at their failure loads at the
same time. With reference to the FBD of
Fig. 3, you will be making this error if you
take FAB D 1200 N and FAC D �1600 N;
in fact, if you do this, you will find thatP

Fx D 0 (Eq. (5)) cannot be satisfied! An-
other way to describe this problem is to con-
sider slowly increasing force P from zero.
Eventually, one of the members will reach
its failure load first, while the other will be
below its failure load.

Interesting Fact

Springs. Springs are important structural
members in their own right, but they are
also important for laying the groundwork for
characterizing more general engineering
materials and members, which you will
study in subjects that follow statics. Simply
stated, almost all materials are idealized
as springs, albeit more complex than that
shown in Fig. 3.15, over at least some
range of forces.

,
oad. as springs, albeit mor

shown in Fig. 3.15,
range of forces.

Helpful Information

Free body diagram (FBD). An FBD is an
essential aid, or tool, for applying Newton’s
law of motion

P EF D mEa. Among the
many skills you will need to be successful
in statics, and in the subjects that follow,
and as a practicing engineer, the ability
to draw accurate FBDs is essential. An
incorrect FBD is the most common source
of errors in an analysis.

Marginal Notes 
Marginal notes have been implemented that will help 
place topics, ideas, and examples in a larger context. 
This feature will help students study (using Helpful 
Information and Common Pitfalls) and will provide 
real-world examples of how different aspects of statics 
are used (using Interesting Facts).
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2.3 Cartesian Representation of Vectors in
Three Dimensions

For problems in three dimensions, vectors are especially powerful and without
them many problems would be intractable. Concepts of Section 2.2 apply, with
some additional enhancements needed for three dimensions. These include
definitions of a right-handed coordinate system, direction angles, and direction
cosines.

Right-hand Cartesian coordinate system

In three dimensions a Cartesian coordinate system uses three orthogonal ref-
erence directions. These will consist of x, y, and ´ directions as shown in
Fig. 2.17(a). Proper interpretation of many vector operations, such as the cross
product to be discussed in Section 2.5, requires the x, y, and ´ directions
be arranged in a consistent manner. For example, when you are constructing
the coordinate system shown in Fig. 2.17(a), imagine the x and y directions
are chosen first. Then, should ´ be taken in the direction shown, or can
it be in the opposite direction? The universal convention in mechanics and
vector mathematics in general is ´ must be taken in the direction shown, and
the result is called a right-hand coordinate system. Figure 2.17(b) describes a
scheme for constructing a right-hand coordinate system. You should study this
scheme and become comfortable with its use.

Figure 2.17

(a) Cartesian coordinate system in three dimen-
sions. (b) A scheme for constructing a right
hand coordinate system. Position your right
hand so the positive x direction passes into
your palm and the positive y direction passes
through your finger tips. Your thumb then indi-
cates the positive ´ direction. (c) More exam-
ples of right-hand coordinate systems.

Cartesian vector representation

We define vectors O{, O| , and Ok to be unit vectors that point in the positive x, y,
and ´ directions, respectively. A vector Ev can then be written as

Ev D Evx C Evy C Ev´

D vx O{ C vy O| C v´
Ok: (2.23)

Resolution of Ev into x, y, and ´ components is shown in Fig. 2.18. The mag-
nitude of Ev is given by

Figure 2.18

Right-hand Cartesian coordinate system with
unit vectors O{, O| , and Ok in the x, y, and ´ direc-
tions, respectively, and resolution of a vector Ev
into vector components Evx , Evy , and Ev´.

jEvj D
q

v2
x C v2

y C v2
´: (2.24)

This equation is obtained using the construction shown in Fig. 2.19 as follows.
First, a vector Eva that lies in the xy plane is defined. Because vx , vy , and
va form a right triangle, the Pythagorean theorem provides v2

a D v2
x C v2

y .
Then va, v´, and v also form a right triangle, and the Pythagorean theorem
provides v2 D v2

a C v2
´. Substituting for v2

a in this latter expression yields
v2 D v2

x C v2
y C v2

´, and thus Eq. (2.24) follows.

Figure 2.19

Evaluation of a vector’s magnitude in terms of
its components.

Direction angles and direction cosines

An effective way of characterizing a vector’s orientation is by use of direction
angles. Direction angles �x , �y , and �´ are shown in Fig. 2.20 and are defined
to be the angles measured from the positive x, y, and ´ directions, respectively,
to the direction of the vector.

Ev

Resolution of Ev into x, y, an
nitude of Ev is given by

Figure 2.18

Right-hand Cartesian coordinate system with
unit vectors O{, O| , and Ok in the x, y, and ´ direc-
tions, respectively, and resolution of a vector Ev
into vector components Evx , Evy , and Ev´.
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Evaluation of a vector’s magnitude in terms of
its components.
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An effective way of characte
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End of Sect ion Summary

In this section, Cartesian coordinate systems and Cartesian representation for
vectors in three dimensions have been defined. Some of the key points are:

� The xy´ coordinate system you use must be a right-hand coordinate
system. Proper interpretation of some vector operations requires this.

� Direction angles provide a useful way for specifying a vector’s orienta-
tion in three dimensions. A vector has three direction angles �x , �y , and
�´, but only two of these are independent. Direction angles satisfy the
equation cos2 �x Ccos2 �y Ccos2 �´ D 1, so that if two direction angles
are known, the third may be determined.

� Structural members such as cables, ropes, and bars support forces whose
lines of action have the same orientation as the member’s geometry.
Thus, if Er describes a member’s geometry, a vector expression for the
force supported by the member may be written as EF D F.Er=jEr j/.

Sections and End of Section Summary
Each chapter is organized into several sections. There is a wealth of information and features within 
each section, including examples, problems, marginal notes, and other pedagogical aids. Each section 
concludes with an end of section summary that succinctly summarizes the section. In many cases, cross-
referenced important equations are presented again for review and reinforcement before the student 
proceeds to the examples and homework problems.
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P R O B L E M S

Problem 2.1

For each vector, write two expressions using polar vector representations, one using a

Figure P2.1

positive value of � and the other a negative value, where � is measured counterclock-
wise from the right-hand horizontal direction.

Problems 2.2 and 2.3

Add the two vectors shown to form a resultant vector ER, and report your result using
polar vector representation.

Figure P2.2

Figure P2.3

Problem 2.4

Let EA D 2 m @ 0ı and EB D 6 m @ 90ı . Sketch the vector polygons and evaluate
ER for the following, reporting your answer using polar vector representation.

(a) ER D EA C EB ,

(b) ER D 2 EA � EB ,

(c) ER D j EAj EB C j EBj EA,

(d) ER D
EA

j EAj
C

EB
j EBj

.

Problem 2.5

A tow truck applies forces EF1 and EF2 to the bumper of an automobile where EF1 is
horizontal. Determine the magnitude of EF2 that will provide a vertical resultant force,
and determine the magnitude of this resultant.

Problem 2.6

Arm OA of a robot is positioned as shown. Determine the value for angle ˛ of arm AB

so that the distance from point O to the actuator at B is 650 mm.

Modern Problems 
Problems of varying diffi culty follow each section. These 
problems allow students to develop their ability to apply 
concepts of statics on their own. Statics is not an easy 
subject, and the most common question asked by students 
is “How do I set this problem up?” What is really meant 
by this question is “How do I develop a good mathemati-
cal model for this problem?” The only way to develop 
this ability is by practicing numerous problems. Answers 
to most even-numbered problems are posted as a freely 
downloadable PDF fi le at www.mhhe.com/pgc. Providing 
answers in this manner allows for more complex informa-
tion than would otherwise be possible. In addition to fi nal 
numerical or symbolic answers, selected problems have 
more extensive information such as free body diagrams 

and/or shear and moment diagrams. Not only does this 
feature provide more complete answers in selected 
circumstances, but it also provides the kick start needed 
to get students started on some homework problems. 
Furthermore, the multitude of free body diagram answers 
give students ample opportunity to practice constructing 
FBDs on their own for extra problems. Appendix B gives 
an example of the extensive information provided for a 
particular problem. Each problem in the book is accompa-
nied by a thermometer icon that indicates the approximate 
level of diffi culty. Those considered to be “introductory” 
are indicated with the symbol . Problems considered to be 
“representative” are indicated with the symbol , and prob-
lems that are considered to be “challenging” are indicated 
with the symbol . 

www.mhhe.com/pgc


xxviiGuided Tour

D E S I G N P R O B L E M S

General Instructions. In problems requiring the specification of sizes for steel ca-
ble, bar, or pipe, selections should be made from Tables 3.1–3.3. In all problems, write
a brief technical report following the guidelines of Appendix A, where you summarize
all pertinent information in a well-organized fashion. It should be written using proper,
simple English that is easy to read by another engineer. Where appropriate, sketches,
along with critical dimensions, should be included. Discuss the objectives and con-
straints considered in your design, the process used to arrive at your final design, safety
issues if appropriate, and so on. The main discussion should be typed, and figures, if
needed, can be computer-drawn or neatly hand-drawn. Include a neat copy of all sup-
porting calculations in an appendix that you can refer to in the main discussion of your
report. A length of a few pages, plus appendix, should be sufficient.

Design Problem 3.1

A scale for rapidly weighing ingredients in a commercial bakery operation is shown.
An empty bowl is first placed on the scale. Electrical contact is made at point A, which
illuminates a light indicating the bowl’s contents are underweight. A bakery ingredient,
such as flour, is slowly poured into the bowl. When a sufficient amount is added, the
contact at A is broken. If too much is added, contact is made at B , thus indicating an
overweight condition. If the contents of the bowl are to weigh 18 lb ˙ 0:25 lb, specify
dimensions h and d , spring stiffness k, and the unstretched length of the spring L0.
The bowl and the platform on which it rests have a combined weight of 5 lb. Assume
the scale has guides or other mechanisms so that the platform on which the bowl rests
is always horizontal.Figure DP3.1

Design Problem 3.2

A plate storage system for a self-serve salad bar in a restaurant is shown. As plates are
added to or withdrawn from the stack, the spring force and stiffness are such that the
plates always protrude above the tabletop by about 60 mm. If each plate has 0:509 kg
mass, and if the support A also has 0:509 kg mass, determine the stiffness k and un-
stretched length L0 of the spring. Assume the spring can be compressed by a maximum
of 40% of its initial unstretched length before its coils begin to touch. Also specify the
number of plates that can be stored. Assume the system has guides or other mecha-
nisms so the support A is always horizontal.

Figure DP3.2 and DP3.3

Design Problem 3.3

In Design Problem 3.2, the spring occupies valuable space that could be used to store
additional plates. Repeat Design Problem 3.2, employing cable(s) and pulley(s) in con-
junction with one or more springs to design a different system that will allow more
plates to be stored. Pulleys, cables, and springs can be attached to surfaces A, B , C ,
and D. For springs in compression, assume they may not contract by more than 40%
of their initial unstretched length before their coils begin to touch.

Engineering Design and Design Problems 
Throughout the book, in appropriate places, engineering design is discussed including topics such as 
methods of design, issues of professional responsibility, and ethics. Design Problems are also presented. 
These problems are open ended and allow students to show creativity in developing a solution that 
solves an important and realistic real-life engineering problem.
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3.5 Chapter Review

Important definitions, concepts, and equations of this chapter are summarized.
For equations and/or concepts that are not clear, you should refer to the origi-
nal equation numbers cited for additional details.

Equilibrium of a particle. A particle is in static equilibrium if

X EF D E0;

or
�X

Fx

�
O{ C

�X
Fy

�
O| C

�X
F´

� Ok D E0;

or
X

Fx D 0 and
X

Fy D 0 and
X

F´ D 0:

Eq. (3.20), p. 148

The above summations must include all forces applied to the particle. For equi-
librium of a system of particles, the above equilibrium equations are written
for each particle, and then the resulting system of simultaneous equations is
solved.

Free body diagram. The free body diagram (FBD) is an essential aid for
helping ensure that all forces applied to a particle are accounted for when you
write equations of equilibrium. When you draw an FBD, it is helpful to imagine
enclosing the particle by a closed line in two dimensions, or a closed surface
in three dimensions. Wherever the cut passes through a structural member, the
forces supported by that member must be introduced in the FBD. Wherever
the cut passes through a support, the reaction forces that the support applies to
the particle must be introduced in the FBD.

Cables and bars. Cables and straight bars are structural members that sup-
port forces that are collinear with their axis. We assume cables may support
tensile forces only and may be freely bent, such as when wrapped around a
pulley. We usually assume cables have negligible weight. Bars may support
both tensile and compressive forces.

Pulleys. A pulley is a device that changes the direction of a cable, and hence
changes the direction of the force that is supported by the cable. If the pulley
is frictionless and the cable is weightless, then the magnitude of the force
throughout the cable is uniform.

Springs. Behavior of a linear elastic spring is shown in Fig. 3.22 and is
described by the spring law

Fs D kı

D k.L � L0/

Eq. (3.18), p. 137

where k is the spring stiffness (units: force/length), ı is the elongation of the

Helpful Information

Spring law sign conventions. The sign
conventions for the spring law given in
Eq. (3.18) are as follows:

Fs > 0 tension;

Fs < 0 compression;

ı D 0 unstretched position;

ı > 0 extension;

ı < 0 contraction:
spring from its unstretched length, L0 is the initial (unstretched) spring length,

End-of-Chapter Review 
and Problems
Every chapter concludes with a succinct, 
yet comprehensive chapter review and a 
wealth of review problems. 



xxixGuided Tour

Section 3.5 Chapter Review 177

R E V I E W P R O B L E M S

Problem 3.71

Consider a problem involving cables and bars only. For the conditions listed below, is
the solution obtained from

P EF D E0 using geometry of the structure before loads are
applied approximate or exact? Explain.

(a) Cables are modeled as inextensible, and bars are modeled as rigid.

(b) Cables and bars are modeled as linear elastic springs.

Note: Concept problems are about explanations, not computations.

Problem 3.72

The frictionless pulley A weighs 20 N and supports a box B weighing 60 N. When
you solve for the force in cable CD, a “problem” arises. Describe this problem and its
physical significance. Figure P3.72

Problem 3.73

To produce a force P D 40 N in horizontal member CD of a machine, a worker applies
a force F to the handle B . Determine the smallest value of F that can be used and the
angle ˛ it should be applied at.

Figure P3.73
Problem 3.74

The structure shown consists of five cables. Cable ABCD supports a drum having
weight W D 200 lb. Cable DF is horizontal, and cable segments AB and CD are
vertical. If contact between the drum and cable ABCD is frictionless, determine the
force in each cable.

Figure P3.74 and P3.75

Problem 3.75

In Prob. 3.74, if cable ABCD has 600 lb breaking strength and all other cables have
200 lb breaking strength, determine the largest value W may have.

Problem 3.76

Two frictionless pulleys connected by a weightless bar AB support the 200 and 300 N
forces shown. The pulleys rest on a wedge that is fixed in space. Determine the angle
� when the system is in equilibrium and the force in bar AB .

Figure P3.76
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1 Introduction

In statics we study the equilibrium of bodies un-
der the action of forces that are applied to them.
Our goal is to provide an introduction to the sci-
ence, skill, and art involved in modeling and de-
signing real life mechanical systems. We begin
the study of statics with an overview of the rel-
evant history of the subject. In subsequent sec-
tions and chapters, we cover those elements
of physics and mathematics (especially vec-
tors) needed to analyze the equilibrium of parti-
cles and rigid bodies. Throughout the book are
discussions and applications of engineering
design.

1.1 Engineering and Statics

Engineers design structures, machines, processes, and much more for the ben-
efit of humankind. In the process of doing this, an engineer must answer ques-
tions such as “Is it strong enough?” “Will it last long enough?” and “Is it safe
enough?” To answer these questions requires the ability to quantify important
phenomena present in the design or system at hand, and to compare these
measures with known criteria for what is acceptable and what is not. To do
this requires an engineer to have thorough knowledge of science, mathemat-
ics, and computational tools, and the creativity to exploit the laws of nature
to develop new designs. Central to all of this is the ability to idealize real life
problems with mathematical models that capture the essential science of the
problem, yet are tractable enough to be analyzed. Proficiency in doing this is
a characteristic that sets engineering apart from the pure sciences.

In most engineering disciplines, understanding the response of materials
or objects subjected to forces is important, and the fundamental science con-
cepts governing such response are known as Newtonian physics.� This book
examines applications of this topic to engineering problems under the special

�When the velocity of an object is close to the speed of light, relativistic physics is required.

1
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Figure 1.1. Hierarchy of subject matter and courses studied by many engineering stu-
dents. Courses in statics, dynamics, and mechanics of materials provide fundamental
concepts and a basis for more advanced study. Many subjects, such as vibrations and
finite element analysis, draw heavily on concepts from both dynamics and mechanics
of materials.

circumstances in which a system is in force equilibrium, and this body of ma-
terial is called statics. As such, statics is usually the first engineering course
that students take. Statics is an important subject in its own right, and develops
essential groundwork for more advanced study.

If you have read this far, then we presume you are embarking on a study
of statics, using this book as an aid. Figure 1.1 shows a hierarchy of subjects,
many of which you are likely to study en route to an education in engineering.
Following a course in statics are introductory courses in dynamics and mechan-
ics of materials. Dynamics studies the motion of particles and bodies subjected
to forces that are not in equilibrium. Mechanics of materials introduces models
for material behavior and methods for determining stresses and deformations
in structures. The concepts learned in these three basic courses are used on
a daily basis by almost all engineers who are concerned with the mechanical
response of structures and materials! Following these basic courses are a wide
variety of advanced subjects such as vibrations, stress analysis, robotics, finite
element analysis, machine design, design of steel and concrete structures, and
so on.
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The purpose of this book is to provide you with a solid and comprehen-
sive education in statics. Very often, when engineering problems are boiled
down to their essential elements, they are remarkably simple to analyze. In
fact, throughout most of this book, the mathematics needed to analyze prob-
lems is straightforward. The bigger challenge usually lies in the idealization
of a real life problem by a model, and we hope this book helps you cultivate
your ability to do this.

1.2 A Brief History of Statics�

The history of statics is not a distinct subject, as it is closely intertwined with
the development of dynamics and mechanics of materials. Early scientists and
engineers were commonly called philosophers, and their noble undertaking
was to use thoughtful reasoning to provide explanations for natural phenom-
ena. Much of their focus was on understanding and describing equilibrium
of objects and motion of celestial bodies. With few exceptions, their studies
had to yield results that were intrinsically beautiful and/or compatible with the
dominant religion of the time and location. What follows is a short historical
survey of the major figures who profoundly influenced the development of key
aspects of mechanics that are especially significant to statics.

Interesting Fact

Early structural design codes. While
most of our discussion focuses on accom-
plishments of philosophers, there were
also significant accomplishments in the
development of structural design codes
over a period of thousands of years. Some
of these include the ancient books of
Ezekiel and Vitruvius and the secret books
of the medieval masonic lodges. Additional
history is given in J. Heyman, “Truesdell
and the History of the Theory of Structures,”
a chapter in Essays on the History of Me-
chanics, edited by A. Becchi, M. Corradi,
F. Foce, and O. Pedemonte, Birkhauser,
Boston, 2003. These codes were largely
empirical rules of proportion that provided
for efficient design and construction of ma-
sonry structures. The great Greek temples,
Roman aqueducts, and Gothic cathedrals
are testament to their effectiveness. While
the writers of these codes were not philoso-
phers, their engineering accomplishments
were impressive.

The Parthenon in Athens, Greece, was
completed in 438 B.C. and is an example of
early column and beam masonry construc-
tion.

For centuries, philosophers studied the equilibrium and motion of bodies
with less than full understanding, and sometimes incorrect understanding. No-
table early contributors include:

� Aristotle (384–322 B.C.) wrote about science, politics, economics, and
biology, and he proposed what is often called a “physics of common
sense.” He studied levers and although he attributed their efficiency to
the “magical” properties of the circle, he understood some basic con-
cepts of the moment of a force and its effect on equilibrium. He clas-
sified objects as being either light or heavy, and he believed that light
objects fall slower than heavy objects. He recognized that objects can
move in directions other than up or down and said that such motion is
contrary to the natural motion of the body and that some force must con-
tinuously act on the body for it to move this way. Most importantly, he
said that the natural state of objects is for them to be at rest.

� Archimedes (287–212 B.C.) postulated several axioms based on exper-
imental observations of the equilibrium of levers, and using these, he
proved several propositions. His work shows further understanding of
the effects of the moment of a force on equilibrium. Archimedes is per-
haps best known for his pioneering work on hydrostatic fluid mechan-
ics where one of his discoveries is that a body that floats in fluid will
displace a volume of fluid whose weight is equal to that of the body.
Recently, evidence has been found that he discovered some elementary
concepts of calculus.

�This history is culled from the excellent works of C. Truesdell, Essays in the History of Mechan-
ics, Springer-Verlag, Berlin, 1968; I. Bernard Cohen, The Birth of a New Physics, revised and
updated edition, W. W. Norton & Company, New York, 1985; R. Dugas, A History of Mechan-
ics, Dover, Mineola, NY, 1988; and James H. Williams, Jr., Fundamentals of Applied Dynamics,
John Wiley & Sons, New York, 1996.
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� Leonardo da Vinci (1452–1519) had bold imagination and tackled a
wide variety of problems. He correctly understood the moment of a
force and used the terminology arm of the potential lever to describe
what we today call the moment arm. While his conclusions were wrong,
he studied the equilibrium of a body supported by two strings. He also
conducted experiments on the strength of structural materials.

Following the progress of these and many other early philosophers came
the work of Galileo and Newton. With their work came rapid progress in
achieving the essential elements of a theory for the motion of bodies, and their
accomplishments represent the most important milestone in the history of me-
chanics until the work of Einstein. The contributions of Galileo and Newton
are discussed in some detail in the remainder of this section.

Galileo Galilei (1564–1642)

Figure 1.2
A portrait of Galileo painted in 1636 by Justus
Sustermans.

Figure 1.3
A sketch from Galileo’s last book Discourses
on Two New Sciences, published in 1638, where
he studies the strength of beams, among several
other topics.

Galileo Galilei (1564–1642) had a strong interest in mathematics, mechanics,
astronomy, heat, and magnetism. He made important contributions throughout
his life, despite persecution from the church for his support of the Copernican
theory that the Earth was not the center of the universe. One of his most im-
portant contributions was his thought experiment in which he concluded that
a body in its natural state of motion has constant velocity. Galileo discovered
the correct law for freely falling bodies; that is, the distance traveled by a body
is proportional to the square of time. He also concluded that two bodies of dif-
ferent weight would fall at the same rate and that any differences are due to
air resistance. Galileo developed a theory (with some minor errors) for the
strength of beams, such as that shown in Fig. 1.3. He was the first to use the
concept of stress as a fundamental measure of the loading a material supports,
and he is viewed as the father of mechanics of materials. He also discovered
that the strength of structures does not scale linearly; that is, if the dimensions
of a beam are doubled, the load the beam can support does not double. He
speculated that it is for this reason that trees, animals, and so on have natu-
ral limits to the size they may have before they would fail under their own
weight. More importantly, his work showed that newer, larger structures could
not necessarily be built by simply scaling the dimensions of smaller structures
that were successfully built.

Isaac Newton (1643�–1727)

Newton was one of the greatest scientists of all time. He made important con-
tributions to optics, astronomy, mathematics, and mechanics, and his collec-
tion of three books entitled Philosophiæ Naturalis Principia Mathematica ,
or Principia as they are generally known, which were published in 1687,
is considered by many to be the greatest collection of scientific books ever
written.

In the Principia, Newton analyzed the motion of bodies in “resisting” and
“non-resisting media.” He applied his results to orbiting bodies, projectiles,
pendula, and free fall near the Earth. By comparing his “law of centrifugal
force” with Kepler’s third law of planetary motion, Newton further demon-
strated that the planets were attracted to the Sun by a force varying as the
�This birth date is according to the Gregorian, or “modern,” calendar. According to the older

Julian calendar, which was used in England at that time, Newton’s birth was in 1642.
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inverse square of the distance, and he generalized that all heavenly bodies
mutually attract one another in the same way. In the first book of the Prin-
cipia Newton develops his three laws of motion; in the second book he de-
velops some concepts in fluid mechanics, waves, and other areas of physics;
and in the third book he presents his law of universal gravitation. His con-
tributions in the first and third books are especially significant to statics and
dynamics.

Figure 1.4
A portrait of Newton painted in 1689 by Sir
Godfrey Kneller, which is owned by the 10th
Earl of Portsmouth. It shows Newton before he
went to London to take charge of the Royal
Mint and when he was at his scientific peak.

Newton’s Principia was the final brick in the foundation of the laws that
govern the motion of bodies. We say foundation because it took the work of
Daniel Bernoulli (1700–1782), Johann Bernoulli (1667–1748), Jean le Rond
d’Alembert (1717–1783) Joseph-Louis Lagrange (1736–1813), and Leonhard
Euler (1707–1783) to clarify, refine, and advance the theory of dynamics into
the form used today. Euler’s contributions are especially notable since he used
Newton’s work to develop the theory for rigid body dynamics.� Newton’s
work, along with Galileo’s, also provided the foundation for the theory of me-
chanical behavior of deformable bodies, which is more commonly called me-
chanics of materials. However, it took the work of Charles-Augustin Coulomb
(1736–1806), Claude Louis Marie Henri Navier (1785–1857), and Augustin
Cauchy (1789–1857) to further refine the concept of stress into the form used
today; the work of Robert Hooke (1635–1703) and Thomas Young (1773–
1829) to develop a theory for elastic deformation of materials; and the work of
Leonhard Euler (1707–1783) to consider the deformations of a structure (an
elastic strip in particular).�

1.3 Fundamental Principles

Space and time. Most likely you already have a good intuitive understand-
ing of the concepts of space and time. In fact, to refine concepts of space and
time is not easy and may not provide the clarification we would like. Space
is the collection of all positions in our universe that a point may occupy. The
location of a point is usually described using a coordinate system where mea-
surements are made from some reference position using the coordinate sys-
tem’s reference directions. While selection of a reference position and direc-
tions is arbitrary, it is usually based on convenience. Because space is three-
dimensional, three pieces of information, called coordinates, are required to
locate a point in space. Most often we will use a rectangular Cartesian coor-
dinate system where the distances to a point are measured in three orthogonal
directions from a reference location. Other coordinate systems, such as spheri-
cal and cylindrical coordinates (and polar coordinates in two dimensions), are
sometimes more convenient. All engineering problems are three-dimensional,
but often we will be able to idealize a problem as being two-dimensional, or
one-dimensional. Time provides a measure of when an event, or sequence of
events, occurs.

�Additional comments on the history of mechanics as it pertains to dynamics are given in
G. L. Gray, F. Costanzo, and M. E. Plesha, Engineering Mechanics: Dynamics, McGraw-Hill,
New York, 2009.

�Additional comments on the history of mechanics as it pertains to mechanics of materials are
given in M. Vable, Mechanics of Materials, Oxford University Press, New York, 2002.
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Mass and force. Mass is the amount of matter, or material, in an object.
Force is an agency that is capable of producing motion of an object. Forces can
arise from contact or interaction between objects, from gravitational attraction,
from magnetic attraction, and so on. As discussed in Section 1.5, interpretation
and quantification of mass and force should be viewed as being related by
Newton’s second law of motion. Force is discussed further in Section 1.4.

Particle. A particle is an object whose mass is concentrated at a point. For
this reason, a particle is also called a point mass, and it is said to have zero
volume. An important consequence of this definition is that the notion of rota-
tional motion of a particle is meaningless. Clearly there are no true particles
in nature, but under the proper circumstances it is possible to idealize real life
objects as particles. Objects that are small compared to other objects and/or
dimensions in a problem can often be idealized as particles. For example, to
determine the orbit of a satellite around the Earth, it is probably reasonable to
idealize the satellite as a particle. Objects do not necessarily need to be small
to be accurately idealized as particles. For example, for the satellite orbiting
Earth, the Earth is not small, but for many purposes the Earth can also be
idealized as a particle.

Body and rigid body. A body has mass and occupies a volume of space. In
nature, all bodies are deformable. That is, when a body is subjected to forces,
the distances between points in the body may change. A rigid body is a body
that is not deformable, and hence the distance between any two points in the
body never changes. There are no true rigid bodies in nature, but very often
we may idealize an object to be a rigid body, and this provides considerable
simplification because the intricate details of how the body deforms do not
need to be accounted for in an analysis. Furthermore, in statics we will be
able to make precise statements about the behavior of rigid bodies, and will
establish methods of analysis that are exact.

Scalars and vectors. A scalar is a quantity that is completely characterized
by a single number. For example, temperature, length, and density are scalars.
In this book, scalars are denoted by italic symbols, such as s. A vector is an
entity that has both size (or magnitude) and direction. Much will be said about
vectors in Chapter 2, but basic notions of vectors will be useful immediately.
Statements such as “my apartment is 1 mile northeast of Engineering Hall”
and “I’m walking north at 3 km/h” are statements of vector quantities. In the
first example, position of one location relative to another is stated, while in the
second example velocity is stated. In both examples, commonly used refer-
ence directions of north and east are employed. Vectors are immensely useful
for describing many entities in mechanics. Vectors offer compact representa-
tion and easy manipulation, and they can be transformed. That is, if a vector
is known referred to one set of coordinate directions, then using established
rules for transformation, the vector is known in any other set of coordinate
directions. In this book, vectors are denoted by placing an arrow above the
symbol for the vector, such as Ev.

Concept Alert

Vectors. A vector is an entity that has both
size and direction. Vectors are immensely
useful in mechanics, and the ability to use
vectors to represent force, position, and
other entities is essential.

Position, velocity, and acceleration. Position, velocity, and acceleration
are all examples of vectors. If we consider a particle that has position Er relative
to some location, then the velocity of the particle is the time rate of change of
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its position
Ev D d Er=dt; (1.1)

where d=dt denotes the derivative with respect to time.� Similarly, the accel-
eration is the time rate of change of velocity

Ea D d Ev=dt: (1.2)

Since statics is concerned with situations where Ea D E0, our discussion of
Eqs. (1.1) and (1.2) will be brief. If a particle’s acceleration is zero, then in-
tegration of Eq. (1.2) shows the particle has constant velocity, which may be
zero or nonzero. If the velocity is zero, then Eq. (1.1) shows the particle’s po-
sition does not change, while if the velocity is not zero, integration of Eq. (1.2)
shows the particle’s position changes as a linear function of time. If the accel-
eration is not zero, then the particle will move with velocity and position that
change with time.

Newton’s laws of motion

Inspired by the work of Galileo and others before him, Newton postulated his
three laws of motion in 1687:

First Law. A particle remains at rest, or continues to move in a straight line
with uniform velocity, if there is no unbalanced force acting on it.

Second Law. The acceleration of a particle is proportional to the resultant
force acting on the particle and is in the direction of this force. The
mathematical statement of this law� is

EF D mEa; (1.3)

where EF is the resultant force acting on the particle, Ea is the accelera-
tion of the particle, and the constant of proportionality is the mass of
the particle m. In Eq. (1.3), EF and Ea are vectors, meaning they have
both size (or magnitude) and direction. Vectors are discussed in detail
in Chapter 2.

Concept Alert

Newton’s second law. Newton’s second
law, EF D mEa, is the most important funda-
mental principle upon which statics, dynam-
ics, and mechanics in general are based.

Third Law The forces of action and reaction between interacting bodies are
equal in magnitude, opposite in direction, and collinear.

Newton’s laws of motion, especially Eq. (1.3), are the basis of mechanics.
They are postulates whose validity and accuracy have been borne out by count-
less experiments and applications for more than three centuries. Unfortunately,
there is not a fundamental proof of their validity, and we must accept these as
rules that nature follows. The first law was originally stated by Galileo. Of
the three laws, only the second two are independent. In Eq. (1.3), we see that

�Equations (1.1) and (1.2) are valid regardless of how a vector might be represented. However,
the details of how the time derivative is evaluated depend on the particular vector representation
(e.g., Cartesian, spherical, etc.) that is used. Dynamics explores these details further.

�Actually, Newton stated his second law in a more general form as EF D d.mEv/=dt , where Ev is
the velocity of the particle and d.mEv/=dt denotes the time rate of change of the product mEv,
which is called the momentum of the particle. When mass is constant, this equation specializes
to Eq. (1.3). For problems in which mass is not constant, such as in the motion of a rocket that
burns a substantial mass of fuel, the more general form of Newton’s second law is required.
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if the resultant force EF acting on a particle is zero, then the acceleration of
the particle is zero, and hence the particle may move with uniform velocity,
which may be zero or nonzero in value. Hence, when there is no acceleration
(i.e., Ea D E0), the particle is said to be in static equilibrium. The third law will
play an important role when drawing free body diagrams, which we will see
are an essential aid for applying EF D mEa.

1.4 Force

Interesting Fact

Measuring force. In addition to the capa-
bility of producing an acceleration of an
unsupported body, a force causes a body
to deform, or change shape. This suggests
two ways to measure force. First, for an
accelerating body with known mass m, by
measuring the acceleration Ea, we may then
determine the force EF applied to the body,
using Newton’s law EF D m Ea. This ap-
proach is common in celestial mechanics
and projectile motion, but it cannot be used
for objects that are in static equilibrium.
A second approach that is more common
for both static and dynamic applications is
by measuring the deformation (i.e., shape
change) that a force produces in an object
whose behavior is known. An example is
the handheld spring scale shown which is
being used to weigh bananas.

The weight of the bananas causes the
spring’s length to change, and because the
spring’s stiffness is known, the force the
bananas apply to the scale can be de-
termined. A brief historical discussion of
mass and force measurements is given
in J. C. Maxwell’s notes on dynamics en-
titled Matter and Motion, Dover Publica-
tions, Inc., New York, 1991, the preface
of which is dated 1877. A more contem-
porary discussion of force measurements
(and measurements in general) is available
from the National Institute of Standards
and Technology (NIST) (see http://www.
nist.gov/).

Forces are of obvious importance to us. In statics, we are usually interested in
how structures support the forces that are applied to them, and how to design
structures so they can accomplish the goal of supporting forces. In dynamics,
we are usually interested in the motions of objects that are caused by forces
that are applied to them. In this section, we discuss force in some detail, exam-
ine some different types of forces, and discuss how forces are produced.

Simply stated, a force is any agency that is capable of producing an ac-
celeration of an unsupported body.� While this definition may seem vague,
it is comprehensive. All forces are produced from the interaction of two or
more bodies (or collections of matter), and the interaction between the bodies
can take several forms which gives rise to different ways that forces can be
produced.

For many purposes, a force can be categorized as being either a contact
force or a field force :

� Contact force. When two bodies touch, contact forces develop between
them. In general, the contact forces are distributed over a finite area
of contact, and hence, they are distributed forces with dimensions of
force/area. If the bodies touch over only a small region, or if we replace
the distributed force by an equivalent concentrated force as discussed
in Chapter 7, then the contact forces are concentrated at a point. Con-
tact forces are made up of two parts: a normal-direction force and a
tangential-direction force, which is also called the friction force. Exam-
ples of contact forces include the forces between your feet and ground
when you are standing, and the force applied by air to a building during
a blowing wind.

� Field force. A force between bodies that acts through space is called a
field force . Field forces act throughout the volume of an object and thus
have dimensions of force/volume. Field forces are often called body
forces. For many applications, we can represent a field force by a con-
centrated force that acts at a point. Examples of field forces include the
weight of an object, the attractive force between the Earth and Moon,
and the force of attraction between a magnet and an iron object.

Some examples of contact and field forces are given in Fig. 1.5.
Although the definition of contact forces given above is useful, more care-

ful consideration of contact at an atomic length scale shows that contact forces
are in fact a special case of a field force. As an atom from one surface comes

�Whether or not a particular body does accelerate depends upon the combined action of all forces
that are applied to the body.

http://www.nist.gov/
http://www.nist.gov/
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very close to an atom on the opposite surface, the atoms never touch one an-
other, but rather they develop a repulsive field force that increases rapidly as
the two atoms come closer. However, the range of distances over which these
forces act is very small (on the order of atomic dimensions), and for macro-
scopic applications, our definition of contact forces is useful.

Figure 1.5
Examples of contact forces and field forces. (a)
A basketball rests on a hard level surface. (b) A
book is pushed across a table with your finger.
In both examples, the field force is the weight
W of the object, and the contact forces are the
normal force N , the friction force F , and the
force P applied by your finger to the book. For
the basketball, contact occurs over a very small
region, and it is reasonable to idealize this as a
point. For the book, contact occurs over the en-
tire surface of the book cover, but it is nonethe-
less possible to model the contact forces by con-
centrated forces acting at a point.

1.5 Units and Unit Conversions

Units are an essential part of any quantifiable measure. Newton’s law F D ma,
written here in scalar form, provides for the formulation of a consistent and
unambiguous system of units. We will employ both U.S. Customary units, and
SI units (International System�) as shown in Table 1.1. Each system has three

Table 1.1. U.S. Customary and SI unit systems.

System of Units

Base Dimension U.S. Customary SI

force pound (lb) newtona(N) � kg�m=s2

mass sluga � lb�s2=ft kilogram (kg)

length foot (ft) meter (m)

time second (s) second (s)
a Derived unit.

base units and a fourth derived unit. In the U.S. Customary system, the base
units measure force, length, and time, using lb, ft, and s, respectively, and the
derived unit is obtained from the equationm D F=a which gives the mass unit
as lb�s2=ft, which is defined as 1 slug. In the SI system, the base units measure
mass, length, and time, using kg, m, and s, respectively, and the derived unit
is obtained from the equation F D ma which gives the force unit as kg�m=s2,
which is defined as 1 newton, N. For both systems, we may occasionally use
different, but consistent, measures for some units. For example, we may use
minutes rather than seconds, inches instead of feet, grams instead of kilograms,
and so on. Nonetheless, the definitions of 1 newton and 1 slug are always as
shown in Table 1.1.

Common Pitfall

Weight and mass are different. It is unfor-
tunately common for people, especially lay-
people, to refer to weight using mass units.
For example, when a person says, “I weigh
70 kg,” they person really means “My mass
is 70 kg.” In this book, as well as through-
out engineering, we must be precise with
our nomenclature. Weights and forces will
always be reported using appropriate force
units, and masses will always be reported
using appropriate mass units.

Helpful Information

Dimensions versus units. Dimensions
and units are different. Dimensions are
a measurable extent of some kind, while
units are used to measure a dimension.
For example, length and time are both
dimensions, and meter and second, re-
spectively, are units used to measure these
dimensions.

Dimensional homogeneity and unit conversions

Of course, the symbol “D” means that what is on the left-hand side of the
symbol is the same as what is on the right-hand side. Hence, for an expression
to be correct, it must be numerically correct and dimensionally correct. Nor-
mally this means that the left- and right-hand sides have the same numerical
value and the same units.� All too often units are not carried along during a
calculation, only to be incorrectly assumed at the end. Our strong recommen-
dation is that you always use appropriate units in all equations. Such practice

� SI has been adopted as the abbreviation for the French Le Système International d’Unités.
�A simple example of an exception to this is the equation 12 in. D 1 ft. Such equations play a

key role in performing unit conversions.
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helps avoid catastrophic blunders and provides a useful check on a solution,
for if an equation is found to be dimensionally inconsistent, then an error has
certainly been made.

Unit conversions are frequently needed, and are easily accomplished using
conversion factors such as those found in Table 1.2 and rules of algebra. The
basic idea is to multiply either or both sides of an equation by dimensionless
factors of unity, where each factor of unity embodies an appropriate unit con-
version. This description perhaps sounds vague, and the procedure is better
illustrated by the examples that follow.

Table 1.2. Conversion factors between U.S. Customary and SI unit systems.

U.S. Customary SI

length 1 in: = 0:0254m (2:54 cm, 25:4mm)a

1 ft (12 in:) = 0:3048ma

1mi (5280 ft) = 1:609 km

force 1 lb = 4:448N

1 kip (1000 lb) = 4:448 kN

mass 1 slug (1 lb�s2=ft) = 14:59 kg
a Exact.

Interesting Fact

Abbreviation for inch. Notice in Table 1.2
that the abbreviation for inch is “in.”, which
contains a period. This is unusual, but
is done because without the period, the
abbreviation would also be the same as
a word in the English language, and this
might lead to confusion.

Prefixes

Prefixes are a useful alternative to scientific notation for representing numbers
that are very large or very small. Common prefixes and a summary of rules for
use are given in Table 1.3.

Rules for Prefix Use

1. With few exceptions, use prefixes only in the numerator of unit combi-
nations. One common exception is kg, which may appear in numerator
or denominator.

2. Use a dot or dash to denote multiplication of units. For example, use
N�m or N-m.

3. Exponentiation applies to both the unit and prefix. For example, mm2 D

.mm/2.

4. When the number of digits on either side of a decimal point exceeds
4, it is common to group the digits into groups of 3, with the groups
separated by commas or thin spaces. Since many countries use a comma
to represent a decimal point, the thin space is sometimes preferable. For
example, 1234.0 could be written as is, and 12345.0 should be written
as 12;345:0 or as 12 345:0.

While prefixes can often be incorporated in an expression by inspection, the
rules for accomplishing this are identical to those for performing unit transfor-
mations, as shown in the examples of this section.
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Table 1.3. Common prefixes used in the SI unit systems.

Multiplication Factor Prefix Symbol

1 000 000 000 000 000 000 000 000 1024 yotta Y

1 000 000 000 000 000 000 000 1021 zetta Z

1 000 000 000 000 000 000 1018 exa E

1 000 000 000 000 000 1015 peta P

1 000 000 000 000 1012 tera T

1 000 000 000 109 giga G

1 000 000 106 mega M

1 000 103 kilo k

100 102 hecto h

10 101 deka da

0:1 10�1 deci d

0:01 10�2 centi c

0:001 10�3 milli m

0:000 001 10�6 micro �

0:000 000 001 10�9 nano n

0:000 000 000 001 10�12 pico p

0:000 000 000 000 001 10�15 femto f

0:000 000 000 000 000 001 10�18 atto a

0:000 000 000 000 000 000 001 10�21 zepto z

0:000 000 000 000 000 000 000 001 10�24 yocto y

Angular measure

Figure 1.6
Definition of radian measure for angles.

Figure 1.7
Examples of angles measured in radians.

Angles are usually measured using either radians (rad) or degrees (ı). The
radian measure of the angle � shown in Fig. 1.6 is defined to be the ratio of
the circumference c of a circular arc to the radius r of the arc. Thus, as seen in
the examples of Fig. 1.7, the angle for one-quarter of a circular arc is � D �=2
rad (or 1.571 rad), and for a full circular arc the angle is � D 2� rad (or
6.283 rad). Degree measure arbitrarily chooses the angle for a full circular arc
to be 360ı, in which case 1ı is the angle of an arc that is 1/360 parts of a full
circle. Thus, the transformation between radian and degree measure is

2� rad D 360ı: (1.4)

Transformations are carried out using the procedures described in this
section. For example, to convert the angle � D 12ı to radian measure, we
use Eq. (1.4) to write

� D .12ı/
2� rad

360ı
D 0:209 rad: (1.5)

Radians are a measure of angle that naturally arises throughout mathematics
and science, and most equations derived from fundamental principles use ra-
dian measure. Nonetheless, degree measure has intuitive appeal and is used
widely.

When writing angles, we will always label these as radians or degrees.
However, radians and degrees are not units in the same way as those discussed
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earlier and, while perhaps puzzling, both of these measures are dimension-
less. This can be seen by examining the definition of radian measure shown in
Fig. 1.6, namely � D c=r . With c and r having the same units of length, angle
� is clearly dimensionless. Thus, radians and degrees are not really units, but
rather are statements of the convention used for measuring an angle. Nonethe-
less, for practical purposes we may consider these to be units, and we will
transform them using our usual procedures. Further, if we derive an expres-
sion that we expect to be dimensionless and we discover it has units of radians
or degrees, then we should not necessarily be alarmed.

Accuracy of calculations

The accuracy of answers obtained for a particular problem is only as precise as
the coarsest, or least accurate, information used in the analysis. For example,
consider the numbers 1.23 and 45.67. By writing these numbers using three
and four digits, respectively, the implication is that they are known to three
and four significant digits of accuracy. The exact product of these numbers
is 56.1741. But it is wrong to imply that the product is known to six-digit
accuracy. Rather, it is appropriate to report the product to the same number of
significant digits as the least accurate piece of information used. Hence, we
would round the exact product to three significant digits and report the answer
as 56.2.

Helpful Information

Accuracy of numbers in calculations.
Throughout this book, we will generally
assume that the data given for problems is
known to three significant digits of accuracy.
When calculations are performed, such
as in example problems, all intermediate
results are stored in the memory of a
calculator or computer, using the full preci-
sion these machines offer. However, when
these intermediate results are reported in
this book, they are usually rounded to four
significant digits. Final answers are usually
reported with three significant digits. If you
verify the calculations described in this
book using the rounded numbers that are
reported, you may occasionally calculate
results that are slightly different from those
shown.

The use of number of digits to imply precision, as suggested above, is
ambiguous. Consider the number 6000; it is not clear if this number is known
to one, two, three, or four significant digits. To embody accuracy information
in numbers, it is probably best to use scientific notation. Thus, for example,
if the number 6000 were known to three significant digits, we could write
6:00 � 103 with the convention that the number of digits used indicates the
accuracy of the number. In this book, we will use a more pragmatic approach
and will generally assume that data is known to three significant digits. When
you are performing computations, it is good practice to carry a few extra digits
of accuracy for intermediate computations; and if an electronic device such
as a calculator or computer is used, then you certainly want to use the full
precision that is available. Nonetheless, final answers should be interpreted as
having precision that is commensurate with the precision of data used. The
margin note on this page describes the convention for accuracy of numbers
that is used for the calculations carried out in this book.
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E X A M P L E 1.1 Unit Conversion

Convert the speed s D 5:12 ft=s to the SI units m/s and km/h.

S O L U T I O N

Road Map Starting with s D 5:12 ft=s, we will multiply the right-hand side of this
expression by appropriate conversion factors to achieve the desired unit conversion.

Governing Equations & Computation Referring to Table 1.2, we find

1 ft D 0:3048m: (1)

Dividing both sides of Eq. (1) by 1 ft provides the middle term of the following equa-

Common Pitfall

Omitting units in equations. The most se-
rious mistake made when performing unit
conversions (as well as when writing equa-
tions in general) is to omit units in equa-
tions. Although writing units in equations
takes a few moments longer, doing so will
help avoid the errors that are sure to result
if you do not make this a practice.

tion

1 D
0:3048m

1 ft
D

1 ft

0:3048m
; (2)

whereas dividing both sides of Eq. (1) by 0:3048m provides the last term of the above
equation. Regardless of which form of Eq. (2) is used, the left-hand side is the number
1, with no units. The form of Eq. (2) that is used in a particular unit transformation
will depend on what units need to be replaced, or canceled. To accomplish our unit
conversion for s D 5:12 ft=s, we write

s D 5:12
ft

s
.1/ D 5:12

=ft

s

0:3048m

1 =ft„ ƒ‚ …
D1

D 1:56
m

s
: (3)

In writing Eq. (3), we first multiply 5:12 ft=s by the dimensionless number 1; this
changes neither the value nor the units of s. Since we want to eliminate the foot unit,
we elect to substitute for the dimensionless number 1 using the first form of transfor-
mation in Eq. (2), namely 1 D 0:3048m=1 ft. Finally, we cancel the foot unit in the
numerator and denominator to obtain the speed s D 1:56m=s in the desired SI units.

To obtain s in units of km/h, we continue with Eq. (3) and perform the following
transformations:

s D 1:56
=m

=s

km

103 =m„ƒ‚…
D1

60 =s
=min„ƒ‚…
D1

60 =min

h„ ƒ‚ …
D1

D 5:62
km

h
: (4)

Discussion & Verification When possible, answers should be checked to verify that
they are reasonable. For example, starting with s D 5:12 ft=s, the result in Eq. (3) is
reasonable since a meter is about 3 feet.
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E X A M P L E 1.2 Unit Conversion

The universal gravitational constant, whose physical significance we discuss later in
this chapter, is G D 66:74 � 10�12 m3=.kg �s2/. Express G in base U.S. Customary
units.

S O L U T I O N

Road Map Perhaps the most straightforward solution strategy is to first convert mass
in kilograms to mass in slugs and then replace the unit of slug with its fundamental
definition.

Governing Equations & Computation Beginning our calculation withG D 66:74�
10�12 m3=.kg�s2/, we multiply the right-hand side by appropriate conversion factors
to achieve the desired unit conversion. Thus,

G D 66:74 � 10�12
=m3

=kg�s2
14:59 =kg

=slug„ ƒ‚ …
D1

�
ft

0:3048 =m

�3
„ ƒ‚ …

D.1/3

=slug

lb�s2=ft„ ƒ‚ …
D1

D 34:39 � 10�9
ft4

lb�s4
: (1)

Alternatively, we could also perform the unit transformation by first introducing
the SI force measure newton, followed by conversion to force measure in pounds, fol-
lowed by conversion of length. Thus,

G D 66:74 � 10�12
=m3

=kg�s2
=kg� =m=s2

=N„ ƒ‚ …
D1

4:448 =N

lb„ ƒ‚ …
D1

�
ft

0:3048 =m

�4
„ ƒ‚ …

D.1/4

D 34:39 � 10�9
ft4

lb�s4
: (2)

Discussion & Verification Because of the complexity of the unit combinations for
G, it is not possible to use inspection to verify that Eqs. (1) and (2) are reasonable.
Rather, the accuracy of our results relies solely on the use of appropriate conversion
factors and accurate cancellation of units in Eqs. (1) and (2). For this reason, it is
essential that you carry units throughout all equations.
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1.6 Newton’s Law of Gravitation

Because weight produced by gravity is so omnipresent, it is worthwhile to
examine the source of such forces closely, and to understand the limitations
of common expressions such as W D mg where m is an object’s mass, g is
acceleration due to gravity, and W is the object’s weight. In 1666, Newton
developed his law of universal gravitational attraction as

F D G
m1m2

r2
(1.6)

where

m1; m2 D masses of particles 1 and 2I

r D distance between the particlesI

G D universal gravitational constant, found to be
approximately 66:74�10�12 m3=.kg�s2/;

F D force of attraction between two particles:

Concept Alert

Force due to gravity. Force due to gravi-
tational attraction between two objects is a
vector, hence it has both magnitude and di-
rection. Equation (1.6) gives the magnitude,
and the direction is along a line connecting
the centers of gravity of the two objects.

It has been widely reported that Newton’s inspiration for this law was the
motion of an apple falling from a tree, but he also recognized that the same
law should apply to the attraction of celestial bodies to one another. Although
Newton postulated the law in 1666, it was not until 1687 that he published
his ideas in the Principia. This delay was due in part to the need to prove
that objects such as the Earth (if assumed to be spherical and uniform) could
be treated as a point mass for gravitational effects on neighboring particles,
and in the course of proving this he developed calculus.� The first accurate
measurement of G was by Lord Cavendish in 1798, and this value has been
refined by more careful experiments over the last two centuries, leading to the
value reported here. The law of universal gravitational attraction is a postulate,
and as with Newton’s three laws of motion, we must accept this as a rule that
nature follows without a fundamental proof of its validity.

For the vast majority of applications on Earth, Eq. (1.6) takes the simple
and convenient formW D mg, as follows. Letm1 in Eq. (1.6) denote the mass
m of an object, and let m2 denote the mass of the Earth (with an approximate
value mEarth D 5:9736 � 1024 kg). If the object is on or near the surface of
the Earth, then its position r is about the same as the mean radius of the Earth
(with an approximate value 6:371 � 106 m). The force F in Eq. (1.6) is then
called the weight W of the object, and Eq. (1.6) can be rewritten as

W D mg where g � GmEarth=r
2: (1.7)

From Eq. (1.7), we see that g is not a constant because it depends on the value
of r . However, for the vast majority of applications where objects are near

�Calculus was also developed independently by Gottfried Wilhelm Leibniz (1646–1716), and he
and Newton had a long-standing dispute over who was the true originator. The historical records
show that while Newton was the first to discover calculus (about 10 years before Leibniz),
Leibniz was the first to publish his discovery (about 15 years before Newton). In some respects,
Leibniz won since it is his superior notation that we use in calculus today.
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the surface of the Earth, effects of small changes in r are negligible, and the
commonly used values for acceleration due to gravity are

g D 9:81 m/s2 D 32:2 ft/s2: (1.8)

Note that if the values reported above for G, Earth’s mass, and Earth’s
mean radius are used in Eq. (1.7), the value of g produced is slightly different
than 9.81 m/s2. The difference between the accepted value of g and the theo-
retically computed value provided by Eq. (1.7) has several sources, including
that the Earth is not perfectly spherical and does not have uniform mass dis-
tribution, and the effects of centripetal acceleration due to the Earth’s rotation
are not accounted for. Because of these sources, the actual acceleration due to
gravity is about 0.3% lower at the equator, and 0.3% higher at the poles, rela-
tive to the numbers given in Eq. (1.8) which are for a north or south latitude of
45ı at sea level. In addition, there may be small local variations in acceleration
due to gravity due to the effects of geology. Nonetheless, throughout this book
we will use the standard values of g given in Eq. (1.8).

Helpful Information

Center of gravity. The center of gravity
is the point through which the weight of
a body, or a collection of bodies, may be
considered to act. In figures, we will often
denote the center of gravity by using the
symbol . To illustrate, imagine a waiter at
a restaurant brings you wine and pasta on
a tray. Obviously, the waiter must position
his hand so that the combined weight of
the tray and everything on it is located over
his hand.

The weight of the wine (12N), pasta (10N),
and tray (8N) can be thought of as a sin-
gle 30N force acting through the center of
gravity for the collection of objects. Center
of gravity and how it is determined are dis-
cussed thoroughly in Chapter 7, where it
is seen that the two force systems shown
above are equivalent force systems. In the
meantime, a working knowledge of this def-
inition will be useful.

Relationship between specific weight and density

The specific weights and densities of some common materials are given in
Table 1.4. When using U.S. Customary units, it is common to characterize the

Table 1.4. Specific weight and density for some common materials. Except for water
and ice, numbers reported are generally at 20 ıC. Data may vary depending on compo-
sition, alloying, temperature, moisture content for wood, etc.

Specific Weight � Density �
Material (lb/ft3) (kg/m3)

iron (pure) 491 7860

iron (cast) 450˙ 15 7210˙ 240

aluminum (pure) 169 2710

aluminum (alloy) 170˙ 10 2710˙ 160

steel 490 7850

stainless steel 500 8010

brass 537˙ 8 8610˙ 130

titanium 280 4480

rubber 70˙ 10 1120˙ 160

nylon 70 1120

concrete 150 2400

rock (dry granite) 165 2640

cortical bone (adult) 119 1900

wood (dry Douglas fir) 32˙ 2 510˙ 30

water (fresh, 4 ıC, 1 atm) 62.4 1000

ice 57 920

JP–4 jet fuel 48 770
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density of materials using specific weight (sometimes also called weight den-
sity, or unit weight) which is defined to be the weight on Earth of a unit vol-
ume of material. For example, the specific weight of steel is � D 490 lb=ft3

(D 0:284 lb=in:3/. However, specific weight is not the same as density, al-
though they are related. Density is defined to be the mass of a unit volume
of material, and when SI units are used, it is most common to directly report
a material’s density. Thus, for steel, the density is � D 7850 kg/m3. These
measures are related by Eq. (1.7) as follows. Imagine a certain volume V of
material has weight (on Earth) W and mass m. Dividing Eq. (1.7) by volume
V provides

W

V
D
m

V
g: (1.9)

In this expression,W=V is the definition of specific weight � , andm=V is the
definition of density �. Thus, Eq. (1.9) becomes

� D �g or � D
�

g
: (1.10)
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E X A M P L E 1.3 Weight and Force of Mutual Attraction

Figure 1

Two bowling balls resting on a shelf touch one another. The balls have 220mm diam-
eter and are made of plastic with density �A D 1170 kg/m3 for ball A and �B D
980 kg/m3 for ball B . Determine the weight of each ball and the force of mutual attrac-
tion, expressing both in SI units and U.S. Customary units.

S O L U T I O N

Road Map The forces to be determined are shown in Fig. 2. The weights of balls A
and B are forces (vectors) with magnitudesWA andWB , respectively, and these forces
act in the downward vertical direction. The force of mutual attraction between the two
balls has magnitude F , with directions as shown in Fig. 2. Note that Newton’s third law
requires the force of mutual attraction between the two balls to have equal magnitude
and opposite direction. We will assume both balls are uniform (i.e., the density is the
same throughout each ball), and we will neglect the presence of the finger holes. We
will first determine the mass of each ball. We will then determine the weight of each
ball, usingWA D mAg andWB D mBg, and then the force of mutual attraction, using
Newton’s law of gravitational attraction.

Figure 2
The weight of each ball and the force of mutual
attraction are vectors with the directions shown.
Important Note: The bowling balls are also
subjected to other forces that are not shown (see
the Helpful Information margin note below).

Helpful Information

Additional forces. The balls shown in
Fig. 2 are subjected to additional forces
that are not shown. For example, the shelf
applies a force to each ball, and there are
probably contact forces between the two
balls where they touch. Clearly, without
these additional forces, the bowling balls
could not be in static equilibrium. Chapter 3
will thoroughly discuss these additional
forces and how they may be determined.

Governing Equations & Computation The massmA of ball A is the product of the
material’s density �A and the ball’s volume VA, and similarly for ball B . Thus

mA D �AVA D

�
1170

kg
=m3

�
4

3
�

 
0:220 =m

2

!3
D 6:523 kg; (1)

mB D �BVB D

�
980

kg
=m3

�
4

3
�

 
0:220 =m

2

!3
D 5:464 kg: (2)

The weight of each ball is

WA D mAg D .6:523 kg/
�
9:81

m

s2

�
D 64:0

kg�m

s2
D 64:0 N; (3)

WB D mBg D .5:464 kg/
�
9:81

m

s2

�
D 53:6

kg�m

s2
D 53:6 N: (4)

In U.S. Customary units, WA D .64:0 =N/.1 lb=4:448 =N/ D 14.4 lb and WB D
.53:6 =N/.1 lb=4:448 =N/ D 12.1 lb.

The force of mutual attraction is given by Eq. (1.6) (with subscripts 1 and 2 re-
placed by A and B) as

F D G
mAmB

r2
D

0
BBBB@66:74 � 10�12

=m2�m‚…„ƒ
m3

=kg�s2

1
CCCCA
.6:523 =kg/.5:464 kg/

.0:220 =m/2

D 4:91 � 10�8
kg�m

s2
D 4:91 � 10�8 N: (5)

In Eq. (5), r D 0:220m is the distance between the center of each ball. In U.S. Custom-

ary units, F D .4:91 � 10�8 =N/.1 lb=4:448 =N/ D 1:10 � 10�8 lb:

Discussion & Verification As you might have expected, the force of mutual attrac-
tion between the two balls is very small compared to the weight of the balls (9 orders
of magnitude smaller). In developing models for engineering problems, the force of
mutual attraction will usually be small compared to other forces, and when this is the
case, it will be neglected.
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E X A M P L E 1.4 Specific Weight and Density

The specific weight of a particular aluminum alloy is � D 0:099 lb=in:3. Determine the
density of this alloy, and report this in U.S. Customary units.

S O L U T I O N

Road Map Beginning with weight per unit volume for an aluminum alloy, we will
determine its mass per unit volume.

Governing Equations & Computation We use Eq. (1.10), with appropriate unit
transformations

� D
�

g
D
0:099 lb=in:3

32:2 =ft=s2

=ft

12 in.
D 2:562 � 10�4

lb�s2

in.4

D 2:562 � 10�4
=lb� =s2

in.4„ƒ‚…
=in.� in.3

slug

=lb� =s2==ft

12 =in.
=ft
D 3:07 � 10�3

slug

in.3
: (1)

Discussion & Verification The first expression in Eq. (1) does not use the conven-
tional U.S. Customary unit for mass, but is otherwise a perfectly acceptable and useful
answer for the density of this aluminum alloy. The second expression in Eq. (1) incor-
porates the mass unit slug and provides the density in the expected form of mass per
unit volume.
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1.7 Failure

Among all of the goals confronting engineers when they design structures
and machines, the most crucial goal is to develop designs that are as safe as
possible. Unfortunately, despite all human efforts to meet this goal, sometimes
we do not, and for reasons that are almost always unexpected, failure occurs.
When failure occurs, we must learn from it so that our mistakes and/or lack
of foresight is not repeated in the future.� In this section, some examples of
engineering failures are highlighted.

� Tacoma Narrows bridge. Only four months after its opening in 1940,
the Tacoma Narrows suspension bridge in Washington collapsed vio-
lently due to severe vibrations produced by aerodynamic forces that
were not fully anticipated and accounted for in its design (see Fig. 1.8).
Interestingly, the Deer Isle bridge along the coast of Maine, while
smaller, was of similar construction. It opened one year earlier and also
experienced severe wind-induced vibrations. However, the designer of
this bridge had the foresight and perhaps sufficient time to add wind fair-
ings along the bridge’s length to give it better aerodynamic properties,
and additional diagonal cable bracing to provide greater stiffness. This
bridge is still in service today.�

Figure 1.8
Failure of the Tacoma Narrows bridge in
Tacoma, Washington, in 1940, due to severe vi-
brations produced by a 42 mph wind.

� Escambia Bay bridge. Fifty-six sections of the Interstate 10 bridge
crossing Escambia Bay in Pensacola, Florida, were dislodged by Hur-
ricane Ivan in September 2004, including numerous sections that were
completely washed into the bay (see Fig. 1.9). Each of these sections
weighed about 220 tons. The National Weather Service categorizes the
intensity of hurricanes using a scale of 1 to 5. When Ivan struck the
Escambia Bay bridge, it was a category 3 hurricane with sustained winds
of 111 to 130mph. While Ivan was not an extreme hurricane according
to this scale, the damage caused to the Escambia Bay bridge was ex-
treme.

Figure 1.9
Failure of the Escambia Bay bridge in Pen-
sacola, Florida, during Hurricane Ivan in
September 2004.

� Airbus A300 failure. On November 12, 2001, only minutes after take-
off, American Airlines flight 587, an Airbus A300, crashed into a resi-
dential area of Belle Harbor, New York, because the airplane’s vertical
stabilizer separated in flight due to failure of the attachment lugs be-
tween the stabilizer and fuselage (see Fig. 1.10). All 260 people on
board and 5 people on the ground were killed. The National Trans-
portation Safety Board� (NTSB) investigated the accident and attributed
the cause to high aerodynamic loads resulting from unnecessary and
excessive rudder pedal inputs as the first officer reacted to turbulence

� Interesting case studies of failures and how we can learn from these are given in H. Petroski, De-
sign Paradigms: Case Histories of Error and Judgment in Engineering, Cambridge University
Press, New York, 1994.

�For additional reading, see B. Moran (1999), “A Bridge That Didn’t Collapse,” Invention and
Technology, 15(2), pp. 10–18.
�The National Transportation Safety Board (NTSB) is an independent federal agency charged

by Congress with investigating every civil aviation accident in the United States and significant
accidents in other modes of transportation including railroad, highway, marine and pipeline, and
issuing safety recommendations aimed at preventing future accidents. Although implementation
of the NTSB’s recommendations is not mandatory, over 80% of their recommendations have
been adopted.
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caused by another aircraft. The airline’s pilot training program and the
airplane’s rudder design were also cited as contributing factors. Among
the recommendations made by the NTSB were to modify the rudder con-
trol systems to increase protection from high forces due to hazardous
rudder pedal inputs at high speeds.

Figure 1.10
The vertical stabilizer of an Airbus A300 air-
plane separated in flight and was recovered
from Jamaica Bay, about 1mile from the crash
site.

� Kansas City Hyatt Regency Hotel. On July 17, 1981, two suspended
walkways at the Kansas City Hyatt Regency Hotel collapsed during a
dance party, killing 114 people and seriously injuring many more. The
collapse was caused by connections that failed, as shown in Fig. 1.11(a).
The original connection design, shown in Fig. 1.11(b), was changed dur-
ing construction to the design shown in Fig. 1.11(c), with the agree-
ment of all parties involved. While the original design had satisfactory
strength, the revised design was easier to fabricate, featured shorter bars
that were more readily available, and was more straightforward than the
potentially confusing original design. However, the revised design was
never analyzed to determine its adequacy.�

(a) (b) original design (c) as constructed

Figure 1.11. (a) Failure of a connection supporting a walkway at the Kansas City
Hyatt Regency Hotel, where a support rod has pulled through a box beam, allowing
the walkways to collapse. (b) The original design, which had satisfactory strength.
(c) The revised design, which was easier to fabricate.

� Tropicana Casino parking garage. On October 30, 2003, a 10-story
parking garage under construction at the Tropicana Casino and Resort
in Atlantic City, New Jersey, collapsed, killing 4 workers and injuring
21 others (see Fig. 1.12). The failure occurred as concrete was being
poured for one of the upper floor decks. The Occupational Safety and
Health Administration� (OSHA) investigated the failure and fined the
concrete contractor for intentional disregard of safety standards for fail-
ing to erect, support, brace, and maintain framework that would be ca-
pable of supporting all vertical and lateral loads that may reasonably be
anticipated during construction. The design of the building itself was ad-
equate, but the design of structures needed for fabrication was not. Note
that concrete requires time after pouring (28 days is common) to reach
its full design strength.

Figure 1.12
Inspectors survey a five-story collapsed section
of a parking garage under construction at the
Tropicana Casino and Resort in Atlantic City,
New Jersey, October 30, 2003.

�Additional aspects of this failure are discussed in H. Petroski, Design Paradigms: Case Histories
of Error and Judgment in Engineering, Cambridge University Press, New York, 1994.

�The mission and regulatory power of the Occupational Safety and Health Administration is
described on p. 315.
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1.8 Chapter Review

Important definitions, concepts, and equations of this chapter are summarized.
For equations and/or concepts that are not clear, you should refer to the origi-
nal equation numbers cited for additional details.

Scalars and Vectors. A scalar is a quantity that is completely characterized
by a single number. A vector has both size (or magnitude) and direction. In this
book, scalars are denoted by italic symbols such as s, and vectors are denoted
by placing an arrow above the symbol for the vector, such as Ev.

Position, Velocity, and Acceleration. Position, velocity, and acceleration
are all vector quantities. If Er denotes the position of a particle relative to some
location, then the velocity and acceleration of the particle are defined by

Ev D d Er=dt;

Eq. (1.1), p. 7

Ea D d Ev=dt:

Eq. (1.2), p. 7

When Ea D E0, the particle is said to be in static equilibrium, and it either
moves with constant velocity or remains stationary in space. If Ea ¤ E0, then
the particle will move with velocity and position that change with time.

Laws of Motion. Newton’s three laws of motion are as follows:

First Law. A particle remains at rest, or continues to move in a straight line
with uniform velocity, if there is no unbalanced force acting on it.

Second Law. The acceleration of a particle is proportional to the resultant
force acting on the particle, and is in the direction of this force.

EF D mEa:

Eq. (1.3), p. 7

Third Law. The forces of action and reaction between interacting bodies are
equal in magnitude, opposite in direction, and collinear.

Static Equilibrium. In Eq. (1.3), if the resultant force EF acting on a particle
is zero, then the acceleration of the particle is zero, and hence the particle may
move with uniform velocity in a straight line, which may be zero or nonzero
in value. Hence, when there is no acceleration (i.e., Ea D E0), the particle is said
to be in static equilibrium.
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Newton’s Law of Gravitation. Newton’s law of universal gravitational at-
traction is

F D G
m1m2

r2

Eq. (1.6), p. 15

where

m1; m2 D masses of particles 1 and 2I

r D distance between the particlesI

G D universal gravitational constant, found to be
approximately 66:74�10�12 m3=.kg�s2/;

F D force of attraction between two particles:

When written for objects resting on or near the surface of Earth, this law takes
the simple and useful form

W D mg

Eq. (1.7), p. 15

wherem is an object’s mass, g is acceleration due to gravity (g D 9:81m=s2 D

32:2 ft=s2), and W is the object’s weight.

Relationship Between Specific Weight and Density. The density � of a
material is defined to be the material’s mass per unit volume. The specific
weight � of a material (sometimes also called weight density, or unit weight)
is defined to be the material’s weight on Earth per unit volume. The relation
between these is

� D �g or � D
�

g
:

Eq. (1.10), p. 17

Attention to Units. It is strongly recommended that you always use appro-
priate units in all equations. Such practice helps avoid catastrophic blunders
and provides a useful check on a solution, for if an equation is found to be
dimensionally inconsistent, then an error has certainly been made.
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R E V I E W P R O B L E M S

Problem 1.1

(a) Consider a situation in which the force F applied to a particle of mass m is zero.
Multiply the scalar form of Eq. (1.2) on page 7 (i.e., a D dv=dt ) by dt , and
integrate both sides to show that the velocity v (also a scalar) is constant. Then use
the scalar form of Eq. (1.1) to show that the (scalar) position r is a linear function
of time.

(b) Repeat Part (a) when the force applied to the particle is a nonzero constant, to
show that the velocity and position are linear and quadratic functions of time,
respectively.

Problem 1.2

Using the length and force conversion factors in Table 1.2 on p. 10, verify that 1 slug D
14:59 kg.

Problems 1.3 through 1.5

Convert the numbers given in U.S. Customary units to the corresponding SI units
indicated.

Problem 1.3

(a) Length: Convert l D 2:35 in. to m.

(b) Mass: Convert m D 0:156 slug to kg.

(c) Force (weight): Convert F D 100 lb to N.

(d) Moment (torque): Convert M D 32:9 ft�lb to N�m.

Problem 1.4

(a) Length: Convert l D 0:001 in. to �m.

(b) Mass: Convert m D 0:305 lb�s2=in. to kg.

(c) Force (weight): Convert F D 2:56 kip to kN. (Recall: 1 kip = 1000 lb.)

(d) Mass moment of inertia: Convert Imass D 23:0 in.�lb�s2 to N�m�s2.

Problem 1.5

(a) Pressure: Convert p D 25 lb=ft2 to N=m2.

(b) Elastic modulus: Convert E D 30 � 106 lb=in.2 to GN=m2.

(c) Area moment of inertia: Convert Iarea D 63:2 in.4 to mm4.

(d) Mass moment of inertia: Convert Imass D 15:4 in.�lb�s2 to kg�m2.

Problems 1.6 through 1.8

Convert the numbers given in SI units to the corresponding U.S. Customary units
indicated.

Problem 1.6

(a) Length: Convert l D 1:53 m to in.

(b) Mass: Convert m D 65 kg to slug.

(c) Force (weight): Convert F D 89:2 N to lb.

(d) Moment (torque): Convert M D 32:9 N�m to in.�lb.
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Problem 1.7

(a) Length: Convert l D 122 nm to in.

(b) Mass: Convert m D 3:21 kg to lb�s2=in:

(c) Force (weight): Convert F D 13:2 kN to lb.

(d) Mass moment of inertia: Convert Imass D 93:2 kg�m2 to slug�in:2.

Problem 1.8

(a) Pressure: Convert p D 25 kN=m2 to lb=in:2.

(b) Elastic modulus: Convert E D 200 GN=m2 to lb=in:2.

(c) Area moment of inertia: Convert Iarea D 23:5 � 10
5 mm4 to in:4.

(d) Mass moment of inertia: Convert Imass D 12:3 kg�m2 to in.�lb�s2.

Problem 1.9

(a) Convert the kinetic energy T D 0:379 kg�m2=s2 to slug�in.2=s2.

(b) Convert the kinetic energy T D 10:1 slug�in.2=s2 to kg�m2=s2.

Problem 1.10

If the weight of a certain object on the surface of the Earth is 0.254 lb, determine its
mass in kilograms.

Problem 1.11

If the mass of a certain object is 69.1 kg, determine its weight on the surface of the
Earth in pounds.

Problem 1.12

Use Eq. (1.7) on p. 15 to compute a theoretical value of acceleration due to gravity
g, and compare this value with the actual acceleration due to gravity at the Earth’s
poles, which is about 0.3% higher than the value reported in Eq. (1.8). Comment on
the agreement.

Problem 1.13

Two identical asteroids travel side by side while touching one another. If the asteroids
are composed of homogeneous pure iron and are spherical, what diameter in feet must
they have for their mutual gravitational attraction to be 1 lb?

Problem 1.14

The mass of the Moon is approximately 7:35�1022 kg, and its mean distance from the
Earth is about 3:80� 108 km. Determine the force of mutual gravitational attraction in
newtons between the Earth and Moon. In view of your answer, discuss why the Moon
does not crash into the Earth.

Problem 1.15

If a person standing at the first-floor entrance to the Sears Tower in Chicago, weighs
exactly 150 lb, determine the weight while he or she is standing on top of the building,
which is 1450 ft above the first-floor entrance. How high would the top of the building
need to be for the person’s weight to be 99% of its value at the first-floor entrance?
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Problem 1.16

The specific weights of several materials are given in U.S. Customary units. Convert
these to specific weights in SI units (kN/m3), and also compute the densities of these
materials in SI units (kg/m3).

(a) Zinc die casting alloy, � D 0:242 lb/in.3.

(b) Oil shale (30 gal/ton rock), � D 133 lb/ft3.

(c) Styrofoam (medium density), � D 2:0 lb/ft3.

(d) Silica glass, � D 0:079 lb/in.3.

Problem 1.17

The densities of several materials are given in SI units. Convert these to densities in U.S.

Customary units (slug/ft3), and also compute the specific weights of these materials in
U.S. Customary units (lb/ft3).

(a) Lead (pure), � D 11:34 g/cm3.

(b) Ceramic (alumina Al2O3), � D 3:90 Mg/m3.

(c) Polyethylene (high density), � D 960 kg/m3.

(d) Balsa wood, � D 0:2 Mg/m3.

Problem 1.18

A Super Ball is a toy ball made of hard synthetic rubber called Zectron. This material
has a high coefficient of restitution so that if it is dropped from a certain height onto a
hard fixed surface, it rebounds to a substantial portion of its original height. If the Super
Ball has 5 cm diameter and the density of Zectron is about 1.5 Mg/m3, determine the
weight of the Super Ball on the surface of the Earth in U.S. Customary units.

Problem 1.19

An ice hockey puck is a short circular cylinder, or disk, of vulcanized rubber with
3.00 in. diameter and 1.00 in. thickness, with weight between 5.5 and 6.0 oz (16 oz D
1 lb). Compute the range of densities for the rubber, in conventional SI units, that will
provide for a puck that meets these specifications.

Problem 1.20

Convert the angles given to the units indicated.

(a) Convert � D 35:6ı to rad.

(b) Convert � D .1:08 � 10�3/ı to mrad.

(c) Convert � D 4:65 rad to degrees.

(d) Convert � D 0:254 mrad to degrees.

Problem 1.21

Many of the examples of failure discussed in Section 1.7 have common causes, such
as loads that were not anticipated, overestimation of the strength of materials, unantic-
ipated use, etc. Using several paragraphs, identify those examples that have common
causes of failure and discuss what these causes were.
Note: Concept problems are about explanations, not computations.



2 Vectors: Force and Position

Vectors are immensely useful for describing
many entities in mechanics. Vectors can be
compactly represented, are easy to manipu-
late, and can be transformed from one compo-
nent description to another using established
rules. In this chapter vectors are used to de-
scribe force and position. In later chapters,
vectors will be used to represent other enti-
ties. Early sections of this chapter focus on
vectors in two dimensions, and later sections
treat vectors in three dimensions. Vector dot
product and cross product operations are also
presented.

2.1 Basic Concepts

Introduction – force, position, vectors, and tides

One phenomenon in which vectors play an important role is ocean tides. High
and low tides each occur approximately twice per day at most locations on the
Earth due to the rotation of the Earth and the Moon’s orbit around the Earth —
let’s see how vectors help explain this.

Figure 2.1
A coordinate system showing the positions of
the Earth and Moon as well as their position
vectors. The relative sizes of the Earth and
Moon are correct, but the distance between
them is not drawn to scale.

Figure 2.1 shows the Earth and Moon in a coordinate system that has its
origin at point O (for measuring the motion of objects in our solar system,
the origin is usually located at the center of the Sun). Your intuitive notion of
position is probably close to its mathematical definition, but an important point
needs to be made. A description of position, or location, is always relative to
the coordinate system that is used. For example, if the coordinates of the Moon
.xM ; yM / in Fig. 2.1 are known, along with a coordinate system whose origin
is at a known point (perhaps the center of the Sun), then the absolute location
of the Moon is known. However, if the location of the origin is unknown, then
obviously the coordinates of the Moon have little meaning.

Rather than using coordinates, we can describe the position of a point P
by specifying the distance from a reference point to P , and by specifying the
direction from the reference point to P . The reference point referred to here

27
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could be the origin of the coordinate system, or any other point we choose.
This description combines statements of both size and direction, and has the
same characteristics as an invention of mathematics called a vector. A vector
has both size and direction, and to emphasize this content, vectors are repre-
sented in this book� by placing an arrow above the symbol used for the vector,
such as Er . Figure 2.1 uses arrows to represent the position vectors of the Earth
and Moon, ErE and ErM , respectively, where these vectors are measured from
the origin of our coordinate system. Figure 2.2 defines some useful nomencla-
ture. A vector has a head and a tail, as well as a line of action, which is the
line of infinite extent along which the vector is positioned. For force vectors
especially, the line of action is important, and it is most often within this con-
text that we refer to it. The magnitude of a vector Er is the measure of its size,
or length, including appropriate units, and is denoted by jEr j. The magnitude
of a vector is a positive scalar for any vector that has nonzero size, and is zero
only for a vector of zero size. The magnitude can never be negative.

Figure 2.2
Vector nomenclature.

Now, let’s look at how the Earth and Moon attract one another as a re-
sult of Newton’s law of universal gravitation [Eq. (1.6)], which states that the
gravitational attraction between two bodies is proportional to the product of
their masses and is inversely proportional to the square of the distance be-
tween them. Unfortunately, this equation doesn’t tell the whole story, the re-
mainder of which is found in Fig. 2.3(a). While Eq. (1.6) tells us how much

Interesting Fact

Why don’t the Earth and Moon “crash”
into one another? If the Earth and Moon
were not moving, then the forces EFME
and EFEM shown in Fig. 2.3 would cause
them to accelerate toward one another,
and they would eventually collide. However,
the Earth and Moon are not stationary, and
as you well know, they have not collided.
When you study dynamics, you will learn
that if objects have appropriate motion,
the acceleration Ea of each of them is
such that, according to Newton’s second
law EF D mEa, the objects will orbit their
common center of mass (such as the Earth
and Moon do) even though there is a force
attracting them.

O

Figure 2.3. (a) The forces of gravitational attraction between the Earth and Moon. The
force EFEM is the force onE due toM , and similarly EFME is the force onM due toE.
(b) Orbit of the Moon about the Earth and the rotation of the Earth as seen from above
their orbital planes. We also show the positions of the Earth and Moon, the gravitational
force between the Earth and the Moon, and the tidal bulge (greatly exaggerated) of the
Earth due to the Moon.

two bodies attract one another, it doesn’t tell us the direction of the attraction.
Figure 2.3(a) shows that these bodies attract one another toward their centers
(actually, toward their centers of gravity). Thus, the gravitational attraction
between two bodies is a force that has magnitude [given by Eq. (1.6)] and di-
rection (the center of gravity of one body is pulled toward the center of gravity
of the other body), and therefore it possesses the characteristics of a vector.

�The notation used throughout the engineering literature to denote vectors is very diverse. Hence,
in other books you may see vectors denoted by the use of a bar placed above or below a given
symbol, such as r or r or by bold type such as r.
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In addition, Newton’s third law (see p. 7) tells us that the forces of attraction
between these bodies must be equal, opposite, and collinear. With all of this as
background, let’s see how the positions of the Earth and Moon work in concert
with the forces between them to cause the ocean tides on Earth.

The Moon orbits the Earth about once per month, and the Earth rotates on
its axis once per day, as shown in Fig. 2.3(b). The position of the Moon as
seen by the Earth� determines the direction and magnitude of the gravitational
force exerted on the Earth by the Moon EFEM . As you might expect, the side
of the Earth closest to the Moon experiences a tidal bulge, but you might not
expect that the side of the Earth farthest from the Moon does too! Why is this?
The reason that tides occur is the fact that the Earth’s shape elongates in the
direction of EFEM due to the gravitational effect of the Moon. This elongation
is the result of differential forces exerted by the Moon on the Earth. These dif-
ferential forces arise because the materials of the Earth (i.e., soil, rock, magma,
etc.) that are closer to the Moon are pulled by the Moon more strongly than
the materials of the Earth that are farther from the Moon. The net effect of
these differential forces is that the Earth is stretched in both directions along
the line of action of the force EFEM and is compressed in the directions perpen-
dicular to EFEM . This causes a tidal bulge on the side of the Earth facing the
Moon as well as a tidal bulge on the side of the Earth opposite the Moon. Now,
since the Earth rotates about its axis once per day, there are approximately two
tides per day in most locations on the surface of the Earth.� We say approxi-
mately because the Moon orbits the Earth as the Earth simultaneously rotates
[see Fig. 2.3(b)], and this results in tides occurring about 50minutes later each
day.�

Interesting Fact

More tidal tidbits. Tides on Earth are
caused mostly by the Moon, but the Sun
also has an effect. Although the Sun’s
gravitational force on the Earth is about
180 times that of the Moon, because the
Moon is much closer to the Earth, the
differential force of the Moon on the Earth
is about twice that of the Sun.

At full Moon (when the Earth is between the
Sun and Moon) and new Moon (when the
Moon is between the Earth and Sun), the
Sun, Earth, and Moon line up, producing
higher than normal tides (called spring
tides). When the Moon is at first or last
quarter, smaller neap tides form. Since the
Moon’s 29:5 day orbit around Earth is not
quite circular, when the Moon is closest
to Earth (called perigee), spring tides are
even higher (called perigean spring tides).

Interestingly, because the Moon is con-
tinually deforming the Earth (changing its
shape), the Earth’s rotational energy is
continually being lost, causing the Earth’s
rate of rotation to decrease so that the
length of a day increases by approximately
1.5 milliseconds per century.

Finally, some books and websites claim
that the “centrifugal force” on the water
due to the rotation of the Earth and/or the
rotation of the Earth-Moon system are fac-
tors in the creation of tides. This is simply
not true. When you study dynamics, you
will learn that these effects are negligible
compared with gravitational effects, and
that there is no such thing as a “centrifugal
force.”

We hope this helps to explain why there are two high tides and two low
tides at most locations on the Earth every day and why force and position
vectors play such an important role in determining these tides.

Denoting vectors in figures

In figures, we represent vectors by using arrows. Furthermore, the arrows will
follow a consistent color scheme to indicate what the vector physically rep-
resents. For example, force vectors will be shown in red , position vectors
will be shown in blue , and when vectors with other physical significance
are introduced, they will use other colors. Vectors with no particular physical
significance will be black , magenta , or gray . This practice makes com-
prehension of a figure quicker, but otherwise is not needed. Next to each arrow
shown in a figure, we will provide a symbol to identify the vector; or if the nu-
merical value of a vector’s magnitude is known, we will often simply show
this value with the appropriate units.

Consider the example shown in Fig. 2.4(a) where a crate is held in equi-
librium on a ramp by two people who apply forces to it. We will assume
the person on the left pulls on the rope with a force having 25 lb magnitude

�Later in this section we discuss subtraction of vectors, after which you may show that the posi-
tion of the Moon as seen by the Earth is given by ErM � ErE .

�Since the orbital plane of the Moon is tilted with respect to the spin axis of the Earth, some
locations (at mainly higher latitudes) only experience one significant tide per day.

�The Moon orbits around the Earth every 29:5 days, so it takes 24=29:5 hours D 48:8minutes
longer each day for the Moon to reach the same position above the surface of the Earth.
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oriented at 25ı from the horizontal, and the person on the right pushes the crate
with a horizontal force whose magnitude is unknown. In Fig. 2.4(b), the crate
is sketched showing the forces applied by the two people, using the following
forms for labeling vectors.�

Figure 2.4
Vector representation used in figures. (a) Two
people apply forces to a crate to keep it in equi-
librium on a ramp, where we assume the per-
son pulling the rope applies a 25 lb force ori-
ented at 25ı from the horizontal and the per-
son pushing the crate applies a horizontal force
with unknown magnitude. (b) Forces applied by
the two people to the crate using various forms
of representation. For further examples contrast-
ing these forms of representation and the impli-
cations of Newton’s third law, you should com-
pare Fig. 2 on p. 38 with Fig. 3 on p. 65.

� In the case of the force applied by the rope to the crate, the magnitude is
known to be 25 lb, and in such cases we will simply list this magnitude
next to its arrow in the figure, and the direction of the arrow gives the
direction of the force.

� When a vector symbol is used in a figure (e.g., EF ), the symbol represents
an expression that fully describes the magnitude and direction for the
vector. This form of labeling will generally be used when we want to
emphasize the arbitrary directional nature of a particular vector.

� When a scalar symbol is used (e.g., F ), it refers to the component of the
vector in the direction of the arrow shown in the figure. We will provide
a full definition for the word component later, but for the present, this
is the amount of a vector that acts in the direction of the arrow. With
this definition, a symbol such as F can be positive, zero, or negative, as
follows. If F is positive, then indeed the direction of the vector is the
same as the direction of the arrow shown in the figure. If F is negative,
then the direction of the vector is actually opposite to the direction of
the arrow shown in the figure. A vector of zero size will have F D 0.

Helpful Information

Jargon. Consider the following statement:
“The widget is subjected to a force with
123N magnitude.” This statement is pre-
cise in its nomenclature, but a practicing
engineer would probably have said, “The
widget is subjected to a 123N force.” The
second statement, if taken literally, is impre-
cise because it states that a force (which is
a vector) is equal to 123N (a scalar), and
furthermore it does not explicitly say that
the force has 123N magnitude. Nonethe-
less, the second expression is widely used
among engineers, and it is understood that
the statement means the magnitude of the
force is 123N.

Observe that the notations F and j EF j are different, but they are closely related.
As described above, F shown in Fig. 2.4 can be positive, zero, or negative,
but in any event, the absolute value of F is the same as j EF j. Labeling vectors
by using a symbol such as F will be done often, and it is especially useful
when the line of action for a vector is known but we are unsure of its direction
along this line of action. To illustrate, consider again the crate in Fig. 2.4(b).
We have assigned the direction of EF to correspond to the person pushing the
crate. However, it is possible that this person may actually need to pull the
crate to keep it in equilibrium. Only after the equilibrium equations are solved,
taking into account the weight of the crate, friction between the crate and ramp,
steepness of the ramp, and so on, will we know the value (or range of values)
F must have for equilibrium. For Fig. 2.4(b), if F > 0, the person is pushing
the crate while if F < 0, the person is pulling the crate.

Basic vector operations

The following remarks on equivalent vectors and vector addition, subtraction,
and multiplication by a scalar are true regardless of the type of vector repre-
sentation that is used. However, the details of how these operations are carried
out will depend on the vector representation that is employed, and we will see
that some forms of vector representation allow for easier manipulation than
others.

�Note that in addition to the forces shown in Fig. 2.4(b), the crate is subjected to other forces that
are not shown, such as the weight of the crate and the contact forces applied by the ramp.
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Equivalent vectors

Two vectors are said to be equivalent, or equal, if they have the same magni-
tude and orientation. Note that two equivalent vectors may have different lines
of action, provided the lines of action are parallel.

Vector addition

Helpful Information

Polar vector representation. A simple
representation we will sometimes use for
writing vectors in two dimensions is called
polar vector representation. This repre-
sentation consists of a statement of the
vector’s magnitude and direction referred to
a right-hand horizontal reference direction,
with a positive angle being measured
counterclockwise. For example:

Common Pitfall

Addition of vectors versus addition of
scalars. Addition of vectors is an operation
that is very different, and more complex,
than addition of scalars. A common error is
to attempt to add vectors as if they were
scalars.

Addition of two vectors EA and EB produces a new vector ER, and this operation
is denoted by ER D EAC EB . Figure 2.5 illustrates two methods for performing
vector addition.

Figure 2.5. Addition of two vectors using the parallelogram method and the head-to-
tail method.

With the parallelogram method of addition, the outcome of EAC EB is de-
termined by arranging the vectors EA and EB tail to tail to form a parallelogram.
The vector ER D EAC EB is then the vector whose tail coincides with the tails
of EA and EB and whose head coincides with the parallelogram’s opposite ver-
tex. Alternatively, ER can also be determined using the head-to-tail method
by which we slide the tail of EB to the head of EA, and the resulting triangle
provides ER. Alternatively, the tail of EA can be slid to the head of EB , and the
resulting triangle provides the same ER.

Vector addition has the following properties:

EAC EB D EB C EA commutative property; (2.1)

. EAC EB/C EC D EAC . EB C EC/ associative property; (2.2)

where EA, EB , and EC are three arbitrary vectors. Equations (2.1) and (2.2) im-
ply that the result of adding an arbitrary number of vectors is independent of
the order in which the addition is carried out. Also, the head-to-tail method
of addition generalizes so that an arbitrary number of vectors can be added
simultaneously simply by arranging them head to tail, one after another. Do-
ing this gives rise to a vector polygon, which is very useful for visualizing
the arrangement of vectors. These comments are explored in greater detail in
Example 2.1.

Multiplication of a vector by a scalar
Figure 2.6
Examples of multiplication of a vector by a
scalar. (a) A force EF is applied to the handle
of a wrench. (b) EF is multiplied by 2, with the
resulting vector drawn to scale. (c) EF is multi-
plied by �2, with the resulting vector drawn to
scale and with reversed direction.

Multiplication of a vector EA and a scalar s produces a new vector ER where
ER D s EA D EAs. The magnitude of ER is equal to the magnitude of EAmultiplied

by jsj. If s is positive, then ER and EA have the same direction; if s is negative,
then ER has direction opposite to EA. Multiplication of a vector by a scalar is
common, and this operation allows us to change a vector’s size. Multiplication
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of a vector by a scalar does not change the vector’s line of action; but if the
scalar is negative, then the vector’s direction along its line of action is reversed.
Figure 2.6 shows some examples.

Let EA and EB be vectors and s and t be scalars. Multiplication of a vector
by a scalar has the following properties:

s. EAC EB/ D s EAC s EB distributive property with respect
to vector addition,

(2.3)

.s C t / EA D s EAC t EA distributive property with respect
to addition of scalars,

(2.4)

.st/ EA D s.t EA/ associative property with respect to
multiplication by a scalar.

(2.5)

Equation (2.3) states EA and EB may be first added and then multiplied by s;
or each vector may be multiplied by s first, and then the vector addition is
performed. Similar comments apply to Eqs. (2.4) and (2.5).

Vector subtraction

Subtracting a vector EB from a vector EA is denoted by EA� EB and is defined as

EA � EB D EAC .�1/ EB: (2.6)

In this definition, first the direction of EB is reversed by multiplying it by �1,

Figure 2.7
Comparison of addition and subtraction of two
vectors. (a) Vectors EA and EB are defined. (b)
EA C EB is evaluated using the head-to-tail

method. (c) The direction of EB is reversed by
multiplying it by �1. (d) EA � EB is evaluated
using the head-to-tail method.

and then the result is added to EA. In Fig. 2.7, addition and subtraction of vec-
tors are contrasted.

Performing vector operations

To use parallelogram addition or head-to-tail addition, we could add vectors

Figure 2.8
A general triangle.

Figure 2.9
A right triangle.

graphically using a ruler and protractor with very careful drawings, but it is
more precise and appropriate to use analytical methods. Since addition of two
vectors will generally involve a triangle or parallelogram of complex geometry,
the laws of sines and cosines will be useful. With reference to Fig. 2.8, for a
general triangle the law of sines and the law of cosines are

sin �a
A
D

sin �b
B
D

sin �c
C

law of sines; (2.7)

A D
p
B2 C C 2 � 2BC cos �a

B D
p
A2 C C 2 � 2AC cos �b

C D
p
A2 C B2 � 2AB cos �c

law of cosines: (2.8)

In the special case that the triangle has a right angle, as in Fig. 2.9 where
�a D 90

ı, the laws of sines and cosines simplify to the familiar expressions

B D A cos �c D A sin �b
C D A sin �c D A cos �b

(2.9)
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A D
p
B2 C C 2 Pythagorean theorem: (2.10)

If it has been some time since you have used trigonometry, you should thor-
oughly refamiliarize yourself with Eqs. (2.7)–(2.10).

Common Pitfall

Law of sines and obtuse angles. You will
avoid errors if you avoid using the law of
sines to determine obtuse angles! The pit-
fall is that the inverse sine function provided
by an electronic calculator yields angles be-
tween �90ı and C90ı only (right or acute
angles only). For example, in Fig. 2.8, let
A D 9mm, B D 6mm, and �b D 30ı

(with these values, Fig. 2.8 is drawn roughly
to scale). Using the law of sines, Eq. (2.7),
we obtain sin �a D .A=B/ sin �b D 0:7500.
Using an electronic calculator to evalu-
ate �a D sin�1.0:7500/ provides 48:59ı,
which is not the correct value of �a for
this triangle! Of course, the equation �a D
sin�1.0:7500/ has an infinite number of so-
lutions, and the correct solution for this tri-
angle is �a D 131:4ı, which is an obtuse
angle.

Resolution of a vector into vector components

Consider a vector EF that might represent a force, position, or some other entity.
When EF is expressed as a sum of a set of vectors, then each vector of this set
is called a vector component of EF , and the process of representing EF as a sum
of other vectors is often called resolution of EF into vector components. For
example, we will often ask, “What two vectors EA and EB , when added together,
will yield EF ?” In answering this question, the vectors EA and EB that we find are
called the vector components of EF . Of course, as shown in Fig. 2.10, there is
not a unique answer to this problem, as there are an infinite number of vectors
EA and EB such that EA C EB D EF . However, if we place certain constraints or

restrictions on EA and/or EB , such as they must have certain prescribed direc-
tions and/or magnitudes, then the vectors EA and EB whose addition yields EF
may be unique. In statics, we will usually want to find vector components that
have directions we specify, such as the directions of structural members or the
directions of coordinate axes.

Figure 2.10
Four examples of the resolution of a vector EF
into two vectors EA and EB such that EAC EB D EF:

Referring to Fig. 2.10, we see that the vector triangles that arise when re-
solving a vector into vector components may have general triangular shape or
right triangular shape. General triangular shapes occur for cases EA1 and EB1,
and EA2 and EB2, and for such vector triangles the laws of sines and cosines
are usually needed to determine the vector components. If the vector compo-
nents are taken to be orthogonal (i.e., perpendicular), then the vector triangles
are right triangles as shown for cases EA3 and EB3, and EA4 and EB4. For right
triangles, elementary trigonometry is sufficient, and resolution of the vector
into vector components is usually straightforward. In fact, it is for this rea-
son that Cartesian vector representation, to be discussed in Section 2.2, is so
convenient and effective.

End of Sect ion Summary

In this section, basic properties of vectors and some operations using vectors
have been described, including

� Vector addition, subtraction, and multiplication by a scalar.

� Resolution of a vector into vector components.

� As an aid to help manipulate vectors, the laws of sines and cosines were
reviewed.
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E X A M P L E 2.1 Addition of Vectors

Figure 1

A D ring is sewn on a backpack for use in securing miscellaneous items to the outside
of the backpack. If the D ring has three cords tied to it and the cords support the forces
shown, determine the resultant force applied to the D ring by the cords, expressing the
result as a vector.

S O L U T I O N

Road Map We first note that the force supported by a cord has the same direction as
the cord, and thus, in Fig. 2 we redraw the D ring, showing the forces that are applied to
it by the cords. The resultant force vector is the sum of the three force vectors applied
to the D ring. Thus, we will add the vectors, choosing the head-to-tail method, and
apply the laws of sines and cosines to determine the results of the vector addition.

Figure 2
D ring showing the forces applied by the cords
to the D ring.

Governing Equations & Computation The resultant force vector is

ER D EF1 C EF2 C EF3: (1)

The addition is illustrated graphically in Fig. 3, where the first illustration shows forces
added in the order EF1 C EF2 C EF3, while the second illustration shows addition in the
order EF3 C EF2 C EF1, and the third illustration shows addition in the order EF1 C EF3 C
EF2; according to Eq. (2.2), all three sums provide the same resultant force ER. The

polygons shown in Fig. 3 are often called force polygons (or more generally vector
polygons), and they are useful in statics as well as many areas of mechanics, not just
for computation, but also for visualizing the spatial relationship among forces.

Figure 3. Vector polygons illustrating head-to-tail addition of EF1, EF2, and EF3 in differ-
ent orders. In all cases, the same resultant vector ER is obtained.

To compute ER, we will use the first force polygon shown in Fig. 3. Unfortunately,
the geometry of a general polygon is usually too complex to allow a direct evaluation of
ER. Thus, we usually must break the polygon into smaller elements, namely, triangles,

each of which may be analyzed using the laws of sines and cosines as given in Eqs. (2.7)
and (2.8), or in the case of right triangles as given in Eqs. (2.9) and (2.10). Thus, we
will first define an intermediate vector sum to be EP D EF1 C EF2, as shown in Fig. 4.
Using the law of cosines, we write

P D

q
F 21 C F

2
2 � 2F1F2 cos˛

D

q
.40N/2 C .60N/2 � 2.40N/.60N/ cos.150ı/ D 96:73N; (2)

where angle ˛ was easily found from Fig. 4 as ˛ D 180ı � 30ı D 150ı. Now that

Figure 4
Addition of EF1 and EF2 to obtain an intermediate
result EP (i.e., EP D EF1 C EF2).
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magnitude P is known, we use the law of sines, Eq. (2.7), to find angle ˇ shown in
Fig. 4 as

P

sin˛
D

F2
sinˇ

; (3)

hence

sinˇ D
F2
P

sin.150ı/ D
60N

96:73N
sin.150ı/ D 0:3101: (4)

Solving Eq. (4) for ˇ provides

ˇ D sin�1.0:3101/ D 18:1ı: (5)

Next, as shown in Fig. 5, we evaluate EP C EF3 to obtain ER. Defining the angle �
to be the angle between force vectors EP and EF3, we use the geometry shown in Fig. 2
and the value of ˇ previously found to write � D 90ı� 60ıC 18:1ı D 48:1ı. The law
of cosines provides

Figure 5
Addition of EP and EF3 to obtain the final result
ER (i.e., ER D EP C EF3).

R D

q
P 2 C F 23 � 2PF3 cos �

D

q
.96:73 N/2 C .100 N/2 � 2.96:73 N/.100 N/ cos.48:1ı/

D 80:23 N: (6)

The law of sines is then used to write

F3
sin �

D
R

sin �
: (7)

Hence

sin � D
F3
R

sin � D
100N

80:2N
sin 48:1ı D 0:928; (8)

which provides
� D sin�1.0:928/ D 68:1ı: (9)

To complete our solution, we report ER in vector form using polar vector representation.
The magnitude of ER is R D 80:2N, and its orientation is � C ˇ D 68:1ı C 18:1ı D

86:2ı counterclockwise from the right-hand horizontal direction. Thus,

ER D 80:2N @ 86:2ı : (10)

Discussion & Verification

� Addition of vectors by the method illustrated here is tedious. In fact, as the num-
ber of vectors to be added increases, the number of sides of the vector polygon
also increases. The Cartesian vector representation, introduced in Section 2.2,
will provide for considerably more straightforward addition of vectors. Nonethe-
less, it is often very helpful to be able to sketch vector polygons, as this provides
a visual understanding of the spatial relationship among vectors which in turn
may offer significant simplifications in analysis.

� This problem focused on the resultant force applied by the three cords to the D
ring. However, the fabric that attaches the D ring to the backpack also applies
forces to the D ring. In Chapter 3, we consider the combined effect of all forces
applied to objects such as the D ring in this example.
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E X A M P L E 2.2 Resolution of a Vector into Components

Figure 1

Two people apply forces to push a child’s play structure resting on a patio. The woman
at A applies a force in the negative a direction and the man at B applies a force in
the b direction, with the goal of producing a resultant force of 250N in the c direction.
Determine the forces the two people must apply, expressing the results as vectors.

S O L U T I O N

Road Map The force applied by the woman at A will be called EFa, and the force
applied by the man at B will be called EFb , such that the sum of these is the 250N force
vector EF shown in Fig. 2

EF D EFa C EFb : (1)

Thus, our goal is to resolve EF into the component vectors EFa and EFb . Since the a and b
directions are orthogonal, determining the component vectors will be straightforward
using basic trigonometry.

Figure 2
The resultant force applied to the play structure
by the two people has 250N magnitude.

Governing Equations & Computation We first note that both vectors EFa and EFb
have known direction and unknown magnitude. To determine the components, you may
find the process shown in Fig. 3 to be helpful. In Fig. 3(a), we begin by sketching a
dashed line parallel to the a direction that passes through the tail of the vector, followed
by sketching a dashed line parallel to the b direction that passes through the head of the
vector. These dashed lines form a triangle, which leads to the sketch shown in Fig. 3(b).
Using elementary trigonometry, the absolute values of the components are

jFaj D .250N/ cos 30ı D 216:5N; (2)

jFb j D .250N/ sin 30ı D 125:0N: (3)

The absolute value signs are used in Eqs. (2) and (3) and in Fig. 3 because, by definition,
the components of the vector are positive in the positive a and b directions. The vector
components may now be written as

EFa D �217 N in the a direction,

EFb D 125 N in the b direction:

(4)

(5)

where the negative sign is needed in Eq. (4) because this component, as seen in Fig. 3(b),
acts in the negative a direction. Further, we state that the scalar components (or sim-

Figure 3
Resolution of the 250N force vector into com-
ponents in the a and b directions.

ply components) of the 250N force in the a and b directions are �217 and 125N,
respectively.

Equations (4) and (5) state both magnitude and direction and hence are vector
expressions. These results may alternatively be stated using polar vector representation
as

EFa D 217N @ 180ı ;

EFb D 125N @ 90ı :

(6)

(7)

Discussion & Verification By examining Fig. 3(b), you should verify that Fa and
Fb have reasonable values. That is, we see in Fig. 3(b) that the “length” of EFa is
somewhat smaller than the “length” of EF ; thus we expect Fa (found above to be 217N)
to be somewhat smaller than 250N. Similarly, we see in Fig. 3(b) that the “length” of
EFb is somewhat smaller than the “length” of EFa, thus we expect Fb (found above to be
125N) to be somewhat smaller than 217N. Furthermore, since the forces in Fig. 3(b)
form a right triangle, we can use the Pythagorean theorem, Eq. (2.10), to verify thatq
F 2a C F

2
b
D 250N.
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E X A M P L E 2.3 Resolution of a Vector into Components

Figure 1

Repeat Example 2.2 to determine the forces the two people must apply in the new a and
b directions shown such that a resultant force of 250N in the c direction is produced.

S O L U T I O N

Road Map The people atA andB apply forces EFa and EFb , respectively, to the child’s
play structure such that the sum of these is the 250N force vector EF shown in Fig. 2

EF D EFa C EFb : (1)

Thus, our goal is to resolve EF into the component vectors EFa and EFb . Since the a and
b directions are not orthogonal, determining the component vectors will be more work
than in Example 2.2, and the law of sines and/or cosines will be needed.

Figure 2
The resultant force applied to the play structure
by the two people has 250N magnitude.

Governing Equations & Computation As in Example 2.2, both vectors EFa and EFb
have known direction and unknown magnitude. To determine the components, you may
find the process shown in Fig. 3 to be helpful. In Fig. 3(a), we begin by sketching a
dashed line parallel to the a direction that passes through the tail of the vector, followed
by sketching a dashed line parallel to the b direction that passes through the head of the
vector. These dashed lines form a triangle, which leads to the sketch shown in Fig. 3(b).
Angle ˛ shown in Fig. 3(b) is easily found to be ˛ D 180ı�30ı�45ı D 105ı. Using
the law of sines, the absolute values of the components jFaj and jFb j are related by

250N

sin 45ı
D
jFaj

sin˛
D
jFb j

sin 30ı
; (2)

hence
jFaj D 341:5N and jFb j D 176:8N: (3)

The absolute value signs are used in Eqs. (2) and (3) and in Fig. 3 because, by definition,
the components of a vector are positive in the positive a and b directions. The vector
components may now be written as

EFa D �342 N in the a direction;

EFb D 177 N in the b direction:

(4)

(5)

where the negative sign is needed in Eq. (4) because this component, as seen in Fig. 3(b),
acts in the negative a direction. Further, the scalar components (or simply components)
of the 250N force in the a and b directions are �342 and 177N, respectively. Equa-
tions (4) and (5) can alternatively be rewritten using polar vector representation as

EFa D 342N @ 180ı ;

EFb D 177N @ 45ı :

(6)

(7)

Figure 3
Resolution of the 250N force vector into com-
ponents in the a and b directions.

Discussion & Verification

� By examining Fig. 3(b), you should verify that Fa and Fb have reasonable
values. That is, we expect Fa to be somewhat larger than 250N and Fb to some-
what smaller than 250N.

� To achieve the objective of producing a 250N resultant force in the c direction
shown in Fig. 1, the woman at A in this example problem must apply a substan-
tially higher force than in the previous example problem (342N versus 217N).
Obviously, the man at B in this example is applying force in a direction that is
not as effective as in Example 2.2.
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E X A M P L E 2.4 Parallel and Perpendicular Vector Components

Figure 1
Use of a truck to free a tractor stuck in mud.

A tractor becomes stuck in mud, and the operator plans to use a truck positioned at
point A to pull it free.

(a) If a 400 lb force in the direction of the tractor’s chassis (i.e., in the direction from
O to B) is sufficient to free it, determine the force the truck must produce in the
cable. Also, determine the portion of the cable force that is perpendicular to the
tractor’s direction, since in the tractor’s precarious condition this force will tend to
tip it.

(b) If the trees were not present, determine the ideal location on the road where the
truck should be positioned.

S O L U T I O N

Road Map The force applied by the truck to the tractor will be called FOA, and this
force is shown in Fig. 2. Note that according to Newton’s third law, the force applied
by the tractor to the truck has equal magnitude and opposite direction, and this force is
also shown in Fig. 2. We will assume that points O , A, and B lie in a horizontal plane
so that this is a two-dimensional problem; if this is not the case, then vectors in three
dimensions are needed.

With the truck positioned at A, we ask for the cable force FOA needed so that the
component of this force in the tractor’s direction (line OB) is 400 lb. We denote by EFk
and EF? the vector components of EFOA; i.e., EFk C EF? D EFOA, where EFk is the force

in the direction OB , and EF? is the force in the direction perpendicular to OB . In this
problem, EFk is known and has 400 lb magnitude in the direction of OB . Vector EF?
has unknown magnitude but known direction that is perpendicular to OB , and EFOA
has unknown magnitude but known direction OA. For Part (b), we will determine the
location of the truck so that the magnitude of EF? will be zero, and hence there will be
no tendency for the tractor to tip while it is being pulled free.

Figure 2
Force applied by the truck to the tractor is FOA.
Although not needed for this problem, the force
applied by the tractor to the truck is also shown.

Part (a)

Governing Equations & Computation The force polygon for the addition EFk C
EF? D EFOA is shown in Fig. 3 (alternatively, the force polygon for the addition EF? C
EFk D EFOA could be used). Because this force polygon is a right triangle, the basic

trigonometric relations in Eq. (2.9) can be used to provide

FOA cos 30ı D 400 lb ) FOA D 462 lb; (1)

and

Figure 3
Force polygon for the force applied by the truck
to the tractor.

F? D FOA sin 30ı D 231 lb: (2)

Discussion & Verification By examining the force polygon in Fig. 3, you should
verify that FOA and F? have reasonable values. That is, we expect FOA to be some-
what larger than 400 lb, and F? to be somewhat smaller than 400 lb. Furthermore, since
the forces in Fig. 3 form a right triangle, we can use the Pythagorean theorem to verify
that

p
.400 lb/2 C .F?/2 D FOA.

Part (b)

Discussion & Verification If the trees were not present, then the optimal location
for the truck would be point B . To see that this is true, we consult Fig. 3 and observe
that if the truck is positioned at point B , then F? D 0 and the entire cable force FOA
is in the direction of the tractor. Thus, to free the tractor requires FOA D Fk D 400 lb,
which is smaller than the value found in Eq. (1). Furthermore, F? D 0 so there is no
force tending to tip the tractor.
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E X A M P L E 2.5 Vector Components and Optimization

Figure 1
Use of two trucks to free a tractor stuck in mud.

Repeat Example 2.4, now using two trucks to free a tractor that is stuck in mud. By
using two trucks, it is possible to avoid the tendency to tip the tractor. To free the
tractor, the two trucks must produce a combined force of 400 lb in the direction of the
tractor’s chassis (i.e., in the direction from O to B).

(a) One truck is positioned at point A and a second truck is positioned at point C .
Determine the cable forces so that there is no force perpendicular to the tractor’s
direction (i.e., there is no tipping force).

(b) Determine the point C 0 where the truck originally at point C should be relocated
so that there is no force perpendicular to the tractor’s direction and the force in this
truck’s cable is as small as possible.

S O L U T I O N

Road Map The main benefit of using two trucks to free the tractor is that it is possible
to simultaneously produce a 400 lb force in the direction of the tractor and zero force
perpendicular to the tractor. The forces applied by the trucks to the tractor are called
FOA and FOC , as shown in Fig. 2. Although not needed for this problem, Newton’s
third law has been used to also show the forces applied by the tractor to the trucks in
Fig. 2. We will assume that points O , A, B , and C lie in a horizontal plane so that this
is a two-dimensional problem; if this is not the case, then vectors in three dimensions
are needed.

In both parts of this problem, we ask for two force vectors, one in direction OA
and the other in directionOC , such that EFOAC EFOC D EFk. In Part (a), both EFOA and
EFOC have known direction but unknown magnitude, and EFk is fully known. In Part (b),

the only known information is the direction of EFOA and the direction and magnitude
of EFk.

Figure 2
Forces applied by the trucks to the tractor are
FOA and FOC . Although not needed for this
problem, the forces applied by the tractor to the
trucks are also shown.

Part (a)

Governing Equations & Computation The force polygon is shown in Fig. 3, and it
has general triangular shape (i.e., it does not have a right angle). First, angle ˛ is easily
found as ˛ D 180ı � 30ı � 45ı D 105ı. Then the law of sines provides

Figure 3
Force polygon for the forces applied by the
trucks to the tractor.

400 lb

sin 45ı
D
FOA
sin˛

D
FOC

sin 30ı
; (1)

hence
FOA D 546 lb and FOC D 283 lb: (2)

Discussion & Verification By examining the force polygon in Fig. 3, you should
verify that FOA and FOC have reasonable values. That is, we expect FOA to be some-
what larger than 400 lb, and FOC to be somewhat smaller than 400 lb.

Part (b)

Governing Equations & Computation In this part, we ask where the truck origi-
nally at C should be relocated so that the force in its cable is as small as possible,
while still producing the necessary 400 lb in the direction of the tractor (from points
O to B) and zero force perpendicular to the tractor’s direction; the new location for
this truck is denoted by C 0. As in Part (a), we seek two vectors EFOA and EFOC 0 such
that EFOA C EFOC 0 D EFk and as before, EFk is known and EFOA has known direction

but unknown magnitude. However, this problem is more complicated because EFOC 0
has unknown magnitude and direction. It is possible to use calculus to determine the
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optimal position for the truck at C 0 (Problem 2.16 explores this solution). However,
consideration of force polygons corresponding to possible choices for EFOA and EFOC 0
will offer a more straightforward solution as follows.

In Fig. 4 we first sketch vector EFk since it has known magnitude and direction.

Since EFOA has known direction, we sketch some possible choices for it that have dif-
ferent magnitude, and three such choices are shown in Fig. 4. For each EFOA we sketch
the required vector EFOC 0 to complete the force polygon, and these three vectors are
also shown in Fig. 4. Examination of the vectors EFOC 0 in Fig. 4 clearly shows that the
smallest magnitude of EFOC 0 is achieved when EFOC 0 is perpendicular to EFOA. Hence,
to minimize the magnitude of the force in cable OC 0, the truck originally at C should
be repositioned to point C 0 shown in Fig. 5. Now that the direction of EFOC 0 is known,

the magnitudes of EFOA and EFOC 0 can be found, as was done in Part (a), except now
Eqs. (2.9) and (2.10) for a right triangle may be used. Doing so, we find FOA D 346 lb
and FOC 0 D 200 lb.

Figure 4
Use of a force polygon to optimize the direc-
tion of a force. Three possible choices for EFOA
are shown, along with the corresponding vec-
tors EFOC 0 that complete the force polygon.

Figure 5
New position C 0 for the truck that was origi-
nally at point C , such that there is no force
perpendicular to the tractor’s direction and the
force in cable OC 0 is as small as possible.

Discussion & Verification

� Usefulness of force polygons. The solution to Part (b) requires a vector with
unknown magnitude and direction be determined (i.e., EFOC 0 ). This may be de-
termined using calculus, as described in Problem 2.16, but nonlinear equations
must be solved. By drawing a force polygon, the solution for the optimal ori-
entation of EFOC 0 was found by inspection, with the result that it was easier to
solve for the remaining unknown, namely, the magnitude of EFOC 0 .

� Tip. Although in principle vectors can be added in any order, from a practical
standpoint, when constructing vector polygons, you should begin with those
vectors whose magnitude and direction are known. Vectors that have unknown
magnitude and/or direction should be added last. For example, in Part (b), the
force polygon resulting from addition of forces in the order EFOC 0 , and then
EFOA, followed by EFk would be considerably less straightforward to visualize

than Fig. 4.
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P R O B L E M S

Problem 2.1

For each vector, write two expressions using polar vector representations, one using a

Figure P2.1

positive value of � and the other a negative value, where � is measured counterclock-
wise from the right-hand horizontal direction.

Problems 2.2 and 2.3

Add the two vectors shown to form a resultant vector ER, and report your result using
polar vector representation.

Figure P2.2

Figure P2.3

Problem 2.4

Let EA D 2m @ 0ı and EB D 6m @ 90ı . Sketch the vector polygons and evaluate
ER for the following, reporting your answer using polar vector representation.

(a) ER D EAC EB ,

(b) ER D 2 EA � EB ,

(c) ER D j EAj EB C j EBj EA,

(d) ER D
EA

j EAj
C
EB

j EBj
.

Problem 2.5

A tow truck applies forces EF1 and EF2 to the bumper of an automobile where EF1 is
horizontal. Determine the magnitude of EF2 that will provide a vertical resultant force,
and determine the magnitude of this resultant.

Figure P2.5

Problem 2.6

ArmOA of a robot is positioned as shown. Determine the value for angle ˛ of arm AB

so that the distance from point O to the actuator at B is 650mm.

Figure P2.6

Problem 2.7

Add the three vectors shown to form a resultant vector ER, and report your result using
polar vector representation. Figure P2.7
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Problem 2.8

A ship is towed through a narrow channel by applying forces to three ropes attached to
its bow. Determine the magnitude and orientation � of the force EF so that the resultant
force is in the direction of line a and the magnitude of EF is as small as possible.

Figure P2.8

Problem 2.9

A surveyor needs to plant a marker directly northeast from where she is standing. Be-
cause of obstacles, she walks a route in the horizontal plane consisting of 200m east,
followed by 400m north, followed by 300m northeast. From this position, she would
like to take the shortest-distance route back to the line that is directly northeast of her
starting position. What direction should she travel and how far, and what will be her
final distance from her starting point?

Problem 2.10

A utility pole supports a bundle of wires that apply the 400 and 650N forces shown,
and a guy wire applies the force EP .

(a) If EP D E0, determine the resultant force applied by the wires to the pole and report
your result using polar vector representation.

(b) Repeat Part (a) if P D 500N and ˛ D 60ı.

(c) With ˛ D 60ı, what value of P will produce a resultant force that is vertical?

(d) If the resultant force is to be vertical and P is to be as small as possible, determine
the value ˛ should have and the corresponding value of P .

Figure P2.10

Problem 2.11

Determine the smallest force F1 such that the resultant of the three forces F1, F2, and
F3 is vertical, and the angle ˛ at which F1 should be applied.

Figure P2.11

Problem 2.12

Forces F1, F2, and F3 are applied to a soil nail to pull it out of a slope. If F2 and
F3 are vertical and horizontal, respectively, with the magnitudes shown, determine the
magnitude of the smallest force F1 that can be applied and the angle ˛ so that the
resultant force applied to the nail is directed along the axis of the nail (direction a).Figure P2.12
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Problem 2.13

Determine the magnitudes of vectors Era and Erb in the a and b directions, respectively,
such that their sum is the 2 km position vector shown.

Figure P2.13

Problem 2.14

Determine the magnitudes of vectors EFa and EFb in the a and b directions, respectively,
such that their sum is the 100 lb force vector shown.

Figure P2.14

Problem 2.15

While canoes are normally propelled by paddle, if there is a favorable wind from the
stern, adventurous users will sometimes employ a small sail. If a canoe is sailing north-
west and the wind applies a 40 lb force perpendicular to the sail in the direction shown,
determine the components of the wind force parallel and perpendicular to the keel of
the canoe (direction a).

Figure P2.15

Problem 2.16

Repeat Part (b) of Example 2.5, using the optimization methods of calculus. Hint: Re-
draw the force polygon of Fig. 3 and rewrite Eq. (1) on p. 39 with the 45ı angle shown
there replaced by ˇ, where ˇ defined in Fig. P2.16. Rearrange this equation to ob-
tain an expression for FOC 0 as a function of ˇ, and then determine the value of ˇ
that makes dFOC 0=dˇ D 0. While the approach described here is straightforward to
carry out “by hand,” you might also consider using symbolic algebra software such a
Mathematica or Maple.

Figure P2.16
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2.2 Cartesian Representation of Vectors
in Two Dimensions

There are a variety of ways, or representations, that may be used to embed
magnitude and direction information in a vector expression. Cartesian vector
representation is straightforward and is the most widely used form for express-
ing vectors. For special classes of problems, such as when geometry is circu-
lar or spherical, other forms of vector representation may be more convenient.
Some of these representations are discussed in dynamics.

Introduction – Cartesian representation and a
walk to work

Imagine that to get from your home to where you work, you walk 2 km east
and 1 km north, as shown on the map of Fig. 2.11(a). This simple statement
implies a Cartesian coordinate system, unit vectors, and a position vector that
describes the location of where you work relative to your home. Figure 2.11(b)
shows these ingredients, with the following explanations. We will use east and
north to describe directions (we could just as well use west and/or south, re-
spectively), and since these directions are orthogonal (that is, their intersection
forms a right angle), they constitute a Cartesian coordinate system. We may
select the origin of this coordinate system to be any point we choose, and
once this is done, the location of other points can be quantified using coordi-
nates. For example, if we take the origin of our coordinate system to be our
home, as shown in Fig. 2.11(b), then the coordinates of where we work are
.2 km; 1 km/, where this pair of numbers is ordered such that the first num-
ber is always the east coordinate and the second number is always the north
coordinate. Note that positions that are south or west of our origin will have
some negative coordinates. The directions “east” and “north” define unit vec-
tors. That is, when we say east, we describe only a direction, and no state-
ment of distance is made. We can describe the position vector from home
to work by ErHW D 2 km east C 1 km north, or in more compact notation by
ErHW D 2 km O{C1 km O| , where O{ means east and O| means north. The concepts
introduced in this example are more thoroughly described in the remainder of
this section.

Figure 2.11
(a) A map shows the locations of home and
work. (b) A Cartesian coordinate system is used
to describe positions and vectors.

Unit vectors

The concept of a unit vector is useful. A unit vector is defined to be a dimen-
sionless vector that has unit magnitude. Given any arbitrary vector Ev having
nonzero magnitude, we may construct a unit vector Ou that has the same direc-
tion, using

Ou D
Ev

jEvj
: (2.11)

We will use a “hat” symbol (O) over unit vectors, whereas all other vectors will
use an arrow symbol (E ). Note that vector Ev and its magnitude jEvj have the
same units, thus unit vector Ou is dimensionless. In this book, we will reserve
the symbol Ou to represent unit vectors, although we will also use the more
primitive form Ev=jEvj. In figures, unit vectors will be orange .
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Cartesian coordinate system

Most likely you already have considerable experience using Cartesian coordi-
nate systems, but to be complete, we will state exactly what ingredients are
needed. In two dimensions a Cartesian coordinate system uses two orthogo-
nal reference directions, which we will usually call the x and y directions, as
shown in Fig. 2.12(a). The intersection of the reference directions is the ori-
gin of the coordinate system, and any point in the xy plane is identified by
its x and y coordinates. We denote the coordinates of a point P using an or-
dered pair of numbers .xP ; yP / where xP and yP are the x and y coordinates
of the point, respectively, measured from the origin. Although we will often
take the x and y directions to be horizontal and vertical, respectively, other
orientations, provided they are orthogonal, are acceptable and may be more
convenient.

Figure 2.12
(a) Cartesian coordinate system with unit vec-
tors O{ and O| in the x and y directions, respec-
tively. (b) Resolution of a vector Ev into vector
components Evx and Evy in the x and y directions,
respectively.

Cartesian vector representation

We begin by defining unit vectors O{ and O| that point in the positive x and y
directions, respectively, as shown in Fig. 2.12(a). Both O{ and O| are dimension-
less and are used to describe direction in exactly the same way you would use
east and north. Now consider a vector Ev in the xy plane. Following the ideas
used in Section 2.1, we ask for two vectors, one parallel to the x axis and one
parallel to the y axis, such that their vector sum yields Ev. This can be stated in
equation form as

Ev D Evx C Evy (2.12)

where Evx and Evy are vectors parallel to the x and y directions, respectively, as
shown in Fig. 2.12(b). Vectors Evx and Evy are called the vector components of
Ev. Noting that vectors Evx and O{ are parallel (although possibly with opposite
direction), we may write Evx D vx O{, and similarly, we may write Evy D vy O| .
Thus, Eq. (2.12) becomes

Ev D vx O{ C vy O| : (2.13)

An expression in the form of Eq. (2.13) is called a Cartesian representation of
the vector Ev. The scalars vx and vy are called the scalar components (or simply
the components) of Ev , and these may be positive, zero, or negative. Because
the vector components Evx and Evy are always orthogonal, basic trigonometric
relations and the Pythagorean theorem, Eqs. (2.9) and (2.10), are all that is
needed to resolve a vector into its Cartesian components.

Magnitude and orientation of a vector. For a vector in two dimensions,
the magnitude jEvj and orientation � from the horizontal (˙x direction) are
related to its Cartesian components by

jEvj D

q
v2x C v

2
y and � D tan�1

�
vy

vx

�
: (2.14)

The magnitude of a vector is a scalar that is positive, or is zero in the case
of a zero vector (i.e., a vector having zero values for all its components). As
discussed in Fig. 2.4, rather than using the magnitude, we will often represent
a vector’s “size” by using a scalar symbol such as v, where v is the component
of the vector in an assumed direction for the vector. Because v is a component,
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it can be positive, zero, or negative, as follows. If v is positive or zero, then
v equals the magnitude of the vector and the direction of the vector is the
same as the direction we assumed it had. If v is negative, then �v is equal
to the magnitude of the vector and the direction of the vector is opposite the
direction we assumed it had. Thus, under all circumstances, the absolute value
of v gives the magnitude of the vector. The main benefit of this notation is
that in many problems, we will know the line of action for a vector, but at the
outset of a problem we may not know its direction along that line of action.
Thus, for a vector Ev we will assume a direction along its line of action and will
often find after our analysis is complete that v < 0, which means that in fact
the vector’s direction is opposite to the direction we assumed it had. Note that
v and jEvj are defined differently, although they both measure size and, under
the circumstances described here, yield the same value. Throughout this book,
we will be careful to call v the magnitude of a vector only when we are sure it
is nonnegative.

Remark. The angle � defined in Eq. (2.14) gives the orientation of a vector
measured from the positive x direction if the vector’s x component is positive
(i.e., vx > 0), and gives the orientation measured from the negative x direction
if the vector’s x component is negative (i.e., vx < 0). If vx D 0, then � D
˙90ı.

� Mini-Example. Express the vector shown in Fig. 2.13(a), using Cartesian
representation.

Figure 2.13
Determination of the Cartesian components of
a 120N force vector.

Solution. Let EF denote the 120N magnitude force vector shown in Fig. 2.13(a)
and let Fx and Fy denote the components of EF in the x and y directions, re-
spectively. Components Fx and Fy are obtained by constructing projections

of EF that are parallel to the x and y axes, respectively, with the resulting mag-
nitudes .120N/ cos 30ı and .120N/ sin 30ı, as shown in Fig. 2.13(b). We next
use these projections to assign vector components in the x and y directions,
paying careful notice that Fx and Fy are positive when acting in the positive
x and y directions, respectively, and are negative when acting in the negative
x and y directions. Thus,

Fx D .120N/ cos 30ı D 104N;

Fy D .120N/ sin 30ı D 60N:
(2.15)

Thus, the Cartesian representation for EF is

EF D .104 O{ C 60 O|/N: (2.16)

Some useful checks. There are a few useful checks that may help you
avoid errors when resolving a vector into Cartesian components. Foremost is
to verify that the components have reasonable size and are in proper directions.
The next check is to verify that the vector’s components give the correct mag-
nitude. Thus, for Eq. (2.16), we evaluate

p
.104N/2 C .60N/2 D 120N to

find that indeed it has the correct magnitude. While these checks are reassur-
ing, they do not guarantee the components are correct. Nonetheless, if we find
an incorrect magnitude, then certainly an error has been made. �
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� Mini-Example. Express the vector shown in Fig. 2.14(a), using Cartesian
representation.
Solution. Geometric information for the 12m position vector shown in
Fig. 2.14(a), is in the form of a 3–4–5 triangle. While it is possible to eval-
uate the angle � and then proceed as in the previous mini-example, this is
not necessary and the geometry of the 3–4–5 triangle (or any other right trian-
gle where the edge lengths are known) can be exploited to directly obtain the
vector’s components as follows. From Fig. 2.14(a), the vector’s orientation is
such that a “run” of 3 units is always accompanied by a “rise” of 4 units. If we
imagine traversing 3 units of horizontal motion followed by 4 units of vertical
motion, the total motion is

p
32 C 42 D 5 units. Of this 5 units total, 3 parts

have been horizontal in the negative x direction, and 4 parts have been verti-
cal in the positive y direction, and this constitutes a statement of the vector’s
components, as shown in Fig. 2.14(b). Hence we may write

Figure 2.14
Determination of the Cartesian components of
a 20m position vector.

Er D .12m/

�
�3

5
O{ C

4

5
O|

�
: (2.17)

The negative sign in Eq. (2.17) and Fig. 2.14(b) has been included because the
horizontal component of the vector is in the negative x direction. Note that
the vector within the parentheses on the right-hand side of Eq. (2.17) is a unit
vector, and hence Er has 12m magnitude, as expected.

Remarks. In this example, the geometry was especially nice (i.e., 3–4–5
triangle). Nonetheless, even if the rise, run, and/or hypotenuse is noninteger,
this method of determining the Cartesian components of a vector is still very
straightforward. If you find the heuristic argument used to construct Eq. (2.17)
unconvincing, then we can use a more formal construction to show its validity.
With � as defined in Fig. 2.14(a), we write

Er D �.12m/ .cos �/ O{ C .12m/ .sin �/ O|

D .12m/ .� cos � O{ C sin � O|/:
(2.18)

Next using the geometry for the vector’s orientation (3–4–5 triangle), we note
cos � D 3=5 and sin � D 4=5, and combining these with Eq. (2.18) provides
the same result as Eq. (2.17). �

Addition of vectors using Cartesian components

Consider the addition of the two vectors shown in Fig. 2.15(a). We first write

Figure 2.15
(a) Two vectors Ev1 and Ev2 are to be added. (b)
The result of the vector addition is ER.

the vectors using Cartesian representation. Thus

Ev1 D v1x O{ C v1y O| ;

Ev2 D v2x O{ C v2y O| :
(2.19)

The resultant vector ER is the sum of Ev1 and Ev2, hence

ER D Ev1 C Ev2

D .v1x O{ C v1y O|/C .v2x O{ C v2y O|/

D .v1x C v2x/ O{ C .v1y C v2y/ O| :

(2.20)

The addition is illustrated graphically in Fig. 2.15(b) where we slide the vec-
tors Ev1 and Ev2 head to tail to yield a resultant vector ER. Notice the x and y
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components of ER are, respectively, the sums of the x and y components of the
vectors being added. To complete the addition, we use the magnitudes jEv1j and
jEv2j and orientations �1 and �2 provided in Fig. 2.15(b) to determine the com-
ponents v1x , v1y , v2x , and v2y . Addition of an arbitrary number n of vectors
is similarly straightforward, and the last of Eqs. (2.20) generalizes to

ER D Ev1 C Ev2 C � � � C Evn D

 
nX
iD1

vix

!
O{ C

 
nX
iD1

viy

!
O| : (2.21)

In words, Eq. (2.21) states that the x component of the resultant is the sum
of the x components of all vectors being added, and the y component of the
resultant is the sum of the y components of all vectors being added.

Position vectors

The spatial position of one point (head of vector) relative to another point (tail
of vector) is provided by a position vector. For the example of Fig. 2.16, the
two points T and H denote the tail and head of a position vector and have
coordinates .xT ; yT / and .xH ; yH /, respectively. The position vector from T

toH is denoted by ErTH , and it has the x and y components shown in Fig. 2.16;
hence we may write

Figure 2.16
Construction of a position vector using Carte-
sian coordinates of the vector’s head and tail.

ErTH D .xH � xT / O{ C .yH � yT / O| : (2.22)

In words, Eq. (2.22) states that the components of the position vector are given
by “coordinates of the head minus coordinates of the tail,” and this phrase
is worth committing to memory. Another useful method for constructing a
position vector is to imagine being positioned at point T and then asking what
distances in the x and y directions must be traversed to arrive at point H ; this
also leads to Eq. (2.22).

What does a position vector really tell us? A position vector provides
information on relative position only. That is, it tells us where the head of a
vector is located relative to its tail. It does not tell us the absolute position of
the head and tail. That is, it does not tell us where the head and tail are located.

For example, walking 1 mile west and 2 miles north is a statement of a
position vector. With this position vector, we know only where our traveling
ends relative to where it started, and exactly where our initial or final positions
are located is information that is not contained in the position vector. On the
other hand, if we state that we begin our traveling at Sears Tower in Chicago,
and we walk 1 mile west and 2 miles north, then the position vector together
with the coordinates of the starting point provides the absolute position of our
final location.

End of Sect ion Summary

In this section, Cartesian coordinate systems and Cartesian representation for
vectors in two dimensions have been defined. Some of the key points are:

� The x and y directions you choose for a Cartesian coordinate system
are arbitrary, but these directions must be orthogonal.
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� The Cartesian representation for a vector Ev is Ev D Evx C Evy D vx O{ C

vy O| . In these expressions, Evx and Evy are called the vector components
of Ev, and vx and vy are called the scalar components (or simply the
components) of Ev.

� Addition of vectors with Cartesian representation is accomplished by
simply summing the components in the x direction of all vectors being
added to obtain the x component of the resultant, and then summing the
components in the y direction of all vectors being added to obtain the y
component of the resultant. Addition of even a large number of vectors
is straightforward.

� A position vector provides the location of one point relative to another
point. Given the coordinates of the two endpoints of the vector, Eq. (2.22)
can be used to obtain the position vector. An easy way to remember
Eq. (2.22) is that the components of the position vector are given by
“coordinates of the head minus coordinates of the tail.” Another useful
method for constructing a position vector is to imagine being positioned
at the tail of a vector and then asking what distances in the x and y di-
rections must be traversed to arrive at the head of the vector.
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E X A M P L E 2.6 Addition of Vectors and Working Loads

y

Figure 1

A short post AB has a commercially manufactured eyebolt screwed into its end. Three
cables attached to the eyebolt apply the forces shown.

(a) Determine the resultant force applied to the eyebolt by the three cables, using a
Cartesian vector representation.

(b) The manufacturer of the eyebolt specifies a maximum working load� of 2100 lb
in the direction of the eyebolt’s axis. When loads are not in the direction of the
eyebolt’s axis, the manufacturer specifies reduction of the working load using the
multipliers given in Fig. 1. Determine if this size eyebolt is satisfactory.

S O L U T I O N

Road Map The resultant force vector is the sum of the three force vectors applied
to the eyebolt. First we will express each of the three force vectors using Cartesian
representation, and then we will add these to obtain the resultant force. For Part (b),
we will compare this resultant force to the working load criteria for the eyebolt to
determine if it is acceptable.

Part (a)

Governing Equations & Computation We first express the three forces using
Cartesian representations as

EF1 D .200 lb/.cos 60ı O{ C sin 60ı O|/; (1)

EF2 D .500 lb/.�1=
p
10 O{ C 3=

p
10 O|/; (2)

EF3 D .800 lb/.� sin 70ı O{ � cos 70ı O|/: (3)

The construction of EF2 and EF3 in Eqs. (2) and (3) is accomplished as described in
earlier examples, with the only point of notice being that the 70ı orientation of EF3 is
measured from the vertical which leads to sine and cosine functions providing the x
and y components, respectively. While EF1 can be constructed in an identical manner to
EF3, the following slightly different construction is useful. We first write EF1 in the form
EF1 D .200 lb/ Ou1 where Ou1 is a unit vector in the direction of EF1. We next note that Ou1

is described by taking a step of cos 60ı in the positive x direction followed by a step
of sin 60ı in the positive y direction. Hence Ou1 D cos 60ı O{ C sin 60ı O| and, because
.cos �/2 C .sin �/2 D 1 for any angle � , Ou1 is clearly a unit vector and the expression
for EF1 in Eq. (1) follows. Adding the force vectors yields the resultant force ER as

ER D EF1 C EF2 C EF3

D
h
200 cos 60ı C 500.�1=

p
10/C 800.� sin 70ı/

i
lb O{

C
h
200 sin 60ı C 500.3=

p
10/C 800.� cos 70ı/

i
lb O|

D .�810 O{ C 374 O|/ lb: (4)

�Working loads are loads a certain piece of hardware is designed to be subjected to on a repeated
basis. These loads are obtained by reducing the actual failure strength by an appropriate factor,
called the factor of safety. For the particular model of eyebolt cited here, the actual breaking
strength is about 9800 lb for loads in the direction of the bolt’s axis. While a working load
of 2100 lb provides a reasonable margin of safety, the margin is not quite as generous as you
might believe because of fatigue: materials and structures that must withstand many load cycles
can be subjected to only a fraction of their one-time load strength. While working load specifi-
cations for eyebolts always have a margin of safety, it is dangerous and irresponsible to use any
structural component in an application where the manufacturer’s working loads are exceeded.
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As an alternative to reporting our answer using Cartesian vector representation, we
may use Eq. (2.14) to report the magnitude and orientation of the resultant force as

R D

q
.�810 lb/2 C .374 lb/2 D 892 lb; and (5)

� D tan�1
�
374 lb

�810 lb

�
D �24:8ı; (6)

and this force is shown in Fig. 2.

Figure 2
Resultant ER of forces EF1, EF2, and EF3.

Part (b)

Governing Equations & Computation To determine if the eyebolt is adequate to
support the 892 lb resultant force, the orientation of ER with respect to the bolt’s axis
is needed. Defining a new Cartesian coordinate system tn as shown in Fig. 3, where
n is in the direction AB and t is perpendicular to direction AB , we find angle � D
45ı � 24:8ı D 20:2ı. Consulting Fig. 1, we find the eyebolt’s load multiplier for
loading angles up to 30ı is 60%, which yields a net working load of .2100 lb/.60%/ D
1260 lb. This working load is larger than our resultant force R D 892 lb, and thus we
conclude that this size eyebolt is satisfactory for supporting the system of three forces
considered here.

Figure 3
Orientation of resultant force ER with respect to
t and n directions.

Discussion & Verification Our analysis thus far indicates the eyebolt is acceptable
when all three forces EF1, EF2, and EF3 are present simultaneously. However, we should
also consider other possible loading scenarios in which forces are applied sequentially,
and in various orders, to make sure that at no time are the manufacturer’s working
load specifications exceeded. In addition, the manufacturer’s specifications refer specif-
ically to eyebolts subjected to just a single force. We have applied these criteria to the
resultant of three forces, which is reasonable, provided good judgment is used. To clar-
ify further, consider an eyebolt subjected to two equal forces with opposite direction:
EF1 D P O{ and EF2 D �P O{. The resultant force is zero, regardless of how large P is,

and thus the manufacturer’s working load specifications are always met. However, if P
is too large, the eyebolt will clearly fail. Thus, we should consult the manufacturer to
see if additional criteria are available for multiple loads; and if these are not, then we
must perform more detailed analysis of the strength properties of the eyebolt to ensure
that it is acceptable for our application.

Figure 4. An example of a commercially manufactured eyebolt, made of forged steel.
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E X A M P L E 2.7 Resolution of a Vector into Components

y

Figure 1
Post and loading of Example 2.6 repeated.

In Example 2.6 we eventually need to determine if postAB is strong enough to support
the forces applied to it. Such problems are discussed in later chapters of this book where
it will be necessary to resolve the forces applied to the post into components parallel
and perpendicular to the post’s axis. Thus, resolve the resultant of forces EF1, EF2, and
EF3 into components parallel and perpendicular to the post’s axis AB .

S O L U T I O N

Road Map Several strategies may be used, and we will consider two solutions here.
Our first solution will simply repeat the procedure of Example 2.6, except with vectors
written in terms of a new tn coordinate system where t and n are perpendicular and
parallel to the post’s axis, respectively. The second solution will use transformation of
the results of Example 2.6.

Solution 1

Governing Equations & Computation Using the geometry shown in Fig. 1, we
compute angles with respect to the t and n directions with the results shown in Fig. 2.
Computation of the 15ı and 65ı angles is straightforward. For the orientation of EF2,

Figure 2. Forces of Fig. 1 redrawn with orientations with respect to t and n directions.

we first evaluate tan�1.3=1/ D 71:6ı to obtain the orientation of EF2 with respect to
the negative x direction, followed by evaluation of 71:6ı � 45ı D 26:6ı to obtain the
orientation of EF2 with respect to the n direction. We then write the force vectors using
Cartesian representation as

EF1 D .200 lb/.cos 15ı Ot C sin 15ı On/; (1)

EF2 D .500 lb/.sin 26:6ı Ot C cos 26:6ı On/; (2)

EF3 D .800 lb/.� sin 65ı Ot C cos 65ı On/; (3)

where Ot and On are defined to be unit vectors in the t and n directions, respectively. The
resultant force is then

ER D EF1 C EF2 C EF3

D
�
200 cos 15ı C 500 sin 26:6ı C 800.� sin 65ı/

�
Ot lb

C
�
200 sin 15ı C 500 cos 26:6ı C 800.cos 65ı/

�
On lb

D .�308 Ot C 837 On/ lb: (4)
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Thus, the resultant force has the t and n components Rt D �308 lb and Rn D 837 lb,
respectively, which are shown in Fig. 3. As a partial check on our solution, we evaluate
the magnitude R D

p
.�308 lb/2 C .837 lb/2 D 892 lb which agrees with the results

found in Example 2.6.

Figure 3
Components of the resultant force in t and n
directions.

Solution 2

Governing Equations & Computation This solution takes advantage of the results
of Example 2.6 by resolving ER in Eq. (4) on p. 50 into t and n components. Referring
to Fig. 3 on p. 51, angle � is easily found to be � D 45ı � 24:8ı D 20:2ı. Thus, the
components of ER in the t and n directions are

Rt D �.892 lb/.sin 20:2ı/ D �308 lb; (5)

Rn D .892 lb/.cos 20:2ı/ D 837 lb; (6)

which agrees with the results reported in Eq. (4) and shown in Fig. 3.

Discussion & Verification

� When you are resolving a vector into orthogonal components, such as Rt and
Rn in this example, a useful and quick check of accuracy is to evaluateq
R2t CR

2
n and verify that it agrees with the magnitude of the original vector.

� A disadvantage of Solution 1 is that if the resultant force must be determined
for several different coordinate systems, the work for each of these is fully re-
peated. The advantage of Solution 2 is that once the resultant force is known
for one coordinate system, it is straightforward to transform the result to other
coordinate systems.

� A third solution that is not presented here is discussed in Problem 2.35. This
approach is similar to Solution 2, but is more elegant and effective. It uses vector
transformation to take the x and y components of ER found in Example 2.6 and
transform these into t and n components.
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E X A M P L E 2.8 Position Vectors

Figure 1

The Keweenaw Peninsula on the south shore of Lake Superior is shown. PointO is the
location of a U.S. Coast Guard base, point A is the location of a Coast Guard rescue
craft (either a helicopter or a ship), point B is the location of a boat in need of help,
and point P is the tip of the Keweenaw Peninsula. Letting O{ and O| be unit vectors in
the east and north directions, respectively, the position vectors are

ErOA D .44 O{�9 O|/ km; ErOP D .61 O{C31 O|/ km; ErOB D .�12 O{C53 O|/ km: (1)

(a) If the rescue craft is a helicopter, determine the shortest distance it must fly from
A to reach the boat at B .

(b) If the rescue craft is a ship, determine the shortest distance it must cruise from A

to reach the boat at B .

(c) In Part (b), if the ship cruises 20 km from A toward P , determine the ship’s coor-
dinates and position vector relative to the base at O .

S O L U T I O N

Road Map A strategy that could be used for all three parts of this example is to first
determine the coordinates of points A, B , and P and then use Eq. (2.22) on p. 48 to
write position vectors ErAB and so on, where the magnitudes of these vectors give the
distances asked for in each question. A better strategy is to use vector addition to obtain
the desired position vectors, and this is the approach we will follow.

Part (a)

Governing Equations & Computation The shortest route for the helicopter is the
straight line from A to B . Thus we seek vector ErAB , which may be written as

ErAB D ErAO C ErOB : (2)

A useful way to think of Eq. (2) is shown in Fig. 2(a). Rather than travel directly from
A to B , we may first travel from A to O , followed by travel from O to B . Of course,
this is not the path to be taken by the helicopter; but if this path were followed, the
same final position would result. The merit in writing Eq. (2) is that both vectors on the
right-hand side are known: ErOB is specified in Eq. (1), and ErAO D �ErOA where ErOA
is also specified in Eq. (1). Thus, Eq. (2) becomes

ErAB D �ErOA C ErOB

D �.44 O{ � 9 O|/ kmC .�12 O{ C 53 O|/ km

D .�56 O{ C 62 O|/ km; (3)

and the distance traveled is the magnitude

Figure 2
Addition of vectors. Figure (a) is used to obtain
the answer to Part (a) of this example, wherein
vectors ErAO and ErOB are added to obtain ErAB .
Figure (b) shows various vectors that are added
to obtain the answer to Part (b). Figure (c) is
used to obtain the answer to Part (c), wherein
a position vector ErAC is constructed using the
unit vector ErAP =jErAP j.

rAB D

q
.�56 km/2 C .62 km/2 D 83:5 km: (4)

Part (b)

Governing Equations & Computation The shortest route for a rescue ship consists
of the straight-line distances from A to P and from P to B . Thus we seek vectors ErAP
and ErPB . Using the addition shown in Fig. 2(b), we write

ErAP D ErAO C ErOP ; (5)

ErPB D ErPO C ErOB : (6)
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Vectors ErOP and ErOB are specified in the problem statement, ErAO D �ErOA, and
ErPO D �ErOP . Thus

ErAP D �ErOA C ErOP

D �.44 O{ � 9 O|/ kmC .61 O{ C 31 O|/ km

D .17 O{ C 40 O|/ km; (7)

ErPB D �ErOP C ErOB

D �.61 O{ C 31 O|/ kmC .�12 O{ C 53 O|/ km

D .�73 O{ C 22 O|/ km: (8)

The magnitudes of the vectors in Eqs. (7) and (8) are

rAP D

q
.17 km/2 C .40 km/2 D 43:5 km; (9)

rPB D

q
.�73 km/2 C .22 km/2 D 76:2 km: (10)

Thus, the total distance cruised by the rescue ship is rAP C rPB D 119:7 km. As a
check on the accuracy of our solution, you may want to verify that ErAP C ErPB D ErAB .

Part (c)

Governing Equations & Computation Let point C shown in Fig. 2(c) denote the
position of the rescue ship after it cruises 20 km from A toward P . The position vector
from A to C is ErAC , and it is collinear with ErAP and can be constructed as shown in
Fig. 2(c) as follows:

ErAC D .20 km/
ErAP
rAP

D .20 km/
.17 O{ C 40 O|/ kmp
.17 km/2 C .40 km/2

(11)

D .7:8 O{ C 18:4 O|/ km: (12)

Note that ErAP =rAP in Eq. (11) is a unit vector that provides the proper direction for
the 20 km distance the ship cruises. To find the position vector ErOC , we use vector
addition to write

ErOC D ErOA C ErAC : (13)

Vectors on the right-hand side are known, and hence Eq. (13) provides

ErOC D .44 O{ � 9 O|/ kmC .7:8 O{ C 18:4 O|/ km

D .51:8 O{ C 9:4 O|/ km: (14)

Finally, to obtain the coordinates of C , we use Eq. (2.22) to write

ErOC D .xC � xO / O{ C .yC � yO / O| : (15)

Selecting the coordinates of O to be .0; 0/ and equating Eqs. (14) and (15) provides

.51:8 O{ C 9:4 O|/ km D xC O{ C yC O| : (16)

Equation (16) is a vector equation. For it to be satisfied requires terms on both sides
of the equation that multiply O{ to be equal, and similarly terms on both sides of the
equation that multiply O| must be equal. Hence

xC D 51:8 km and yC D 9:4 km: (17)

Discussion & Verification Vector addition, as illustrated in this example, is a power-
ful application of vectors for determining positions, and these techniques will be used
throughout this book and subjects that follow statics.
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P R O B L E M S

Problems 2.17 through 2.24

For the following problems, use an xy Cartesian coordinate system where x is hori-
zontal, positive to the right, and y is vertical, positive upward. For problems where the
answers require vector expressions, report the vectors using Cartesian representations.

Problem 2.17 Repeat Prob. 2.2 on p. 41.

Problem 2.18 Repeat Prob. 2.3 on p. 41.

Problem 2.19 Repeat Prob. 2.7 on p. 41.

Problem 2.20 Repeat Prob. 2.8 on p. 42.

Problem 2.21 Repeat Prob. 2.9 on p. 42.

Problem 2.22 Repeat Prob. 2.10 on p. 42.

Problem 2.23 Repeat Prob. 2.11 on p. 42.

Problem 2.24 Repeat Prob. 2.12 on p. 42.

Problem 2.25

Let EA D .150 O{ � 200 O|/ lb and EB D .200 O{ C 480 O|/ lb. Evaluate the following, and
for Parts (a), (b), and (c) state the magnitude of ER.

(a) ER D EAC EB .

(b) ER D 2 EA � .1=2/ EB .

(c) Find a scalar s such that ER D s EAC EB has an x component only.

(d) Determine a dimensionless unit vector in the direction EB � EA.

Problems 2.26 and 2.27

A rope connecting points A and B supports the force F shown in the figure. Write
expressions using Cartesian vector representation for the following:

(a) ErAB : the position vector from A to B .

(b) ErBA: the position vector from B to A.

(c) OuAB : the unit vector in the direction from A to B .

(d) OuBA: the unit vector in the direction from B to A.

(e) EFAB : the force vector the rope applies to A.

(f) EFBA: the force vector the rope applies to B .

Figure P2.26

Figure P2.27

Problem 2.28

A cleat on a boat is used to support forces from three ropes as shown. Determine the
resultant force vector ER, using Cartesian representation, and determine the magnitude
R. Also express ER in polar vector representation.

Figure P2.28
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Problem 2.29

A model of a person’s arm is used for ergonomics studies. Distances are rAB D 35 cm,
rBC D 28 cm, and rCD D 19 cm.

(a) Determine the position vector ErAD and its magnitude rAD .

(b) Express ErAD using polar vector representation, measuring orientation positive coun-
terclockwise from the right-hand horizontal direction.

(c) Determine a unit vector OuAD in the direction from A to D.

Figure P2.29Problem 2.30

Two ropes are used to lift a pipe in a congested region. Determine the ratio F2=F1 so
that the resultant of EF1 and EF2 is vertical.

Figure P2.30

Problem 2.31

A welded steel tab is subjected to forces F and P . Determine the largest value P may
have if F D 1000 lb and the magnitude of the resultant force cannot exceed 1500 lb. Figure P2.31

Problem 2.32

A short cantilever beam is subjected to three forces. If F D 8 kN, determine the value
of ˛ that minimizes the magnitude of the resultant of the three forces. Also, determine
the magnitude of that resultant.

Problem 2.33

A short cantilever beam is subjected to three forces. If ˛ D 45ı, determine the value
of F that will make the magnitude of the resultant of the three forces smallest. Figure P2.32 and P2.33

Problem 2.34

An eyebolt is loaded by forces F1 and F2. If the eyebolt has a maximum working load
of 1200 lb, determine if the working load specifications given in Fig. 1 of Example 2.6
are met for the following loading scenarios.

(a) Only F1 is applied.

(b) Only F2 is applied.

(c) Both F1 and F2 are applied simultaneously.
Figure P2.34
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Problem 2.35

An important and useful property of vectors is they may be easily transformed from
one Cartesian coordinate system to another. That is, if the x and y components of a
vector are known, the t and n components can be found (or vice versa) by applying the
formulas

Ev D vx O{ C vy O| D vt Ot C vn On; (1)

where vt D vx cos� C vy sin�; (2)

vn D �vx sin� C vy cos�; (3)

or vx D vt cos� � vn sin�; (4)

vy D vt sin� C vn cos�: (5)

In these equations, Ot and On are unit vectors in the t and n directions, respectively; �Figure P2.35
is measured positive counterclockwise from the positive x direction to the positive t
direction; and the y and n directions must be oriented 90ı counterclockwise from the
positive x and t directions, respectively.

(a) Derive the above transformation that gives vt and vn in terms of vx and vy . Hint:
First consider a vector Evx that acts in the x direction, and resolve this into compo-
nents in t and n directions. Then consider a vector Evy that acts in the y direction,
and resolve this into components in t and n directions. Vectorially adding these
results yields the transformation.

(b) For the eyebolt and post of Example 2.7, the x and y components of the resultant
force are given by Eq. (4) of Example 2.6. Use these x and y components with the
above transformation equations to obtain the t and n components of the resultant
force, and verify these are the same as those in Eq. (4) of Example 2.7.

Problem 2.36

A box weighing 200N rests on an inclined surface. A worker applies a horizontal force
F to help position the box. Determine the x and y components of the resultant of
forces W and F . Also determine the t and n components of the resultant force vector.
Comment on why the t and n components might be useful to know.

Figure P2.36

Problem 2.37

A motor-driven gear is used to produce forces P1 and P2 in members AB and AC of
a machine. Member AC is parallel to the y axis.

(a) Determine the x and y components of the resultant force vector at A due to forces
P1 and P2.

(b) Determine the t and n components of the resultant force vector. Comment on why
the t and n components might be useful to know.

Figure P2.37

Problem 2.38

Two people apply forces P1 and P2 to the handle of a wrench as shown.

(a) Determine the x and y components of the resultant force vector applied to the
handle of the wrench.

(b) Determine the t and n components of the resultant force vector. Comment on why
the t and n components might be useful to know.

Figure P2.38
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Problem 2.39

Bar AC is straight and has 106 in. length, B is a pulley that supports forces W and F ,
W is vertical, and the t direction is parallel to bar AC:

(a) If F D 150 lb and ˛ D 30ı, determine the coordinates of point C so that the t
component of the resultant of F and W is zero.

(b) If F D 150 lb and C is located at .56; 90/ in., determine angle ˛ so that the t
component of the resultant of F and W is zero.

(c) If C is located at .56; 90/ in. and ˛ D 30ı, determine F so that the t component
of the resultant of F and W is zero.

Hint: For each of these questions, first find the x and y components of the resultant
force and then use the transformation given in Prob. 2.35 to obtain the t component. Figure P2.39

Problem 2.40

Screw AC is used to position point D of a machine. Points A and C have coordinates
.185; 0/mm and .125; 144/mm, respectively, and are fixed in space by the bearings
that support the screw. If point B is 52mm from point A, determine the position vector
ErAB and the coordinates of point B .

Figure P2.40 and P2.41

Problem 2.41

Repeat Prob. 2.40 if point B is 39mm from point C .

Problem 2.42

Screw AC is used to position point D of a machine. Point A has coordinates .185; 0/
mm and is fixed in space by a bearing that supports the screw. The screw nut at point
B is supported by lever ED and at the instant shown has coordinates .160; 60/mm. If
the length of the screw from A to C is 130mm, determine the position vector ErAC and
the coordinates of point C .

Problem 2.43

In Prob. 2.42 if point B is equidistant from points A and C and if ErEA D

.185O{ � 50 O|/mm and ErEB D .155 O{ C 22 O|/mm, determine the position vector ErAC .

Figure P2.42 and P2.43

Problem 2.44

A computer numerical control (CNC) milling machine is used to cut a slot in the com-
ponent shown. The cutting tool starts at point A and advances to point B where it
pauses while the depth of cut is increased, and then the tool continues on to point C . If
the coordinates of points A and C are .95; 56/mm and .17; 160/mm, respectively, and
B is located 45mm from A, determine the position vectors ErOA, ErOB , and ErOC and
the coordinates of B .

Figure P2.44
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2.3 Cartesian Representation of Vectors in
Three Dimensions

For problems in three dimensions, vectors are especially powerful and without
them many problems would be intractable. Concepts of Section 2.2 apply, with
some additional enhancements needed for three dimensions. These include
definitions of a right-handed coordinate system, direction angles, and direction
cosines.

Right-hand Cartesian coordinate system

In three dimensions a Cartesian coordinate system uses three orthogonal ref-
erence directions. These will consist of x, y, and ´ directions as shown in
Fig. 2.17(a). Proper interpretation of many vector operations, such as the cross
product to be discussed in Section 2.5, requires the x, y, and ´ directions
be arranged in a consistent manner. For example, when you are constructing
the coordinate system shown in Fig. 2.17(a), imagine the x and y directions
are chosen first. Then, should ´ be taken in the direction shown, or can
it be in the opposite direction? The universal convention in mechanics and
vector mathematics in general is ´ must be taken in the direction shown, and
the result is called a right-hand coordinate system. Figure 2.17(b) describes a
scheme for constructing a right-hand coordinate system. You should study this
scheme and become comfortable with its use.

Figure 2.17
(a) Cartesian coordinate system in three dimen-
sions. (b) A scheme for constructing a right
hand coordinate system. Position your right
hand so the positive x direction passes into
your palm and the positive y direction passes
through your finger tips. Your thumb then indi-
cates the positive ´ direction. (c) More exam-
ples of right-hand coordinate systems.

Cartesian vector representation

We define vectors O{, O| , and Ok to be unit vectors that point in the positive x, y,
and ´ directions, respectively. A vector Ev can then be written as

Ev D Evx C Evy C Ev´

D vx O{ C vy O| C v´
Ok: (2.23)

Resolution of Ev into x, y, and ´ components is shown in Fig. 2.18. The mag-
nitude of Ev is given by

Figure 2.18
Right-hand Cartesian coordinate system with
unit vectors O{, O| , and Ok in the x, y, and ´ direc-
tions, respectively, and resolution of a vector Ev
into vector components Evx , Evy , and Ev´.

jEvj D

q
v2x C v

2
y C v

2
´: (2.24)

This equation is obtained using the construction shown in Fig. 2.19 as follows.
First, a vector Eva that lies in the xy plane is defined. Because vx , vy , and
va form a right triangle, the Pythagorean theorem provides v2a D v2x C v

2
y .

Then va, v´, and v also form a right triangle, and the Pythagorean theorem
provides v2 D v2a C v

2
´. Substituting for v2a in this latter expression yields

v2 D v2x C v
2
y C v

2
´, and thus Eq. (2.24) follows.

Figure 2.19
Evaluation of a vector’s magnitude in terms of
its components.

Direction angles and direction cosines

An effective way of characterizing a vector’s orientation is by use of direction
angles. Direction angles �x , �y , and �´ are shown in Fig. 2.20 and are defined
to be the angles measured from the positive x, y, and ´ directions, respectively,
to the direction of the vector.
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Direction angles can be used to obtain a vector’s components, and vice
versa, as follows. Consider the vector polygon shown in Fig. 2.21. This poly-
gon is a right triangle that consists of the vector’s magnitude jEvj, the y compo-
nent vy , and another vector component that we are not especially interested in,
but which is nonetheless present. Although this triangle has rather complicated
orientation in space, since it is a right triangle, the relationship between jEvj, vy ,
and �y is given by elementary trigonometry as vy D jEvj cos �y . Now imagine
sketching a new vector triangle that contains jEvj, vx , and angle �x ; again, ele-
mentary trigonometry provides vx D jEvj cos �x . Finally, consideration of the
vector triangle containing jEvj, v´, and angle �´ provides v´ D jEvj cos �´. Col-
lectively, these may be written as

Figure 2.20
Definition of direction angles �x , �y , and �´.

Figure 2.21
Relation between direction angle �y and vec-
tor component vy . Similar sketches of trian-
gles using direction angles �x and �´ provide
vx D jEvj cos �x and v´ D jEvj cos �´.

Ev D vx O{ C vy O| C v´
Ok

D jEvj cos �x O{ C jEvj cos �y O| C jEvj cos �´ Ok

D jEvj .cos �x O{ C cos �y O| C cos �´ Ok/: (2.25)

In Eq. (2.25), note that .cos �x O{ C cos �y O| C cos �´ Ok/ is a unit vector that
points in the direction of Ev. Because cosines of the direction angles play such
an important role in writing Eq. (2.25), the quantities cos �x , cos �y , and cos �´
are called direction cosines.

Examination of Eq. (2.25) shows that the direction cosines constitute com-
ponents of a unit vector. That is, substituting the expression for vx , vy , and v´
from Eq. (2.25) into Eq. (2.24) provides

cos2 �x C cos2 �y C cos2 �´ D 1 (2.26)

where cos2 � � .cos �/2. A subtle point about direction angles is that although
there are three of them, only two are independent. For example, if �x and �y
are known, then �´ may be determined from Eq. (2.26), although care is usu-
ally needed to ensure the desired solution is obtained among the multiple solu-
tions this equation has. These subtleties are illustrated in some of the example
problems of this section. To summarize, important facts regarding direction
angles and direction cosines for a vector Ev are as follows:

Summary Box
�x D angle between positive x direction and vector,

�y D angle between positive y direction and vector,

�´ D angle between positive ´ direction and vector,

Ev D jEvj .cos �x O{ C cos �y O| C cos �´ Ok/;

cos2 �x C cos2 �y C cos2 �´ D 1;

cos �x D vx=jEvj; cos �y D vy=jEvj; cos �´ D v´=jEvj:

(2.27)

Position vectors

Construction of a position vector in three dimensions is analogous to the pro-
cedure described in the previous section. Given points T and H having coor-
dinates .xT ; yT ; ´T / and .xH ; yH ; ´H /, respectively, as shown in Fig. 2.22,
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the position vector from tail T to head H is denoted by ErTH and is written as

ErTH D .xH � xT / O{ C .yH � yT / O| C .´H � ´T /
Ok: (2.28)

The components of the position vector are given by “coordinates of the head

Figure 2.22
Construction of a position vector using Carte-
sian coordinates of the vector’s head and tail.

minus coordinates of the tail,” and this is a useful phrase to remember.

Use of position vectors to write expressions
for force vectors

A position vector can often be a useful aid for writing an expression for a force
vector. The basic idea is if a force vector EF lies along the line of action of a
position vector Er , or is known to be parallel to the position vector, then a vector
expression for the force may be written as EF D F Er=jEr j. In this expression,
Er=jEr j is a unit vector that gives EF the proper direction, and F is the component
of the force EF along the direction Er . Often, the location of two points on
the line of action of a force will be known, and the components of Er can be
obtained by taking the difference between coordinates of the position vector’s
head and tail, as given by Eq. (2.28). Note that in an expression such as EF D
F Er=jEr j, if F > 0, then the direction of the force is the same as the direction
of Er , whereas if F < 0, then the direction of the force is opposite the direction
of Er .

In statics, most of our applications of this idea will be for writing force
vectors and, starting in Chapter 4, moment vectors also. However, this idea
easily generalizes so that if any two vectors have the same line of action, or
are parallel, then one of them may be used to construct an expression for the
other, regardless of the physical interpretations each vector might have. For
example, imagine a particle initially at rest is subjected to a known force EF
that has constant orientation, but perhaps magnitude that varies with time. Due
to this force, the particle moves with acceleration Ea and velocity Ev where all
three of these vectors share the same line of action. Since EF is known, vector
expressions for Ea and Ev may be written as Ea D a EF=j EF j and Ev D v EF=j EF j,
where a and v, which are functions of time, need to be determined.

Some simple structural members

Figure 2.23
The cross section of a steel cable is shown
where the many individual strands that make up
the cable can be seen.

Figure 2.24
A worker stands next to one of the steel cables
that support a bridge.

One category of forces we deal with in mechanics is forces that develop within
structural members. These is called internal forces, and much will be said
about these in later chapters of this book. Simply stated, it is because structural
members have the capability to develop internal forces that they are used to
make structures, and these structures are in turn called upon to support external
forces that are applied to them. The question to be briefly examined here is for
what types of structural members do we know that the forces they support
(internal forces) are collinear with their orientation.

Shown in Fig. 2.25 are structural members consisting of a cable (or rope,
string, or cord), a wire, and a straight bar.� Consider a simple experiment with
a piece of light string. When tensile forces are applied to the two ends of the
string, the string obviously assumes the shape of a straight-line segment. Thus

�Bars can also be curved or have other geometry, but the remarks made here apply to straight
bars only.
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Figure 2.25. Some common structural members whose internal forces are collinear
with their geometry.

we may infer that the forces it supports are directed from one endpoint of the
string to the other. Another experiment would be to attach an object to one
end of a string and hold the other end of the string with your hand. Again, the
string takes the shape of a straight-line segment that is vertical. Newton’s law
of gravity tells us that the weight of the object, which is a vector quantity, is in
the vertical direction, pointing from the object toward the center of the Earth.
The vertical direction of the weight is identical to the orientation of the string,
so once again we may infer that the internal force in the string is collinear
with the line connecting the string’s endpoints. Cables, ropes, wires, and the
like are idealized to behave the same way. Further, all of these members are
assumed to be incapable of supporting compressive forces as this would cause
them to immediately bend or buckle. A straight bar is a member that is loaded
by forces at its two ends as shown in Fig. 2.25. Its behavior is similar to that
for cables and ropes, but a bar can also support compressive forces.

To summarize, for the simple, but important and common structural mem-
bers shown in Fig. 2.25, it is possible to characterize the forces they support by
expressions such as EF D F Er=jEr j, where Er is a position vector that describes
the orientation of the member. These structural members belong to a cate-
gory of members called two-force members, which are examined in detail in
Chapter 5.

End of Sect ion Summary

In this section, Cartesian coordinate systems and Cartesian representation for
vectors in three dimensions have been defined. Some of the key points are:

� The xy´ coordinate system you use must be a right-hand coordinate
system. Proper interpretation of some vector operations requires this.

� Direction angles provide a useful way for specifying a vector’s orienta-
tion in three dimensions. A vector has three direction angles �x , �y , and
�´, but only two of these are independent. Direction angles satisfy the
equation cos2 �xCcos2 �yCcos2 �´ D 1, so that if two direction angles
are known, the third may be determined.

� Structural members such as cables, ropes, and bars support forces whose
lines of action have the same orientation as the member’s geometry.
Thus, if Er describes a member’s geometry, a vector expression for the
force supported by the member may be written as EF D F.Er=jEr j/.
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E X A M P L E 2.9 Direction Angles

Figure 1

Determine the direction angles for boom AB of the crane.

S O L U T I O N

Road Map We denote the position vector of the crane’s boom from point A to point
B by ErAB . The 35ı and 73ı angles reported in the figure are indeed direction angles:
the 35ı angle is measured from the positive y direction to the direction of ErAB , and
the 73ı angle is measured from the positive ´ direction to the direction of ErAB . Thus,
�y D 35

ı and �´ D 73
ı. The remaining direction angle �x must satisfy Eq. (2.26).

Governing Equations & Computation Knowing that �y D 35ı and �´ D 73ı, we
solve Eq. (2.26) to obtain

cos2 �x D 1 � cos2 �y � cos2 �´; (1)

cos �x D ˙
q
1 � cos2 �y � cos2 �´; (2)

�x D cos�1
�
˙
q
1 � cos2 �y � cos2 �´

�
D cos�1

�
˙
p
1 � cos2 35ı � cos2 73ı

�
D cos�1.˙0:493/: (3)

Using the inverse cosine function on an electronic calculator provides the solutions

Common Pitfall

Square roots. When we take a square root,
it is common to overlook the possibility of
a negative solution. For example, if we de-
sire the solution for s where s2 D 9, the
solution for s is always s D ˙

p
9 D ˙3.

Depending on the physics of the problem,
both solutions for s, or perhaps only one
solution, may be meaningful. You will avoid
serious blunders if you always check to be
sure your direction angles and/or direction
cosines are reasonable.

�x D cos�1.C0:493/ D 60:4ı and �x D cos�1.�0:493/ D 119:6ı. In fact, there
are an infinite number of additional solutions, but the only two solutions in the interval
0ı � �x � 180ı are 60:4ı and 119:6ı. Inspection will usually allow us to easily
determine which of the solutions for the direction angle is correct for our physical
problem, and you should examine Fig. 1 now to see if you can make this determination.
If there is uncertainty, then an unequivocal answer can be obtained by computing the
unit vectors corresponding to the two sets of direction angles to see which of the two
vectors points in the proper direction. To show this, we calculate these unit vectors as

for �x D 60:4
ıW Ou1 D cos.60:4ı/ O{ C cos.35:0ı/ O| C cos.73:0ı/ Ok

D 0:493 O{ C 0:819 O| C 0:292 Ok; (4)

for �x D 119:6
ıW Ou2 D cos.119:6ı/ O{ C cos.35:0ı/ O| C cos.73:0ı/ Ok

D �0:493 O{ C 0:819 O| C 0:292 Ok: (5)

Notice that the only difference between Ou1 and Ou2 in Eqs. (4) and (5) is the sign of the
x component. Figure 1 clearly shows ErAB has a negative x component. So the solution
for �x and Ou1 in Eq. (4) is physically meaningless and must be discarded. Thus, the
direction angles for boom AB are

�x D 119:6
ı; �y D 35:0

ı; and �´ D 73:0
ı: (6)

Discussion & Verification As a quick partial check of solution accuracy, you should
verify that the values for �x , �y , and �´ in Eq. (6) satisfy the equation cos2 �x C

cos2 �y C cos2 �´ D 1; if this equation is not satisfied, then at least one of the angles
is not a direction angle and an error has been made.
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E X A M P L E 2.10 Position Vectors and Force Vectors

Figure 1

Cable AB supports a tensile force of magnitude P D 2 kN, and cable CD supports a
tensile force of magnitude F D 1 kN. Write expressions for the forces EW , EF , and EP
applied to the cantilever I beam.

S O L U T I O N

Road Map The directions of the forces applied to the I beam by the weight and two
cables are shown in Fig. 2. Because the y axis is vertical and weight due to gravity
always acts in the downward vertical direction, writing an expression for the weight EW
will be straightforward. For the cables at points A and C , first we will write position
vectors that describe the orientation of each cable, and from these we will construct
expressions for the forces each cable applies to the I beam.

Governing Equations & Computation The weight is a force with 3 kN magnitude
that acts in the downward vertical direction, which is the �y direction in this example.
Thus,

Figure 2
Directions of forces applied by the weight and
cables to the I beam.

Helpful Information

Comments on Newton’s third law. In
our solution, EP is the force vector that
cable AB applies to the I beam. This cable
also applies force to the support at B ,
and Newton’s third law tells us this force
vector is � EP , as illustrated below. Similar
comments apply to EF .

y

x

z

A

C

Figure 3

EW D �3 O| kN: (1)

The 2 kN tensile force cable AB applies to the I beam is directed from point A to
point B . In other words, the force in cable AB tends to draw point A closer to point
B . This vector will be called EP , and to construct a vector expression for it, we note
that its direction is the same as that of the position vector from points A to B , ErAB .
Figure 1 shows the coordinates of these points to be A.15; 8; 7/m and B.33;�6; 4/m,
and Eq. (2.28) can be applied to write

ErAB D Œ.33 � 15/ O{ C .�6 � 8/ O| C .4 � 7/
Ok�m

D .18 O{ � 14 O| � 3 Ok/m: (2)

An alternative way to construct ErAB is to imagine being positioned at point A, the tail
of the vector, and then ask what distances in the x, y, and ´ directions must be traversed
to arrive at point B , the head of the vector; Eq. (2) is again obtained. Finally, we use
ErAB to write the vector expression for EP as

EP D .2 kN/
ErAB
jErAB j

D .2 kN/
.18 O{ � 14 O| � 3 Ok/m

23m

D .1:57 O{ � 1:22 O| � 0:261 Ok/ kN; (3)

where the magnitude of ErAB is jErAB j D
p
.18/2 C .�14/2 C .�3/2 m D 23m.

The 1 kN tensile force that cable CD applies to the I beam is directed from point
C to D. In other words, the force in cable CD tends to draw point C closer to point
D. This vector will be called EF , and Fig. 2 shows it has orientation that is the same as
a vector consisting of 2 units in the positive ´ direction, plus 3 units in the negative x
direction, plus 4 units in the positive y direction. Thus, we may immediately write

EF D .1 kN/
.�3 O{ C 4 O| C 2 Ok/

p
29

D .�557 O{ C 743 O| C 371 Ok/N: (4)

Equation (4) uses the unit vector .�3 O{C4 O|C2 Ok/=
p
29 to give EF the proper direction,

and the 1 kN term gives EF the proper magnitude and units.

Discussion & Verification As a quick check, you should verify that each force vec-
tor points in the proper direction, and that the expressions for EP and EF have 2 kN and
1 kN magnitudes, respectively.
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E X A M P L E 2.11 Direction Angles and Position Vectors

Figure 1

Observers on Earth at points A and B measure direction cosines of position vectors to
the Space Shuttle C as

for ErAC W cos �x D 0:360; cos �y D 0:480; cos �´ D 0:800; (1)

for ErBC W cos �x D �0:515; cos �y D �0:606; cos �´ D 0:606: (2)

Determine the xy´ coordinates of the Space Shuttle.

S O L U T I O N

Road Map Some careful thought before putting pencil to paper will help you create a
successful strategy for this problem. The orientations of position vectors ErAC and ErBC
are known, but their magnitudes are not. Given the direction cosines cited above, if
the distance between the observers at points A and B (this will be called rAB ) were to
increase, then the magnitudes of ErAC and ErBC would clearly also increase. Thus, our
solution must incorporate the relative position of points A and B . A straightforward
way of doing this is to write the vector equation ErAC D ErAB C ErBC .

Governing Equations & Computation The addition ErAC D ErAB C ErBC is shown
in Fig. 2. Note that this vector equation contains three scalar equations; that is, equality
must be achieved independently for each of the x, y and ´ components, and hopefully
this will provide enough equations so the unknown coordinates of point C may be
determined.

Figure 2
Vector addition that provides the position of C .

Using the specified direction cosines, and letting rAC and rBC denote the magni-
tudes of vectors ErAC and ErBC , respectively, we find the vector expressions for ErAC and
ErBC are

ErAC D rAC .0:360 O{ C 0:480 O| C 0:800
Ok/; (3)

ErBC D rBC .�0:515 O{ � 0:606 O| C 0:606
Ok/: (4)

The coordinates of points A and B are given in Fig. 1, so we may write

ErAB D .520 O{ C 640 O|/ km: (5)

Then

ErAC D ErAB C ErBC ;

rAC .0:360 O{ C 0:480 O| C 0:800
Ok/ D

.520 O{ C 640 O|/ kmC rBC .�0:515 O{ � 0:606 O| C 0:606 Ok/: (6)

As described earlier, Eq. (6) contains three scalar equations as follows:

rAC .0:360/ D 520 kmC rBC .�0:515/; (7)

rAC .0:480/ D 640 kmC rBC .�0:606/; (8)

rAC .0:800/ D rBC .0:606/: (9)

Solving Eq. (9) for rAC provides rAC D rBC .0:606=0:800/, and substituting this into
Eq. (7) [alternatively, Eq. (8) could be used] and rearranging provides the solution for
rBC as

rBC D
520 km

.0:606=0:800/.0:360/C 0:515
D 660 km: (10)
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Then, using Eq. (9) [alternatively, Eq. (7) or (8) could be used] provides the solution
for rAC as

rAC D rBC .0:606=0:800/ D 500 km: (11)

To determine the coordinates of the spacecraft at point C , we use Eq. (2.28) to
write an expression for ErAC (alternatively, an expression for ErBC could be used)

ErAC D xC O{ C yC O| C ´C
Ok: (12)

Equating our two expressions for ErAC , Eq. (3) with rAC D 500 km and Eq. (11),
provides

500 km .0:360 O{ C 0:480 O| C 0:800 Ok/ D xC O{ C yC O| C ´C
Ok: (13)

Equating x, y, and ´ terms provides the solution for the coordinates of point C as

xC D .500 km/.0:360/ D 180 km;

yC D .500 km/.0:480/ D 240 km;

´C D .500 km/.0:800/ D 400 km:

(14)

(15)

(16)

Discussion & Verification In view of the direction cosines given in Eqs. (1) and
(2), and the coordinates of points A and B given in Fig. 2, the coordinates found in
Eqs. (14)–(16) are reasonable. Furthermore, ´C is the altitude of the Space Shuttle
(neglecting the effects of the Earth’s curvature, which are minor for the dimensions of
this problem), and the result ´C D 400 km is also reasonable for real life missions that
space shuttles fly.

A Closer Look You might wonder why this example has more equations than
unknowns. That is, there are three equations available, Eqs. (7)–(9), but they contain
only two unknowns, rAC and rBC . Normally, such a situation indicates an overde-
termined problem, where more information is available than is needed to determine
the unknowns. Generally, overdetermined problems do not have a single, unique an-
swer for each unknown. Such situations will rarely arise in statics, except when we are
working with direction angles (recall that, as discussed on p. 61, of the three direction
angles for a vector, only two are independent).

In this example, Eqs. (7)–(9) are not overdetermined. Rather, only two of Eqs. (7)–
(9) are independent. To see this, if Eqs. (7) and (8) are multiplied by �640 and 520,
respectively, and added, the result is an equation that has exactly the same proportions
as Eq. (9). In mathematical nomenclature, we say that only two of the three equations
are linearly independent.

The message of this short discussion is that you should not be surprised or alarmed
when subtleties such as those pointed out here arise when working with direction angles
and direction cosines.
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E X A M P L E 2.12 Force Vectors and Vector Addition

Figure 1

Forces EF , EP , and EQ are given using a variety of different forms of orientation informa-
tion that are commonly encountered.

(a) Write a vector expression for each force.

(b) Determine the resultant of the three forces.

(c) Determine the direction angles for the resultant.

S O L U T I O N

Road Map The strategy to be used to write a vector expression depends on the details
of the geometry information provided. Once expressions for the three force vectors are
obtained, we will add these to obtain the resultant force vector. Once the resultant
force vector is known, it will be straightforward to determine the direction angles for
the resultant.

Part (a)

Governing Equations & Computation

Force EF : We carefully examine Fig. 1 to see if the angles reported for EF are direction
angles. Indeed, the two 60ı angles are measured from the positive x and ´ directions
to the direction of EF , so both of these are direction angles and thus �x D 60ı and
�´ D 60ı. The remaining 45ı angle is measured from the negative y direction to
the vector, so it is not a direction angle. However, the appropriate direction angle, as
measured from the positive y direction, is easily found as �y D 180ı � 45ı D 135ı.

As a partial check, we evaluate Eq. (2.26) to find cos2 60ıCcos2 135ıCcos2 60ı D 1,
and thus, these angles are indeed direction angles. Note, however, that if we incorrectly
took �y to be 45ı, Eq. (2.26) would still have been satisfied, but the resulting vector
EF would have a positive y component, rather than the correct value which is negative.

Given the direction angles, a vector expression for EF may be written as

EF D .100N/ .cos 60ı O{ C cos 135ı O| C cos 60ı Ok/

D .50:00 O{ � 70:71 O| C 50:00 Ok/N: (1)

Force EP : For this force, we observe the 30ı angle shown in Fig. 1 is not a direction
angle; while it is measured from the positive y direction, it is not measured to the
vector’s direction. When geometry is given in this fashion, we use a two-step process to
determine the vector’s components. We first use the 8-15 rise-run geometry to compute
the components P´ and Pa shown in Fig. 2(a):

Figure 2
(a) Resolution of force P into ´ and a direction
components. (b) Resolution of the a component
into x and y components.

P´ D �.200N/
8

17
D �94:12N and Pa D .200N/

15

17
D 176:5N: (2)

The negative sign is included in the expression for P´ because this force component
acts in the negative ´ direction. For the second step of this procedure, we use the 30ı

angle to resolve Pa into x and y components, as shown in Fig. 2(b). Thus

Px D Pa sin 30ı D 88:24N and Py D Pa cos 30ı D 152:8N: (3)

Collecting results for Px , Py , and P´ allows us to write

EP D .88:24 O{ C 152:8 O| � 94:12 Ok/N: (4)

As a partial check on our work, we compute the magnitude of the above expression
to find P D

p
.88:24N/2 C .152:8N/2 C .�94:12N/2 D 200:0N, which is the ex-

pected result.
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Force EQ: For this force, we observe the 30ı and 45ı angles are not direction angles;
the 45ı angle is not measured to the vector’s direction, and the 30ı angle is not mea-
sured from a coordinate direction. As with force EP , we again use a two-step process
to obtain the vector’s components. As shown in Fig. 3(a), we first use the 30ı angle to
resolve EQ into ´ and b direction components

Figure 3
(a) Resolution of forceQ into ´ and b direction
components. (b) Resolution of the b component
into x and y components.

Q´ D �.300N/ sin 30ı D �150:0N and (5)

Qb D .300N/ cos 30ı D 259:8N: (6)

The negative sign is included in the expressions forQ´ because this component acts in
the negative ´ direction. We could similarly include a negative sign for Qb because it
acts in the negative b direction, but subsequent resolution of Qb will take into account
the appropriate directions in a straightforward manner. As shown in Fig. 3(b), we next
use the 45ı angle to resolve Qb into the x and y components

Qx D Qb sin 45ı D 183:7N and Qy D �Qb cos 45ı D �183:7N: (7)

Collecting results for Qx , Qy , and Q´ allows us to write

EQ D .183:7 O{ � 183:7 O| � 150:0 Ok/N: (8)

As a partial check of correctness, you should evaluate the magnitude of the above
expression to verify it is 300 N.

Part (b)

Governing Equations & Computation The resultant of the three forces is

ER D EF C EP C EQ D.50:00 O{ � 70:71 O| C 50:00 Ok/N

C .88:24 O{ C 152:8 O| � 94:12 Ok/N

C .183:7 O{ � 183:7 O| � 150:0 Ok/N

D .321:9 O{ � 101:6 O| � 194:1 Ok/N; (9)

and the magnitude of the resultant is

j ERj D

q
.321:9N/2 C .�101:6N/2 C .�194:1N/2 D 389:4N: (10)

Part (c)

Governing Equations & Computation Once ER is known, obtaining its direction
angles is straightforward. Applying the equations cos �x D Rx=j ERj, cos �y D Ry=j ERj,

and cos �´ D R´=j ERj gives

cos �x D 321:9N=389:4N ) �x D cos�1.321:9=389:4/ D 34:2ı; (11)

cos �y D �101:6N=389:4N ) �y D cos�1.�101:6=389:4/ D 105:1ı; (12)

cos �´ D �194:1N=389:4N ) �´ D cos�1.�194:1=389:4/ D 119:9ı: (13)

Discussion & Verification As simple checks of accuracy, you should verify that EF ,
EP , and EQ each point in the proper direction and have the correct magnitude. Depending

on the number of forces being added and their relative sizes and magnitudes, it may
also be possible to verify that some (or all) of the components of ER have reasonable
direction and size.
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E X A M P L E 2.13 Position Vectors and Force Vectors

Figure 1

The collar C slides on a straight bar AB and is supported by a cable attached to point
D.

(a) Determine the coordinates of point C .

(b) If the tensile force in the cable is known to be 150N, write vector expressions
using Cartesian representations for the force the cable exerts on point C and for
the force the cable exerts on point D.

S O L U T I O N

Road Map To determine the coordinates of point C , our strategy will be to write
the position vector from points A to B , and then using this, we will write the position
vector from A to C . Then the coordinates of point C may be determined. With the
coordinates of points C and D known, we will write the position vector ErCD , and
from this the desired force vectors EFCD and EFDC can be written.

Part (a)

Governing Equations & Computation To construct the position vector from A to
B , we imagine being positioned at point A and asking what distances in the x, y, and
´ directions must be traversed to arrive at point B . Referring to Fig. 1, we find these
distances to be 120mm, 300mm � 60mm D 240mm, and �240mm, respectively.
Thus, the position vector and its magnitude are

ErAB D .120 O{ C 240 O| � 240
Ok/mm; (1)

jErAB j D

q
.120/2 C .240/2 C .�240/2 mm D 360mm: (2)

Alternatively, we could tabulate the coordinates of points B and A and apply Eq. (2.28)
with B and A being the head and tail of the position vector, respectively, to arrive at
the same result.

Noting that position vectors ErAC and ErAB have the same direction, we may now
write

ErAC D .240mm/
ErAB
jErAB j

D .240mm/
120 O{ C 240 O| � 160 Ok

360

D .80 O{ C 160 O| � 160 Ok/mm: (3)

Since ErAC is known, we may use its components to evaluate the difference between
the coordinates of the head and tail of ErAC , where C is the head and A is the tail. The
coordinates of point C are .xC ; yC ; ´C /, and from Fig. 1 the coordinates of point A
are .0; 60; 240/mm, so we may write

ErAC D .80 O{ C 160 O| � 160
Ok/mm

D .xC � 0mm/ O{ C .yC � 60mm/ O| C .´C � 240mm/ Ok: (4)

Equality must be achieved independently for each of the x, y, and ´ components; thus
our solutions are

xC D 80mm; (5)

yC D 160mmC 60mm D 220mm; (6)

´C D �160mmC 240mm D 80mm: (7)
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Part (b)

Governing Equations & Computation Cable CD exerts a force EFCD of magnitude
150 N on point C , in the direction from C toD, as shown in Fig. 2. Using D and C as
the head and tail, respectively, of a position vector where the coordinates of these are
D.120; 0; 280/mm and C.80; 220; 80/mm, we write

ErCD D Œ.120 � 80/ O{ C .0 � 220/ O| C .280 � 80/
Ok�mm;

D .40 O{ � 220 O| C 200 Ok/mm (8)

jErCD j D

q
.40/2 C .�220/2 C .200/2 mm D 300mm: (9)

The cable force exerted on C is

x

y

z

A

C
O

Figure 2
The force applied by the cable to the collar C
is EFCD , and the force applied by the cable to
the support at D is EFDC . Newton’s third law
requires EFDC D � EFCD .

EFCD D .150N/
ErCD
jErCD j

D .150N/
40 O{ � 220 O| C 200 Ok

300

D .20 O{ � 110 O| C 100 Ok/N: (10)

The force that cable CD exerts on the support at D is EFDC and, according to
Newton’s third law, it is of equal magnitude and opposite direction to the force the
cable exerts on C . Thus, EFDC D � EFCD and we obtain

EFDC D .�20 O{ C 110 O| � 100
Ok/N: (11)

Discussion & Verification As quick, partial checks of solution accuracy, you should
verify that ErAC and EFCD point in proper directions and have correct magnitudes.
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P R O B L E M S

Problem 2.45

A position vector Er has direction angles �x D 36ı and �y D 72ı. Determine the
possible values for direction angle �´, and describe the differences in the orientation
of Er . Provide a sketch showing these different vectors.

Problems 2.46 through 2.49

Write an expression for each force using Cartesian representation, and evaluate the
resultant force vector. Sketch the resultant force in the xy´ coordinate system.

Figure P2.46 Figure P2.47

Figure P2.48 Figure P2.49

Problems 2.50 and 2.51

For each vector, find the direction angles and write an expression for the vector using
Cartesian representation. Evaluate the sum of the two vectors, and report the direction
angles for the resultant. Also, sketch the resultant in the xy´ coordinate system.

Figure P2.50 Figure P2.51



Section 2.3 Cartesian Representation of Vectors in Three Dimensions 73

Problem 2.52

The Space Shuttle uses radar to determine the magnitudes and direction cosines of
position vectors to satellites A and B as

for ErOAW jErOAj D 2 km; cos �x D 0:768; cos �y D �0:384; cos �´ D 0:512

for ErOBW jErOB j D 4 km; cos �x D 0:743; cos �y D 0:557; cos �´ D �0:371:

Determine the distance between the satellites.

Figure P2.52
Problem 2.53

A cube of material with 1mm edge lengths is examined by a scanning electron mi-
croscope, and a small inclusion (i.e., a cavity) is found at point P . It is determined
that the direction cosines for a vector from points A to P are cos �x D �0:485, and
cos �y D 0:485, and cos �´ D �0:728; and the direction cosines for a vector from
points B to P are cos �x D �0:667, cos �y D �0:667, and cos �´ D 0:333. Deter-
mine the coordinates of point P .

Figure P2.53

Problem 2.54

A theodolite is an instrument that measures horizontal and vertical angular orientations
of a line of sight. The line of sight may be established optically, or by laser, and many
forms of theodolite are used in surveying, construction, astronomy, and manufacturing.
A simple optical theodolite is shown. After the instrument is aligned so that its base
is in a horizontal plane and a desired reference direction is selected (such as perhaps
north in the case of a surveying instrument), the telescopic sight is used to establish a
line of sight, and then horizontal and vertical angles �h and �v are measured.

(a) If �h and �v are known, derive an expression that gives the direction angles �x , �y ,
and �´ for the line of sight.

(b) If �h D 30ı and �v D 60ı, use your answer to Part (a) to determine �x , �y , and
�´.

Figure P2.54
Problem 2.55

Using a theodolite with a laser range finder, a researcher at pointA locates a pair of rare
birds nesting at point B and determines the direction angles �x D 53

ı, �y D 81
ı, and

�´ D 38
ı and distance 224 m for a position vector from point A to B . For subsequent

observations, the researcher would like to use position C , and thus while at point A,
she also measures the direction angles �x D 135ı, �y D 47ı, and �´ D 79ı and
distance 507 m for a position vector from point A to C . For observation from point C ,
determine the direction angles and distance to the nest at B .

Figure P2.55
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Problem 2.56

If the direction cosines for a satellite antenna are to be cos �x D 0:286, cos �y D 0:429,
and cos �´ D 0:857, determine values of angles �h and �v .

Figure P2.56

Problem 2.57

With direction angles, general practice is to use values of �x , �y , and �´ between 0ı and
180ı, and this is sufficient to characterize the orientation of any vector. When direction
angles are measured in this way, the sum of any two direction angles is always 90ı or
greater. Offer an argument that shows this statement is true.

Problems 2.58 and 2.59

Bars AC and DG are straight and parallel to the x and y axes, respectively. BE is a
cable whose tensile force is 100 lb. For the dimensions given, determine expressions
for the force the cable exerts on B and the force the cable exerts on E using Cartesian
vector representation.

Problem 2.58 x D 4 in: and y D 7 in.

Problem 2.59 x D 6 in: and y D 12 in.

Figure P2.58 and P2.59

Problems 2.60 and 2.61

The structure consists of a quarter-circular rod AB with radius 150 mm that is fixed in
the xy plane. CD is a straight rod where D may be positioned at different locations
on the circular rod. GE is an elastic cord whose support at G lies in the y´ plane, and
the bead at E may have different positions d . For the values of b, h, d , and ´ provided,
determine the coordinates ofE, and if the elastic cord supports a tensile force of 100 N,
write a vector expression using Cartesian vector representation for the force EFEG the
cord exerts on bead E.

Problem 2.60 b D 4, h D 3, d D 260mm; and ´ D 240mm.

Problem 2.61 b D 3, h D 4, d D 195mm; and ´ D 270mm.Figure P2.60 and P2.61
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Problem 2.62

The rear wheel of a multispeed bicycle is shown. The wheel has 32 spokes, with one-
half being on either side (spokes on sides A and B are shown in the figure in black
and red, respectively). For the tire to be properly centered on the frame of the bicycle,
pointsA andB of the hub must be positioned at the same distance d from the centerline
of the tire. To make room for the sprocket cluster, bicycle manufacturers give spokes
on side B of the wheel different orientation than spokes on side A. For the following
questions, assume the tire is in the process of being manufactured, so that all spokes
on side A have the same force FA and all spokes on side B have the same force FB .

(a) Determine the ratio of spoke forces FB=FA so that the resultant force in the x
direction applied to the hub by all 32 spokes is zero. Hint: Although each spoke
has different orientation, all spokes on side A have the same length, and similarly
all spokes on side B have the same length. Furthermore, all spokes on side A
have the same x component of force, and all spokes on side B have the same x
component of force.

(b) On which side of the wheel are the spokes most severely loaded?

(c) Briefly describe a new design in which spokes on both sides of the wheel are
equally loaded and points A and B are at the same distance d from the centerline
of the tire.

Figure P2.62
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2.4 Vector Dot Product

The dot product between two vectors may be used to (1) determine the angle
between the lines of action for the two vectors and (2) determine the compo-
nent of one vector that acts in the direction of the other. Throughout statics
and subjects that follow we must frequently find such information, and the dot
product provides a straightforward way to do this, especially for vectors in
three dimensions.

The dot product between two vectors EA and EB is an operation defined as

EA � EB D j EAjj EBj cos � (2.29)

where:

� is the angle between the lines of action of EA and EB where�

0 � � � 180ı.

Figure 2.26
(a) Vectors EA and EB in two dimensions. The in-
tersection of the lines of action of the two vec-
tors defines angle � for evaluation of the dot
product. (b) Often we imagine sliding the vec-
tors tail to tail for evaluation of the dot product.

In words, Eq. (2.29) states “ EA dot EB” equals the product of the magnitude of
EA, magnitude of EB , and cosine of angle � between the lines of action of EA and
EB . The dot product yields a result that is a scalar, and thus the dot product is

sometimes called the scalar product. The units for the dot product are equal
to the product of the units for EA and EB . Figure 2.26 illustrates the dot product
between vectors EA and EB in two dimensions. The intersection of the vectors’
lines of action defines angle � . Regardless of where the two vectors are located
in space, and regardless of whether their lines of action intersect, to perform
(or interpret) the dot product it is helpful if we imagine sliding the vectors tail
to tail, which again identifies angle � .

Figure 2.27 illustrates the dot product between vectors EA and EB in three

Figure 2.27
(a) Vectors EA and EB in three dimensions. (b)
To evaluate the dot product the vectors are ar-
ranged tail to tail to define angle � , which is
measured in the plane containing the two vec-
tors.

dimensions. Note that EA and EB do not need to lie in the same plane to compute
the dot product between them. After we arrange the vectors tail to tail, they
define a plane and the intersection of their lines of action defines angle � ,
which is measured in this plane.

Depending on the value of � , the scalar produced by the dot product may
be positive, zero, or negative. For example, 0 � � < 90ı (acute angle) gives
a dot product that is positive, � D 90ı (orthogonal or perpendicular angle)
gives a dot product that is zero, and 90ı < � � 180ı (obtuse angle) gives a
dot product that is negative.

The dot product has the following properties:

EA � EB D EB � EA commutative property, (2.30)

s. EA � EB/ D .s EA/ � EB D EA � .s EB/ associative property with
respect to multiplication
by a scalar,

(2.31)

. EAC EB/ � EC D . EA � EC/C . EB � EC/ distributive property with
respect to vector addition.

(2.32)

�The dot product, and cross product described in Section 2.5, can be defined to allow values
of � outside this range. However, the description of direction for the cross product becomes
more intricate. Thus, with little loss of generality it is common to use 0 � � � 180ı for both
definitions.
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The foregoing remarks are true regardless of the type of vector representa-
tion that is used. For example, consider the two position vectors shown in
Fig. 2.28(a). We first slide the vectors tail to tail as shown in Fig. 2.28(b) and
then identify the angle between EA and EB as 60ı. Applying Eq. (2.29) provides
the dot product between EA and EB as

Figure 2.28
Dot product between two vectors.

EA � EB D .2m/.3m/ cos 60ı D 3m2: (2.33)

Observe the result is a scalar, with units of m2. Although these are appropriate
units for area, that does not necessarily mean that this result has the interpreta-
tion of being an area. The physical significance of the result of the dot product
will be discussed in detail soon.

Dot product using Cartesian components

When vectors EA and EB have Cartesian representations, the dot product be-
tween them may be evaluated using the following convenient computation

EA � EB D AxBx C AyBy C A´B´: (2.34)

Simply stated, for two vectors with Cartesian representation, the dot product

Helpful Information

Alternatives for evaluation of the dot
product. Regardless of the representation
used to express vectors, Eq. (2.29) can
always be used to evaluate the dot product.
For vectors with Cartesian representation,
either Eq. (2.29) or Eq. (2.34) can be used,
with the latter usually being more conve-
nient. In fact, sometimes both methods are
used to help determine useful information,
such as the angle between two vectors, as
discussed later in this section in connection
with Eq. (2.39).

between them is the sum of the products of their components. Equation (2.34)
can be obtained using the following derivation. We first write EA and EB , using
Cartesian representation

EA D Ax O{ C Ay O| C A´
Ok; (2.35)

EB D Bx O{ C By O| C B´
Ok: (2.36)

We then take the dot product between EA and EB , using the distributive law of
Eq. (2.32) to expand the product term by term, as follows:

EA � EB D .Ax O{ C Ay O| C A´
Ok/ � .Bx O{ C By O| C B´

Ok/

D .Ax O{ � Bx O{/C .Ax O{ � By O|/C .Ax O{ � B´
Ok/

C .Ay O| � Bx O{/C .Ay O| � By O|/C .Ay O| � B´
Ok/

C .A´
Ok � Bx O{/C .A´

Ok � By O|/C .A´
Ok � B´

Ok/: (2.37)

To proceed further we must address dot products between combinations of
unit vectors. Equation (2.29) shows O{ � O{ D .1/.1/ cos 0ı D 1, and similarly
O| � O| D 1 and Ok � Ok D 1. Further, the dot product between combinations
of different unit vectors is always zero because the vectors are orthogonal.
For example, O{ � O| D .1/.1/ cos 90ı D 0. In summary, dot products between
combinations of unit vectors are

O{ � O{ D 1 O{ � O| D 0 O{ � Ok D 0

O| � O{ D 0 O| � O| D 1 O| � Ok D 0

Ok � O{ D 0 Ok � O| D 0 Ok � Ok D 1:

(2.38)

Substituting Eqs. (2.38) into Eq. (2.37) then provides Eq. (2.34).
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Determination of the angle between two vectors

Given two vectors EA and EB with Cartesian representation, we use the dot prod-
uct given by Eq. (2.34) to provide the left-hand side of Eq. (2.29), from which
the angle � between the two vectors is then solved for. This provides

cos � D
EA � EB

j EAjj EBj
D
AxBx C AyBy C A´B´

j EAjj EBj
and

� D cos�1
EA � EB

j EAjj EBj
D cos�1

AxBx C AyBy C A´B´

j EAjj EBj
:

(2.39)

Determination of the component of a vector
in a particular direction

Concept Alert

Dot product. In statics, the most important
and frequent use of the dot product is for
determining the component, or amount, of
a vector that acts in a particular direction. It
is essential that the direction of interest be
described by a unit vector [i.e., in Eq. (2.40),
the dot product of EF must be taken with a
unit vector].

Often, we must determine the component of a vector EA that acts in the direc-
tion of another vector. In other words, we must determine how much, or what
portion, of EA acts in a particular direction. If that direction happens to be the
same as the positive x, y, or ´ direction, then the answer is easy: the portion
of EA in the direction we are interested in is simply the x, y, or ´ component
of EA, respectively. However, we are often not so fortunate and the direction
in which we must find the component of a vector has complicated orientation,
and this leads to perhaps the most useful application of the dot product.

A common situation is the determination of the component, or the amount,
of a force vector that acts in a particular direction. Thus, consider a force
vector EF and a direction Er . The parallel component of EF , or in other words,
the amount of EF that acts in direction Er , is denoted by Fk, where the subscript
k means “parallel to Er ,” and is given by�

Fk D EF �
Er

jEr j
: (2.40)

In the above expression, EF has the usual physical significance: it is a force and
has appropriate force units, such as lb or N. The physical significance of Er is
not important, other than it defines a direction of interest. Often Er will be a
position vector, but it could have other physical meaning. Notice in Eq. (2.40)
that regardless of the physical significance of Er , it is converted into a dimen-
sionless unit vector. Thus, the only purpose it serves is to specify direction. Fk
is a scalar and may be positive, zero, or negative: a positive value indicates Fk
is in the same direction as Er , a zero value indicates EF is orthogonal (or per-
pendicular) to Er , and a negative value indicates Fk is in the opposite direction
to Er . Although most of our applications of Eq. (2.40) will be for finding the
component of a force in a particular direction, the idea is directly applicable
to vectors with other physical interpretation.

To show why Eq. (2.40) accomplishes the task of finding how much of
a vector acts in a particular direction, we use the following argument, the

�Rather than use subscript k to denote “parallel to Er ,” we will occasionally use subscript t , where
this letter means “tangent to Er .” Similarly, rather than using the subscript ? to denote “perpen-
dicular to Er” (discussed later in this section), we will occasionally use subscript n, where this
letter means “normal to Er .”
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beginning of which has nothing to do with the dot product. Consider the two-
dimensional example shown in Fig. 2.29(a), where we wish to determine the
component of EF that acts in the direction Er . We arrange EF and Er tail to tail
which leads to Fig. 2.29(b). Given angle � between the two vectors, basic
trigonometry gives us the component of EF in the direction of Er as

Figure 2.29
Use of basic trigonometry to determine the com-
ponent of EF acting in the direction of Er .

Fk D j EF j cos �: (2.41)

Now consider the scalar s produced by taking the dot product between EF and
Er according to Eq. (2.29)

s D EF � Er D j EF jjEr j cos �: (2.42)

For s in Eq. (2.42) to be the same as Fk in Eq. (2.41), and hence for the dot

product to be capable of telling us the portion of EF that acts in the direction Er ,
it is necessary that Er be a unit vector so that jEr j D 1 in Eq. (2.42). To elaborate
further, if a unit vector is not used in Eq. (2.40), the value s produced by the
dot product has inappropriate units and uncertain physical interpretation. To
summarize, if we want the dot product to tell us how much of a vector acts in
a particular direction, then the direction must be described by a unit vector.

Common Pitfall

Not using a unit vector. When we use the
dot product to determine the component, or
amount, of a vector that acts in a particular
direction, the most common error is to not
use a unit vector. For example, in Eq. (2.40),
an incorrect result is produced if EF � Er is
evaluated.

Helpful Information

Line of action for a force vector. When
we analyze equilibrium of objects, the
position of the line of action for each force
vector is important. While we may think of
repositioning the lines of action of vectors
for purposes of evaluating the dot product,
equilibrium of objects depends on the
actual line of action that each force has.

Determination of the component of a vector perpendicular
to a direction

Once we have determined the component of a vector parallel to a particular
direction Er , it is straightforward to then determine the component of the vector
that is perpendicular, or orthogonal, to Er , and we call this the perpendicular
component of the vector. Consider the resolution of EF into the parallel and
perpendicular components shown in Fig. 2.30(a) and (b). The Pythagorean
theorem may be used to write

Figure 2.30. (a) Vectors EF and Er in three dimensions. (b) Resolution of EF into scalar
components in directions parallel and perpendicular to Er . (c) Resolution of EF into vec-
tor components in directions parallel and perpendicular to Er .

F 2 D F 2k C F
2
?: (2.43)

Once Fk is known from Eq. (2.40), the perpendicular component may be ob-
tained from the above equation as

F? D
q
F 2 � F 2

k
: (2.44)
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Thus, the magnitude of the perpendicular component is easily determined,
but its direction is not yet known. For many problems, however, this direc-
tion might not be needed. If the direction for the perpendicular component is
needed, then consider the resolution of EF into the parallel and perpendicular
vector components shown in Fig. 2.30(c). Vector addition provides

EF D EFk C EF?: (2.45)

If Fk is known, then EFk D Fk .Er=jEr j/, and Eq. (2.45) may be rearranged to
obtain

EF? D EF � EFk: (2.46)

Important equations for using the dot product to resolve a vector EF into
components parallel and perpendicular to a direction Er are collected in the
following summary box:

Summary Box (See Fig. 2.30.)

Fk D component of EF acting in direction Er;

EFk D vector component of EF acting in direction Er;

F? D component of EF acting perpendicular to Er;

EF? D vector component of EF acting perpendicular to Er;

Fk D EF �
Er

jEr j
; EFk D Fk

Er

jEr j
;

F? D
q
F 2 � F 2

k
; EF? D EF � EFk:

(2.47)

End of Sect ion Summary

In this section, the dot product between two vectors has been defined. Some
of the key points are as follows:

� The dot product between two vectors EA and EB is a scalar s. The units of
s are the product of the units of EA and EB , and s may be positive, zero,
or negative.

� The dot product can be used to find the angle between the lines of action
of two vectors.

� The dot product can be used to determine the component (or amount) of
one vector that acts in the direction of another vector Er . This component
is often called the parallel component. In addition, the component of a
vector perpendicular to the direction Er , which we call the perpendicular
component, can be determined.
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E X A M P L E 2.14 Angle Between Two Vectors

Figure 1

Bar AB supports two cables at its end. The position vector from A to B is ErAB , the
position vector from B to some point along the length of cable 1 is Er1, and the position
vector from B to some point along the length of cable 2 is Er2. Determine the angles
between bar AB and the cables.

S O L U T I O N

Road Map We will use the dot product, as given by Eq. (2.39), to evaluate the angles
between the bar and cables.

Governing Equations & Computation Evaluating the magnitudes of the vectors
shown in Fig. 1 provides rAB D 11m, r1 D 7m; and r2 D 13m. The desired angles
are then obtained from Eq. (2.39) as

�1 D cos�1
ErAB � Er1
jErAB j jEr1j

D cos�1
.6m/.6m/C .9m/.3m/C .�2m/.2m/

.11m/.7m/

D cos�1
59

77
D 40ı; (1)

�2 D cos�1
ErAB � Er2
jErAB j jEr2j

D cos�1
.6m/.�4m/C .9m/.�12m/C .�2m/.3m/

.11m/.13m/

D cos�1
�138

143
D 164:8ı: (2)

Discussion & Verification

� As shown in Fig. 2, and as expected, �1 is an acute angle and �2 is an obtuse
angle.

� This problem asks for the angles between the cables and the direction from A

to B , and these angles are given in Eqs. (1) and (2). The angles between the
cables and the direction from B to A are different than these; and to see how
they differ, and how they can be evaluated, we consider the angle between the
direction from B to A and cable 2, using one of the following approaches:

– Use the value of �2 found in Eq. (2) to write 180ı � 164:8ı D 15:2ı.

– Write an expression for ErBA and evaluate ErBA � Er2 when solving for the
angle.

– Because ErBA D �ErAB , we could evaluate �ErAB � Er2 when solving for the
angle.

You may wish to verify one of the last two computations for yourself.

Figure 2
The angle �1 between ErAB and cable 1 (Er1) is
expected to be acute, and the angle �2 between
ErAB and cable 2 (Er2) is expected to be obtuse.
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E X A M P L E 2.15 Angle Between Two Vectors

Figure 1

A sheet metal channel is to be fabricated as follows. Part 1, after being cut to the
dimensions shown in Fig. 1(b), is bent to a 90ı angle along the fold line. Then part 2
is welded to the end of part 1. Determine the dimensions a, b, and � of part 2 so that it
fits the end of the channel.

S O L U T I O N

Road Map Using basic trigonometry, determination of edge lengths a and b for part 2
will be straightforward. The angle � will be determined using the dot product once the
position vectors for the two edges of part 1 (after folding) have been obtained.

Governing Equations & Computation Edge lengths a and b for part 2 can be de-
termined using the geometry shown in Fig. 2(a):

a sin 70ı D 2 in. ) a D 2 in.= sin 70ı D 2:128 in. (1)

b sin 50ı D 3 in. ) b D 3 in.= sin 50ı D 3:916 in. (2)

Determination of � is more challenging. To aid our discussion, points A, B , and C
on the end of the channel are labeled in Fig. 2(b). If we can determine vectors in the
direction A to B , and A to C , then the dot product between these vectors will provide
the angle � needed for part 2. We may construct a position vector for edge AB as
follows: beginning at point A, taking a step of cos 70ı in the negative x direction,
followed by a step of sin 70ı in the positive y direction, gives a point that lies on the
line connecting points A and B . Calling this vector OuAB , we write

Figure 2
Part 1 of the sheet metal channel shown before
bending in (a) with edge lengths a and b de-
fined, and after bending in (b).

OuAB D � cos 70ı O{ C sin 70ı O| : (3)

Similarly, beginning at point A, a step of cos 50ı in the negative x direction, followed
by a step of sin 50ı in the positive ´ direction, gives a point that lies on the line con-
necting points A and C . Calling this vector OuAC , we write

OuAC D � cos 50ı O{ C sin 50ı Ok: (4)

Note that OuAB and OuAC are unit vectors. Instead of these unit vectors, you could use
the position vectors from point A to B , ErAB D .2:128 in:/ OuAB , and from point A to
C , ErAC D .3:916 in:/ OuAC . Finally, we determine the angle � needed for part 2 using
Eq. (2.39)

� D cos�1
OuAB � OuAC
j OuAB jj OuAC j

D cos�1
.� cos 70ı/.� cos 50ı/C .sin 70ı/.0/C .0/.sin 50ı/

.1/.1/

D cos�1 0:220 D 77:3ı: (5)

Discussion & Verification The values for a, b, and � in Eqs. (1), (2), and (5) ap-
pear to be reasonable. That is, we expect a to be somewhat larger than 2 in:, b to be
somewhat larger than 3 in:, and � to be somewhat smaller than 90ı.
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E X A M P L E 2.16 Component of a Force in a Particular Direction

Figure 1

A tractor is stuck in mud, and to free it, a cable applying a force with magnitude F
and direction Er1 is attached to the front of the tractor as shown. The operator estimates
that a 400 lb force applied in the direction of the tractor’s chassis, which is Er2, will
be sufficient to free it. Determine the cable force F that should be applied and the
component of this force perpendicular to the direction of the tractor’s chassis. Note:
This problem is similar to Example 2.4 except here the force and position vectors are
not in a horizontal plane.

S O L U T I O N

Road Map The direction of the cable force is known, but its magnitude is unknown.
Thus, EF D F.Er1=jEr1j/ where F is to be determined. We will use the dot product to
determine the component of the cable force that acts in the direction of the tractor, and
according to the problem statement, this must equal 400 lb.

Governing Equations & Computation The dot product between the cable force EF
and a unit vector in the direction of the tractor’s chassis must equal 400 lb:

Fk D EF �
Er2
jEr2j
D F

Er1
jEr1j
�
Er2
jEr2j

400 lb D F
.200 O{ C 600 O| C 150 Ok/ ft

650 ft
�
.�2 O{ C 4 O| � Ok/ ft

p
21 ft

D F
1850

650
p
21

D F.0:6211/: (1)

Solving the above equation provides the cable force

F D 644:0 lb: (2)

Determination of only the magnitude of the perpendicular component of force is
straightforward using the Pythagorean theorem, Eq. (2.44):

F? D
q
F 2 � F 2

k
D

q
.644:0 lb/2 � .400 lb/2 D 504:8 lb: (3)

If the direction of the perpendicular component is also desired, then we may use vector
addition to obtain it, as expressed by Eq. (2.46):

EF? D EF � EFk D F
Er1
jEr1j
� Fk

Er2
jEr2j

D .644 lb/
.200 O{ C 600 O| C 150 Ok/ ft

650 ft
� .400 lb/

.�2 O{ C 4 O| � Ok/ ft
p
21 ft

D .373 O{ C 245 O| C 236 Ok/ lb: (4)

Discussion & Verification As a partial check of our solution, the magnitude of
Eq. (4) is j EF?j D

p
.373/2 C .245/2 C .236/2 lb D 505 lb, which agrees with the

value found in Eq. (3).
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E X A M P L E 2.17 Component of a Force in a Particular Direction

Figure 1

Rod AB is straight and has a bead at C . An elastic cord having a 3 lb tensile force is
attached between the bead and a support at D.

(a) Determine the components of the cord force in directions parallel and perpendicu-
lar to rod AB .

(b) Determine the vector components of the cord force in directions parallel and per-
pendicular to rod AB .

(c) If the bead at C is free to slide on rod AB and is released from rest, will the cord
force tend to make the bead slide toward A or B?

S O L U T I O N

Road Map After writing expressions for position and force vectors, we will use the
dot product to determine the component of the cord force that acts in the direction of
the rod. It will then be straightforward to use the Pythagorean theorem to determine the
component of the cord force perpendicular to the rod. Both of these results are scalars.
In Part (b), we will write vector expressions for the forces parallel and perpendicular to
the rod. Consideration of the sign of the parallel component of the force, as provided
by the dot product, will determine the direction along the bar in which the bead will
tend to slide.

Part (a)

Governing Equations & Computation By imagining being positioned at A, the
distances to be traversed in the x, y, and ´ directions to arrive at B may be determined
by inspection of Fig. 1, allowing us to write the position vector from A to B , and its
magnitude, as

ErAB D .�12 O{ � 4 O| C 18
Ok/ in.; (1)

jErAB j D

q
.�12/2 C .�4/2 C .18/2 in. D 22 in: (2)

The position vector from A to C has 11 in: magnitude and has the same direction as
ErAB , thus

ErAC D .11 in:/
ErAB
jErAB j

D .11 in:/
�12 O{ � 4 O| C 18 Ok

22

D .�6 O{ � 2 O| C 9 Ok/ in: (3)

To write a vector expression for the cord force from C to D, we will first obtain a
position vector from C to D, ErCD . This can be easily accomplished by computing the
coordinates of C and then taking the difference between the coordinates of D and C
as the head and tail, respectively, of ErCD . Alternatively, we will evaluate ErCD using
the vector addition

ErCD D ErCA C ErAD D �ErAC C ErAD

D �.�6 O{ � 2 O| C 9 Ok/ in.C .�12 O{/ in.

D .�6 O{ C 2 O| � 9 Ok/ in.; (4)

jErCD j D

q
.�6/2 C .2/2 C .�9/2 in. D 11 in: (5)

Thus, the cord force, which is shown in Fig. 2, is

Figure 2
The force supported by the cord has component
FCD in the direction shown. The component of
the cord force in the direction from A to B is
denoted by Fk, and the component of the cord
force perpendicular to the direction from A to
B is denoted by F?.

EFCD D .3 lb/
ErCD
jErCD j

D .3 lb/
�6 O{ C 2 O| � 9 Ok

11
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D .�1:636 O{ C 0:545 O| � 2:455 Ok/ lb (6)

We denote the component of the cord force EFCD in direction A to B as Fk, and this is

given by the dot product of EFCD with a unit vector in direction A to B as follows:

Fk D EFCD �
ErAB
jErAB j

D .3 lb/
�6 O{ C 2 O| � 9 Ok

11
�
�12 O{ � 4 O| C 18 Ok

22
D �1:215 lb: (7)

Note that instead of ErAB=jErAB j in Eq. (7), we could have used ErAC =jErAC j. To deter-
mine the magnitude of the perpendicular component of the cord force, the Pythagorean
theorem, Eq. (2.44), may be applied to write

F? D
q
F 2
CD
� F 2
k
D

q
.3 lb/2 � .�1:215 lb/2 D 2:743 lb: (8)

Part (b)

Governing Equations & Computation Once the value of the parallel component of
the force Fk has been determined from Eq. (7), we may write the vector quantity EFk
and then proceed to determine EF? as follows:

EFk D Fk
ErAB
jErAB j

D .�1:215 lb/
�12 O{ � 4 O| C 18 Ok

22

D .0:663 O{ C 0:221 O| � 0:994 Ok/ lb; (9)

EF? D EFCD � EFk

D .3 lb/
�6 O{ C 2 O| � 9 Ok

11
� .0:663 O{ C 0:221 O| � 0:994 Ok/ lb

D .�2:299 O{ C 0:325 O| � 1:461 Ok/ lb: (10)

Part (c)

Governing Equations & Computation The sign of Fk determines the direction in
which the bead will tend to slide due to the cord force. A positive value of Fk indicates
the parallel component of the force is in the same direction as the position vector used
in the dot product, namely, from A to B , as shown in Fig. 2. A negative value of Fk
indicates the parallel component of the force is in the opposite direction, while if Fk is
zero, then the cord force is perpendicular toAB . According to Eq. (7), Fk D �1:215 lb,
and because this value is negative, the parallel component of the cord force is in the
direction from B to A, and the bead will tend to slide toward A.

Helpful Information

Actual sliding direction of the bead.
In Part (c), we considered the direction
that the bead would slide due to the force
provided by the cord only. Note that other
forces are also applied to the bead, such
as the bead’s weight, reaction forces, and
possible friction between the bead and
rod AB – the motion of the bead is also
influenced by these. The treatment of these
other forces is considered in subsequent
chapters of this book. Nonetheless, if the
weight of the bead is negligible, the bead
can slide without friction on the rod, and
the bead has zero initial velocity, then as
determined in Part (c), the bead will slide
toward point A.

Discussion & Verification As a partial check on our solutions in Parts (a) and (b),
we should compute the magnitudes of EFk and EF? in Eqs. (9) and (10) to verify they
are the same as those found in Eqs. (7) and (8). We may also examine the components
of EFk and EF? to see if they have reasonable directions and proportions. For EFk this

check is uncertain, but for EF? the components appear to be in proper directions. In
view of our answers in this example, Fig. 2 may be redrawn to more accurately show
the direction of EFk; that is, the actual direction of EFk is from point C toward point A.
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E X A M P L E 2.18 Smallest Distance Between a Point and Line

Figure 1

In the rod and bead of Example 2.17, determine the smallest distance between D and
rod AB .

S O L U T I O N

Road Map There are several strategies that can be used to determine the smallest dis-
tance between point D and rod AB . The technique we will use is identical in concept
to the solution used in Part (b) of Example 2.17, except only position vectors are used.
The idea is to write a position vector from any convenient point on rod AB to point D.
Then, using the dot product, we resolve this position vector into components parallel
and perpendicular to AB , as shown in Fig. 2 (where point B has been selected as a
convenient location on rod AB). While the magnitude of the parallel component will
depend on the particular point on AB we select, the perpendicular component is the
same and is the shortest distance between D and rod AB .

Governing Equations & Computation We select point B as a convenient point on
rod AB and write

Figure 2
Resolution of ErBD into parallel and perpendic-
ular components to determine the smallest dis-
tance between point D and rod AB .

ErBD D .4 O| � 18
Ok/ in.; (1)

jErBD j D

q
.4/2 C .�18/2 in. D 18:44 in: (2)

We now take the dot product of the above with ErBA, where ErBA is easily written by
examining Fig. 1 [or we may use Eq. (1) of Example 2.17 to write ErBA D �ErAB ], to
obtain the parallel component of ErBD as

rk D ErBD �
ErBA
jErBAj

D Œ.4 O| � 18 Ok/ in.� �
12 O{ C 4 O| � 18 Ok

22
D 15:45 in: (3)

Then using the Pythagorean theorem, we find

r? D
q
r2
BD
� r2
k
D

q
.18:44/2 � .15:45/2 in. D 10:06 in: (4)

Thus, the smallest distance between point D and rod AB is 10:06 in: You should re-
peat this problem starting with a different position vector, say ErAD , to verify that the
same 10:06 in: distance is obtained.

Discussion & Verification The solution presented here actually determines the small-
est distance from point D to the infinite line passing through points A and B , which is
not necessarily the same as the smallest distance to line segment AB . To determine if
the smallest distance found here is to a point that is actually on rod AB , we compare
the 15:45 in:magnitude rk found in Eq. (3) to the length of memberAB , which is 22 in:
Hence, the distance found is indeed to a point that lies on rod AB .
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P R O B L E M S

Problems 2.63 and 2.64

(a) Determine the angle between vectors EA and EB .

(b) Determine the components of EA parallel and perpendicular to EB .

(c) Determine the vector components of EA parallel and perpendicular to EB .

Figure P2.63 Figure P2.64

Problem 2.65

A slide on a child’s play structure is to be supported in part by strut CD (railings are
omitted from the sketch for clarity). End C of the strut is to be positioned along the
outside edge of the slide, halfway between ends A and B . End D of the strut is to be
positioned on the y axis so that the angle †ACD between the slide and the strut is a
right angle. Determine the distance h that point D should be positioned. Figure P2.65

Problem 2.66

A whistle is made of square tube with a notch cut in its edge, into which a baffle is
brazed. Determine the dimensions d and � for the baffle.

Figure P2.66

Problem 2.67

A flat triangular shape window for the cockpit of an airplane is to have the corner
coordinates shown. Specify the angles �A, �B , and �C and dimensions dA, dB , and
dC for the window.

Figure P2.67

Problem 2.68

The corner of an infant’s bassinet is shown. Determine angles ˛ and ˇ and dimensions
a and b of the side and end pieces so the corners of the bassinet will properly meet
when assembled.

Figure P2.68
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Problem 2.69

The roof of a grain silo is to be made using 12 identical triangular panels. Determine
the value of angle � needed and the smallest value of d that can be used.

Figure P2.69

Problems 2.70 and 2.71

For the description and figure indicated below, determine the components of the cord
force in directions parallel and perpendicular to rod CD. If released from rest, will the
cord force tend to make bead E slide toward C or D?

Problem 2.70 Use the description and figure for Prob. 2.60 on p 74.

Problem 2.71 Use the description and figure for Prob. 2.61 on p 74.

Problems 2.72 through 2.75

A cantilever I beam has a cable at endB that supports a force EF , and ErAB is the position
vector from end A of the beam to end B . Position vectors Er1 and Er2 are parallel to the
flanges and web of the I beam, respectively. For determination of the internal forces
in the beam (discussed in Chapter 8), and for mechanics of materials analysis, it is
necessary to know the components of the force in the axial direction of the beam (AB)
and in directions parallel to the web and flanges.

Problem 2.72 Using the dot product, show that Er1, Er2, and ErAB are orthogonal to
one another.

Problem 2.73 Determine the scalar and vector components of EF in direction ErAB .

Problem 2.74 Determine the scalar and vector components of EF in direction Er1.

Problem 2.75 Determine the scalar and vector components of EF in direction Er2.Figure P2.72–P2.75

Problem 2.76

The gearshift lever AB for the transmission of a sports car has position vector Er whose
line of action passes through points A and B . The driver applies a force EF to the knob
of the lever to shift gears. If the component of EF perpendicular to the gearshift lever
must be 5N to shift gears, determine the magnitude F of the force.

Figure P2.76

Problem 2.77

A force of magnitude 8 lb is applied to line AB of a fishing rod OA. Determine the
vector components of the 8 lb force in directions parallel and perpendicular to the rod.Figure P2.77
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Problem 2.78

Rod AB is the firing pin for the right-hand barrel of a side-by-side shotgun. During
firing, end A is impacted by the hammer, which imparts a force F to the firing pin. The
force F lies in a plane parallel to the xy plane but the firing pin has a three-dimensional
orientation as shown. Determine the components of F in directions parallel and perpen-
dicular to the firing pin.

Figure P2.78

Problem 2.79

The collar C is fixed to rod AB and supports a weight W D 15N, acting in the
negative ´ direction. Determine the vector components of the weight that are parallel
and perpendicular to rod AB . Figure P2.79 and P2.80

Problem 2.80

The collar C is fixed to rod AB using a glued bond that allows a maximum force of
35N parallel to the axis of the rod. The collar has weight W acting in the negative ´
direction. Determine the weightW of the collar that will cause the glued bond to break.

Problem 2.81

The structure consists of a quarter-circular rod AB with radius 150mm that is fixed in
the xy plane. An elastic cord supporting a force of 100N is attached to a support at D
and a bead at C . Determine the components of the cord force in directions tangent and
normal to the curved rod AB at point C .

Figure P2.81
Problem 2.82

Bead B has negligible weight and slides without friction on rigid fixed bar AC . An
elastic cord BD which supports a 60N tensile force is attached to the bead. At the in-
stant shown, the bead has zero velocity and is positioned halfway between pointsA and
C . Determine the components of the cord tension that act parallel and perpendicular to
direction AC of the bar. Due to the cord tension, will the bead slide toward point A or
C ?

Figure P2.82
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Problem 2.83

The manager of a baseball team plans to use a radar gun positioned at point A to
measure the speed of pitches for a right-handed pitcher. If the person operating the
radar gun measures a speed s when the baseball is one-third the distance from the
release point at B to the catcher’s glove at C , what is the actual speed of the pitch?
Assume the pitch follows a straight-line path, and express your answer in terms of s:
Note that the value s measured by the radar gun is the rate of change of the distance
between point A and the ball.

Figure P2.83 and P2.84 Problem 2.84

Repeat Prob. 2.83 for a left-handed pitcher whose release point is D.

Problem 2.85

Structural member AB is to be supported by a strut CD. Determine the smallest length
CD may have, and specify where D must be located for a strut of this length to be
used.

Figure P2.85 and P2.86

Problem 2.86

Determine the smallest distance between member AB and point E.

Problem 2.87

In Example 2.13 on p. 70, determine the smallest distance between point D and the
infinite line passing through points A and B . Is this distance the same as the smallest
distance to rod AB? Explain.

Problem 2.88

In Example 2.18 on p. 86, determine the smallest distance between point O and the
infinite line passing through points A and B . Is this distance the same as the smallest
distance to rod AB? Explain.

Problem 2.89

A building’s roof has “6 in 12” slope in the front and back and “8 in 12” slope on the
sides. Determine the angles ˛ and ˇ that should be used for cutting sheets of plywood
so they properly meet along edge AB of the roof. Hint: Write the position vector ErAB
(where B is some point along the edge of the roof) two ways: ErAB D ErAC C ErCB and
ErAB D ErAD C ErDB . Then use the roof slopes to help write ErCB and ErDB such that the
magnitudes of the two expressions for ErAB are the same.Figure P2.89
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2.5 Vector Cross Product

The cross product between two vectors may be used to determine (1) the direc-
tion normal to the plane containing two vectors, (2) the area of a parallelogram
formed by two vectors, and (3) the moment produced by a force. The last use
is especially important in statics and mechanics and will be discussed exten-
sively in Chapter 4. Compared to the dot product, the cross product is more
intricate to evaluate. This section studies techniques for evaluating the cross
product and interpreting its results.

The cross product between two vectors EA and EB is an operation defined as

EA � EB D .j EAjj EBj sin �/ Ou (2.48)

where

� D angle between the lines of action of EA and EB where 0 � � �
180ı,

Ou D unit vector normal to the plane containing EA and EB according
to right-hand rule.

Figure 2.31. (a) Vectors EA and EB in three dimensions. (b) To evaluate the cross product
between vectors EA and EB , the vectors can be arranged tail to tail to define angle � ,
which is measured in the plane containing the two vectors. (c) The result of EA� EB is a
vector whose direction is governed by the right-hand rule.

In words, Eq. (2.48) states “ EA cross EB ” equals a vector whose magnitude is the
product of the magnitude of EA, magnitude of EB , and sine of angle � between
the lines of action of EA and EB , and whose direction is perpendicular to the
plane containing EA and EB as governed by the right-hand rule. The definition
of � in Eq. (2.48) is the same as that used for the dot product. Since the cross
product yields a result that is a vector, the cross product is sometimes called
the vector product. The units for the cross product are equal to the product of
the units for EA and EB .

Concept Alert

Applications of the cross product. The
cross product between two vectors pro-
duces a result that is a vector. The cross
product is frequently used to determine
the normal direction to a surface, the area
of a parallelogram formed by two vectors,
and (as discussed in Chapter 4) the mo-
ment produced by a force. The last appli-
cation is especially important in statics and
mechanics.

Figure 2.31 illustrates the cross product between vectors EA and EB . Al-
though most often they will, EA and EB do not need to lie in the same plane to
compute the cross product between them. After the vectors are arranged tail
to tail, they define a plane, and the intersection of their lines of action defines
angle � , which is measured in this plane. The direction of the cross product is
determined by applying the right-hand rule, where EA is the first vector and EB
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is the second vector. That is, if you let EA pass in to the palm of your right-hand
and EB pass through your fingertips as shown in Fig. 2.31, then your thumb will
point in the proper direction for EA � EB . Immediately we see that if EB is taken
as the first vector and EA the second, then the right-hand rule gives a direction
for EB � EA that is opposite that for EA � EB . Hence, the order in which vectors
are taken in the cross product is important.

The cross product has the following properties:

EA � EB D � EB � EA anticommutative prop-
erty,

(2.49)

s. EA � EB/ D .s EA/ � EB D EA � .s EB/ associative property
with respect to multipli-
cation by a scalar,

(2.50)

. EAC EB/ � EC D . EA � EC/C . EB � EC/ distributive property
with respect to vector
addition.

(2.51)

The foregoing remarks are true regardless of the type of vector representation
that is used. For example, consider the two position vectors EA and EB shown in
Fig. 2.32(a), where both vectors lie in the xy plane. Sliding the vectors tail to
tail as shown in Fig. 2.32(b) provides the angle between EA and EB as 60ı, and
applying Eq. (2.48) provides the cross product between EA and EB as

Figure 2.32
Cross product between two vectors EA and EB
that lie in the xy plane. The result of EA � EB
is a vector having magnitude 5:20m2 in the ´
direction.

EA � EB D .2m/.3m/ sin 60ı Ou D 5:20m2 Ou (2.52)

where Ou is a unit vector normal to the plane containing EA and EB and whose
direction is given by the right-hand rule, namely, the ´ direction shown in
Fig. 2.32(b). Observe the cross product has units of m2. Although not obvious,
the magnitude of this result has the physical interpretation of being the area
of the parallelogram formed by EA and EB . This feature of the cross product is
discussed in greater detail soon.

Cross product using Cartesian components

For two vectors EA and EB with Cartesian representations, the cross product
between them is given by

EA � EB D .AyB´ � A´By/ O{ C .A´Bx � AxB´/ O| C .AxBy � AyBx/
Ok:

(2.53)
Equation (2.53) can be obtained using the following derivation. We begin by

Helpful Information

Alternatives for evaluation of the cross
product. Regardless of the representaion
used to express vectors, Eq. (2.48) can
always be used to evaluate the cross
product. For vectors with Cartesian repre-
sentation, either Eq. (2.48) or Eq. (2.53)
can be used, with the latter usually being
more convenient. In fact, sometimes both
methods are used to help determine useful
information.

writing EA and EB using Cartesian vector representation

EA D Ax O{ C Ay O| C A´
Ok (2.54)

EB D Bx O{ C By O| C B´
Ok (2.55)

We then take the cross product between EA and EB , using the distributive
law of Eq. (2.51) to expand the product term by term:

EA � EB D .Ax O{ C Ay O| C A´
Ok/ � .Bx O{ C By O| C B´

Ok/

D .Ax O{ � Bx O{/C .Ax O{ � By O|/C .Ax O{ � B´
Ok/
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C .Ay O| � Bx O{/C .Ay O| � By O|/C .Ay O| � B´
Ok/

C .A´
Ok � Bx O{/C .A´

Ok � By O|/C .A´
Ok � B´

Ok/ (2.56)

To proceed further we must address cross products between combinations of
unit vectors. Equation (2.48) shows O{ � O{ has magnitude .1/.1/ sin 0ı D 0,
and similarly O| � O| and Ok � Ok have zero magnitude. The cross product be-
tween combinations of different unit vectors always provides the magnitude
.1/.1/ sin 90ı D 1 and direction that depends on the order in which the vec-
tors are taken. For example, O{ � O| D Ok, while O| � O{ D � Ok. In summary, cross
products between combinations of unit vectors are

O{ � O{ D E0 O{ � O| D Ok O{ � Ok D � O|

O| � O{ D � Ok O| � O| D E0 O| � Ok D O{

Ok � O{ D O| Ok � O| D �O{ Ok � Ok D E0;

(2.57)

where E0 D 0 O{C0 O|C0 Ok is called the zero vector. Substituting Eqs. (2.57) into
Eq. (2.56) then provides Eq. (2.53). While Eq. (2.53) can always be employed
to evaluate the cross product between vectors with Cartesian representation,
it is awkward to remember and use. However, if you want to program a dig-
ital machine such as your pocket calculator or a computer to evaluate cross
products, then Eq. (2.53) is ideal. But for manual evaluation the following
procedure is easier.

Helpful Information

A little trick. The following diagram is a
helpful tool for quickly evaluating cross
products between combinations of unit
vectors O{, O| , and Ok.

Cross products that move counterclockwise
(positive direction) give “positive” results,
while cross products that move clockwise
(negative direction) give “negative” results.
For example, when we evaluate O{� O| , the di-
agram shows that the result is counterclock-
wise, hence O{� O| D C Ok. When we evaluate
O| � O{, the diagram shows that the result is
clockwise, hence O| � O{ D � Ok.

Evaluation of cross product using determinants

By arranging vectors EA and EB in a matrix, the determinant of the matrix can
be evaluated to yield EA� EB . A matrix is an arrangement of elements into a rect-
angular array of rows and columns. There is a precise and extensive science
underlying matrices, and because matrices are of fundamental importance in
engineering, you are sure to study these as you advance in your education.
Here we present only those details that are needed for evaluation of the cross
product.

To evaluate the cross product between vectors EA and EB , we evaluate the
determinant of the matrix

EA � EB D det

2
4 O{ O| Ok

Ax Ay A´
Bx By B´

3
5 D

ˇ̌̌
ˇ̌̌ O{ O| Ok

Ax Ay A´
Bx By B´

ˇ̌̌
ˇ̌̌ (2.58)

where det is an abbreviation indicating the determinant of the matrix that fol-
lows is to be evaluated. In the rightmost form of Eq. (2.58), a more abbrevi-
ated notation is used where the vertical bars indicate the determinant of the
enclosed matrix. In this book we will primarily use vertical bars to denote de-
terminant. The first row of the matrix in Eq. (2.58) consists of the basis vectors
for the coordinate system, namely, O{, O| , and Ok. The second row consists of the
components of EA, and the third row consists of the components of EB . Note
that if EB � EA were to be evaluated, then the second row of the matrix would
contain the components of EB and the third row would contain the components
of EA. While there are many ways to evaluate the determinant of a matrix, we
discuss two methods that are effective for Eq. (2.58).
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Determinant by Method 1. To help in the computation of the determinant,
we start by repeating the first and second columns after writing the original
matrix. We then take the sums and differences of products of the diagonal
elements as follows: take the product of the three elements along diagonal 1
[i.e., O{.Ay/.B´/], add the product of the three elements along diagonal 2, add
the product of the three elements along diagonal 3, subtract the product of the
three elements along diagonal 4, subtract the product of the three elements
along diagonal 5, and finally subtract the product of the three elements along
diagonal 6:

(2.59)
Note that Eq. (2.59) is identical to Eq. (2.53).

Determinant by Method 2. Here we expand the determinant of the matrix
by using minors. A minor is the determinant of a subset of the original matrix
that is obtained as shown in Eq. (2.60) by eliminating the row and column
corresponding to a particular element; the determinant of the elements remain-
ing in the matrix constitutes the minor for that element. Each of the minors is
found using the procedure described in method 1 for computing a determinant.
That is, the determinant of the matrix multiplying O{ in Eq. (2.60) is the product
of the two elements along diagonal 1, minus the product of the two elements
along diagonal 2. The determinant of the matrix multiplying O| is the product
of the two elements along diagonal 3, minus the product of the two elements
along diagonal 4. Similarly, the determinant of the matrix multiplying Ok is the
product of the two elements along diagonal 5, minus the product of the two
elements along diagonal 6.

(2.60)
We have not discussed all of the details of why this procedure works, and
some of these details explain why the negative sign associated with O| appears
in Eq. (2.60). A common error is to forget this negative sign.

Common Pitfall

Don’t forget the negative sign on O|.
When you use Method 2 to evaluate the de-
terminant, a common error is to forget the
negative sign for O| .
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Remarks. You should try both methods discussed here and adopt the method
you prefer. An advantage of the second method is that terms are automatically
grouped with vectors O{, O| , and Ok. In more advanced mathematics and mechan-
ics subjects, you may have need to evaluate the determinant of larger matrices
than those treated here. Method 1 is limited to matrices that have at most three
rows and columns. With some additional details, Method 2 can be applied to
larger matrices, but this may involve use of many minors and other methods
(not discussed here) are usually more effective.

Determination of the normal direction to a plane

The cross product can be used to determine the normal direction EC to the
plane containing two vectors EA and EB by evaluating EC D EA� EB . If we desire
the normal direction to be a unit vector, then we normalize EC by evaluating
Ou D EC=j EC j. Note that even if EA and EB are unit vectors, the cross product
between these is not a unit vector unless EA and EB are orthogonal. A normal
direction can also be obtained by evaluating EB � EA, and of course the vector
that is produced has opposite direction to EA � EB . In many problems that call
for a normal direction to be computed, either direction can be used, while in
some problems it may be desirable or necessary to distinguish between these.

Determination of the area of a parallelogram

The magnitude of the cross product gives the area of the parallelogram formed
by vectors EA and EB arranged tail to tail. We illustrate this using the example
of Fig. 2.32, where the magnitude of the cross product was found in Eq. (2.52)
to be 5:20m2, and this area is shown in Fig. 2.33(a). To show that this state-
ment is true, consider the shaded triangle shown in Fig. 2.33(b): it has base A
and height B sin � . Hence its area is .base/.height/=2 D AB.sin �/=2. The re-
maining triangle shown in Fig. 2.33(b) has the same base and height and thus
the same area. Hence, the area of the parallelogram is the same as the mag-
nitude of the cross product given in Eq. (2.48), namely, AB sin � D 5:20m2.

Figure 2.33
The magnitude 5:20m2 of EA � EB corresponds
to the area of the parallelogram formed by EA
and EB arranged tail to tail.

Scalar triple product

Occasionally the cross product between two vectors EA and EB is to be immedi-
ately followed by a dot product with a third vector EC , and we call the expres-
sion . EA� EB/ � EC a scalar triple product, or a mixed triple product.� Of course
this product can be evaluated by first computing the cross product, which pro-
duces a vector, and then taking the dot product of this with EC to provide the
final result, which is a scalar. Alternatively, the scalar triple product may be
computed by evaluating

. EA � EB/ � EC D

ˇ̌̌
ˇ̌̌ Cx Cy C´
Ax Ay A´
Bx By B´

ˇ̌̌
ˇ̌̌ (2.61)

�The nomenclature scalar triple product is preferred to distinguish this from the triple product
EA� EB � EC , which is more accurately called a vector triple product.
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Although we do not prove this, the value produced by . EA� EB/� EC is the volume
of the parallelepiped defined by EA, EB , and EC arranged tail to tail as shown in
Fig. 2.34. In Prob. 2.105, the implications of changing the ordering of vectors
in the scalar triple product are explored.

Figure 2.34
Volume of the parallelepiped formed by EA, EB ,
and EC arranged tail to tail is given by the scalar
triple product . EA � EB/ � EC .

End of Sect ion Summary

In this section, the cross product between two vectors has been defined. Some
of the key points are as follows:

� The cross product between two vectors EA and EB is a vector EC , where
EC D EA � EB . The unit of EC is the product of the units of EA and EB , and
the direction of EC is perpendicular to the plane containing EA and EB as
governed by the right-hand rule.

� The cross product can be used to find the normal direction to a plane.

� The cross product can be used to determine the area of a parallelogram
and the volume of a parallelepiped.

� One of the most important uses for the cross product is for computing
the moment of a force, and this application is discussed extensively in
Chapter 4.
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E X A M P L E 2.19 Evaluation of the Cross Product

Figure 1

Evaluate the cross product between vectors EA and EB where

EA D .3 O{ C 5 O| C Ok/mm;

EB D .�4 O{ C 6 O| C 2 Ok/mm:

S O L U T I O N

Road Map Although we could use Eq. (2.53) to evaluate the cross product, it will
generally be more effective to use your choice of Method 1 or 2 as shown here.

Method 1

Governing Equations & Computation Using Method 1 described in Eq. (2.59), the
cross product between EA and EB is

(1)

D ŒO{ .5/.2/C O| .1/.�4/C Ok .3/.6/ � Ok .5/.�4/ � O{ .1/.6/ � O| .3/.2/�mm2

D .4 O{ � 10 O| C 38 Ok/mm2: (2)

The mm2 term in Eq. (1) comes from factoring the mm dimensions out of both EA and
EB . The result of the cross product, vector EC , is shown in Fig. 2.

Figure 2
Evaluation of the cross product between vectors
EA and EB .

Method 2

Governing Equations & Computation Using Method 2 described in Eq. (2.60), the
cross product between EA and EB is

(3)

D O{ Œ.5/.2/ � .1/.6/�mm2 � O| Œ.3/.2/ � .1/.�4/�mm2

C Ok Œ.3/.6/ � .5/.�4/�mm2

D .4 O{ � 10 O| C 38 Ok/mm2; (4)

which is the same result as obtained by Method 1.

Discussion & Verification To verify that EC is indeed perpendicular to the plane
containing EA and EB , you should evaluate the dot products EC � EA and EC � EB to find they
are both zero. You may also wish to evaluate EB � EA to show that � EC is produced.
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E X A M P L E 2.20 Components of Force in Directions Normal and Tangent
to a Plane

Figure 1

A house with 95Mg mass is built on a steep slope defined by points A, B , and C . To
help assess the possibility of slope failure (mud slide), it is necessary to

(a) Determine the components of the weight in directions normal and parallel (tangent)
to the slope.

(b) Determine the component vectors of the weight in directions normal and parallel
(tangent) to the slope.

(c) Determine the smallest distance from point O to the slope.

S O L U T I O N

Road Map The weight of the house is .95Mg/.9:81m=s2/ D 932:0 kN, as shown in
Fig. 2, and the vector expression for this is

EW D .�932:0 kN/ Ok: (1)

Our strategy for part (a) will be to use the cross product to determine the normal vector
to the slope. Then the dot product between the weight vector and the normal direction
vector will yield the component of weight in the normal direction. Once this is obtained,
the component of the weight that is parallel, or tangent, to the slope can be determined
using the Pythagorean theorem. For part (b), we will express the weights normal and
parallel to the slope as vectors. For part (c), we write a position vector from point O
to any convenient point on the slope, and then we use the dot product to determine the
component of this vector that is normal to the slope. This result is the shortest distance
from point O to the slope.Common Pitfall

Don’t confuse mass and weight. A com-
mon error is to mistake mass for weight.
Mass must be multiplied by acceleration
due to gravity to obtain weight. In Eq. (1)
and Fig. 2, if you incorrectly gave the weight
of the house a value of 95 , then all of your
answers are about an order of magnitude
too small, and they have the wrong dimen-
sions!

Figure 2
The weight of the house is a vertical force that
is applied to the slope.

Part (a)

Governing Equations & Computation The normal direction can be computed us-
ing the cross product between a variety of different position vectors. We will use posi-
tion vectors from A to B and from A to C

ErAB D .�180 O| C 60
Ok/m; (2)

ErAC D .130 O{ � 180 O|/m: (3)

The normal direction En to the surface and its magnitude jEnj are then

En D ErAB � ErAC D

ˇ̌̌
ˇ̌̌ O{ O| Ok

0 �180 60

130 �180 0

ˇ̌̌
ˇ̌̌ m2

D .10; 800 O{ C 7800 O| C 23; 400 Ok/m2; (4)

jEnj D

q
.10; 800/2 C .7800/2 C .23; 400/2 m2 D 26; 930m2: (5)

Observe the units for both ErAB and ErAC have been factored out of the matrix expression
in Eq. (4), and this is helpful to reduce the repetitious writing of units when expanding
the determinant. Also, we selected ErAB as the first vector and ErAC as the second vector
in the cross product so that the normal vector produced would be in the “outward”
direction to the slope (i.e., toward the sky). The same result would have been obtained
using ErBC � ErBA, or ErCA � ErCB . Alternatively, we could use the “inward” normal
direction for this problem, as given by ErAC � ErAB , or ErBA � ErBC , or ErCB � ErCA; this
vector’s direction is into the Earth.
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Next, the component of the weight vector EW acting in the direction Enwill be called
Wn, and it is given by

Wn D EW �
En

jEnj
D
.0/.10; 800m2/C .0/.7800m2/C .�932:0 kN/.23; 400m2/

26; 930m2

D �809:9 kN: (6)

Since En is the outward normal direction, the negative sign for Wn indicates that the
normal component of EW acts into the surface, which is the expected result. Note that
if an inward normal vector were used instead, then the sign of Wn would be positive.

The Pythagorean theorem is now used to obtain the component of the weight that
is parallel, or tangent to the surface, Wt , as

Wt D

q
W 2 �W 2

n D

q
.�932:0 kN/2 � .�810:7 kN/2 D 461:1 kN: (7)

While the magnitude of the tangential component of the force Wt is known, we do not
know its direction other than it lies in the plane defined by points A, B , and C .

Part (b)

Governing Equations & Computation Once Wn is known from Eq. (6), we may
then find the vector components EWn and EWt as follows:

EWn D Wn
En

jEnj
D .�325 O{ � 235 O| � 704 Ok/ kN: (8)

Since EW D EWn C EWt , we evaluate

EWt D EW � EWn D .325 O{ C 235 O| � 228 Ok/ kN: (9)

The components Wn and Wt are shown in their proper orientations in Fig. 3. As a
partial check on our solution, you should evaluate the magnitudes of Eqs. (8) and (9)
to verify that they agree with Eqs. (6) and (7), respectively.

Figure 3
The weight of the house is resolved into compo-
nentsWn andWt that are normal and tangential
to the slope, respectively.

Part (c)

Governing Equations & Computation The procedure for finding the smallest dis-
tance from point O to the surface defined by points A, B , and C is very similar to that
outlined in Section 2.4. We first write a position vector from pointO to any convenient
point on the surface. We then take the dot product of this vector with a unit vector that
is normal to the surface, and the scalar that is produced is the smallest distance between
point O and the surface. The position vector from O to C is

ErOC D .130m/ O{: (10)

The portion of ErOC in the normal direction is

rn D ErOC �
En

jEnj
D
.130m/.10; 800/C .0/.7800/C .0/.23; 400/

26; 930
D 52:1m (11)

and thus, the smallest distance between point O and the surface is 52:1m.

Discussion & Verification The solution in part (c) finds the smallest distance from
point O to the plane of infinite extent that contains points A, B , and C . If, however,
the surface in question were finite in size, then the next step would be to determine the
coordinates of the head of the vector Ern D rn En=jEnj to determine if this point lies on or
off of the surface in question.
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E X A M P L E 2.21 Determination of the Normal Direction to a Plane

Figure 1

The finite element method is a computer technique that has revolutionized the way
structural engineering is performed. With this method, a structure usually having com-
plex geometry is subdivided into small regions called finite elements , each of which has
simple geometry and thus whose behavior can be more easily characterized. Shown in
Fig. 1 is a flat three-node plate finite element. Its geometry is fully described by the
coordinates of the corners, which are called nodes. Determine the unit vector in the
direction normal to the surface of the element, and the area of the element.

S O L U T I O N

Road Map We will use the cross product between two vectors oriented along the
edges of the triangle to determine the normal direction En. Because three points define a
unique plane, the same normal direction En (or possibly �En, depending on the order in
which vectors are taken in the cross product) should be obtained regardless of which
two vectors are used.

Interesting Fact

The finite element method. Some of the
characteristics of this computer method
of analysis are described in the problem
statement for this example. Shown here is
a finite element model with thousands of
elements of a crash test dummy used to
assess trauma in crash simulations.

Governing Equations & Computation Position vectors from points (nodes) 1 to 2
and 1 to 3 will be used for computing the cross product. Thus, taking the differences
between the coordinates of the head and tail, we write

Er12 D .20 O{ C 9 O| � 12
Ok/mm; jEr12j D 25mm; (1)

Er13 D .10 O{ C 20 O| � 20
Ok/mm; jEr13j D 30mm: (2)

The vector in the normal direction and its magnitude are

En D Er12 � Er13 D

ˇ̌̌
ˇ̌̌ O{ O| Ok

20 9 �12

10 20 �20

ˇ̌̌
ˇ̌̌ mm2 D .60 O{ C 280 O| C 310 Ok/mm2; (3)

jEnj D 422mm2: (4)

The unit vector Ou in the normal direction is obtained by normalizing En in Eq. (3) which
provides

Ou D
En

jEnj
D 0:142 O{ C 0:664 O| C 0:735 Ok: (5)

To obtain the area of the element, we note the magnitude of the cross product in
Eq. (3) is the area of the parallelogram formed by Er12 and Er13, which is twice the area
of the triangle formed by these same vectors. Hence, the area A of the triangular region
is

A D
422mm2

2
D 211mm2: (6)

Discussion & Verification As a casual check, you should use inspection to verify
that the direction of the normal vector is reasonable. However, in this example the ge-
ometry is complex enough that this is probably difficult or inconclusive. As a rigorous
check, you could verify that Ou is perpendicular to both Er12 and Er13 by showing that
Ou � Er12 D 0 and Ou � Er13 D 0.

In closing, we note that finite element computer programs typically perform these
very same calculations for every element.
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P R O B L E M S

Problems 2.90 and 2.91

Vectors EA and EB lie in the xy plane.

(a) Use Eq. (2.48) on p. 91 to evaluate EA � EB , expressing the resulting vector using
Cartesian representation.

(b) Evaluate EA � EB by computing the determinant of a matrix, using either Method 1
or Method 2.

Figure P2.90

Figure P2.91

Problems 2.92 and 2.93

(a) Evaluate EA � EB .

(b) Evaluate EB � EA.

(c) Comment on any differences between the results of parts (a) and (b).

(d) Use the dot product to show the result of part (a) is orthogonal to vectors EA and EB .

Figure P2.92 Figure P2.93

Problem 2.94

Describe how the cross product operation can be used to determine (or “test”) whether
two vectors EA and EB are orthogonal. Is this test as easy to use as the test based on the
dot product? Explain, perhaps using an example to support your remarks.
Note: Concept problems are about explanations, not computations.

Problem 2.95

Imagine a left-hand coordinate system has inadvertently been used for a problem. That
is, if the x and y directions have been selected first, the ´ direction has been taken in the
wrong direction for a right-hand coordinate system. What consequences will this have
for dot products and cross products? Perhaps use an example to support your remarks.
Note: Concept problems are about explanations, not computations.
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Problem 2.96

The corner of a tent is supported using three ropes having the forces shown. It is desired
to compute the sum of the cross products EMO D ErOA� EFABCErOA� EFACCErOA� EFAD
where ErOA is the position vector from points O to A, EFAB is the force directed from
points A to B , and so on.

(a) Rather than compute three separate cross products to find EMO , do the properties
of the cross product permit EMO to be found using just one cross product? Explain.

(b) Determine EMO .

Figure P2.96

Problem 2.97

For the triangular shape window of Prob. 2.67 on p. 87, use the cross product to deter-
mine the outward normal unit vector (i.e., pointing away from the origin) and the area
of the window.

Problem 2.98

A flat quadrilateral plate finite element is shown.

(a) Describe and perform a test, using two cross products that will verify if all four
nodes (corners) lie in the same plane.

(b) Determine the unit outward normal direction to the surface (i.e., pointing away
from the origin).

(c) Determine the surface area of the element.
Figure P2.98

Problem 2.99

An ergonomically designed key for a computer keyboard has an approximately flat
surface defined by points A, B , and C and is subjected to a 1N force in the direction
normal to the key’s surface.

(a) In Fig. P2.99(a), motion of the key is in the ´ direction. Determine the components
of the force in directions normal and tangent to the key’s motion. Comment on why
it might be important to know these components.

(b) In Fig. P2.99(b), the switch mechanism is repositioned so that motion of the key
is in the direction of the line connecting points D and E, where this line has
x, y, and ´ direction cosines of 0.123, 0.123, and 0.985, respectively. Determine
the components of the force in directions normal and tangent to the key’s motion.
Comment on why this design might be more effective than that in Part (a).

Figure P2.99

Problem 2.100

Impact of debris, both natural and artificial, is a significant hazard for spacecraft. Space
Shuttle windows are routinely replaced because of damage due to impact with small ob-
jects, and recent flights have employed evasive maneuvers to avoid impact with larger
objects, whose orbits NASA constantly monitors. For the triangular shape window and
the relative velocity of approach Ev shown, determine the components and vector com-
ponents of the velocity in directions normal and tangent to the window. Note that this
information is needed before an analysis of damage due to impact can be performed.

Figure P2.100
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Problem 2.101

The velocity of air approaching the rudder of an aircraft has magnitude 900 ft/s in the
y direction. The rudder rotates about line OA.

(a) The position vector from B to C has the x, y, and ´ direction cosines sin˛,
.cos˛/.cos 20ı/, and .� cos˛/.sin 20ı/, respectively. If the rudder is rotated so
that ˛ D 10ı, determine the components, and vector components, of the air veloc-
ity in directions normal and tangent to the surface of the rudder.

(b) Using the geometry shown in Fig. P2.101, verify the direction cosines stated in
Part (a).

Figure P2.101

Problem 2.102

Determine the smallest distance between point O and the infinite plane containing
points A, B and C .

Figure P2.102 and P2.103

Problem 2.103

The vector from points O to P has magnitude 40mm and has equal direction angles
with the x, y, and ´ axes. Determine the smallest distance from point P to the infinite
plane containing points A, B , and C .

Problem 2.104

The product Er1 � EF produces a vector EM . The product EM � Er2=jEr2j produces a scalar
Mk which is the component of EM in the direction of Er2.

(a) Evaluate Mk by finding EM first, followed by the dot product.

(b) Evaluate Mk using the scalar triple product.

Figure P2.104

Problem 2.105

As described in connection with Fig. 2.34 on p. 96, the scalar triple product . EA� EB/ � EC
provides the volume of the parallelepiped formed by EA, EB and EC . Comment on how the
results of the following triple products compare to the value provided by . EA � EB/ � EC :

(a) . EA � EC/ � EB .

(b) . EB � EC/ � EA.

(c) . EC � EB/ � EA.

(d) . EC � EA/ � EB .

Note: Concept problems are about explanations, not computations.



104 Vectors: Force and Position Chapter 2

2.6 Chapter Review

Important definitions, concepts, and equations of this chapter are summarized.
For equations and/or concepts that are not clear, you should refer to the origi-
nal equation and page numbers cited for additional details.

Laws of sines and cosines. See Figs. 2.35 and 2.36.

For a general triangle . . .

sin �a
A
D

sin �b
B
D

sin �c
C

law of sines,

A D
p
B2 C C 2 � 2BC cos �a

B D
p
A2 C C 2 � 2AC cos �b

C D
p
A2 C B2 � 2AB cos �c

law of cosines.

Eqs. (2.7) and (2.8), p. 32

Figure 2.35
A general triangle.

For a right triangle . . .

B D A cos �c
C D A sin �c

. . . or . . .
B D A sin �b
C D A cos �b

A D
p
B2 C C 2 Pythagorean theorem.

Eq. (2.9), p. 32, and Eq. (2.10), p. 33

Figure 2.36
A right triangle.

Unit vectors. A unit vector has unit magnitude and is dimensionless. Given
any vector Ev having nonzero magnitude, a unit vector Ou in the direction of Ev
can be written as

Ou D
Ev

jEvj
unit vector.

Eq. (2.11), p. 44

Cartesian vector representation in two dimensions. A Cartesian coordi-
nate system in two dimensions uses x and y axes that are orthogonal. A vector
Ev can be written in terms of its Cartesian components as shown in Fig. 2.37 as

Figure 2.37
(a) Cartesian coordinate system with unit vec-
tors O{ and O| in the x and y directions, respec-
tively. (b) Resolution of a vector Ev into vector
components in x and y directions.

Ev D Evx C Evy

D vx O{ C vy O| :

Eqs. (2.12) and (2.13), p. 45

Evx and Evy are called the vector components of Ev, and vx and vy are called
the scalar components (or simply the components) of Ev. The magnitude and
orientation from the ˙x direction are

jEvj D

q
v2x C v

2
y , � D tan�1

�
vy

vx

�
magnitude and orientation.

Eq. (2.14), p. 45
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Cartesian vector representation in three dimensions and direction an-
gles. Expressions for vectors in three dimensions are reported here. Vectors
in two dimensions are a special case of the following equations with v´ D 0

and �´ D 90
ı.

jEvj D

q
v2x C v

2
y C v

2
´ magnitude.

Eq. (2.24), p. 60

Ev D Evx C Evy C Ev´

D vx O{ C vy O| C v´
Ok

D jEvj cos �x O{ C jEvj cos �y O| C jEvj cos �´ Ok

D jEvj .cos �x O{ C cos �y O| C cos �´ Ok/:

Eq. (2.25), p. 61

Figure 2.38
Right-hand Cartesian coordinate system with
unit vectors O{, O| , and Ok in the x, y, and ´ direc-
tions, respectively, and resolution of a vector Ev
into vector components Evx , Evy , and Ev´.

Figure 2.39
Definition of direction angles �x , �y , and �´.

Summary Box
�x D angle between positive x direction and vector,

�y D angle between positive y direction and vector,

�´ D angle between positive ´ direction and vector,

Ev D jEvj .cos �x O{ C cos �y O| C cos �´ Ok/;

cos2 �x C cos2 �y C cos2 �´ D 1;

cos �x D vx=jEvj; cos �y D vy=jEvj; cos �´ D v´=jEvj:

Eq. (2.27), p. 61

If two direction angles (or direction cosines) are known, the third may be
determined using cos2 �x C cos2 �y C cos2 �´ D 1.

Position vectors. The position vector from point T (tail) to point H (head)
is shown in Fig. 2.40 and is written as

ErTH D .xH � xT / O{ C .yH � yT / O| C .´H � ´T /
Ok

Eq. (2.28), p. 62

where xT , yT , and ´T are coordinates of the tail and xH , yH , and ´H are
coordinates of the head. For applications in two dimensions, Eq. (2.28) also
applies with ´H � ´T D 0 [this expression is given explicitly by Eq. (2.22)].

Figure 2.40
Construction of a position vector using Carte-
sian coordinates of the vector’s head and tail.

Dot product. The dot product between two vectors EA and EB produces a
scalar s and is defined as

s D EA � EB D j EAjj EBj cos �

D AxBx C AyBy C A´B´:

Eq. (2.29), p. 76, and Eq. (2.34), p. 77
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The dot product can be used to determine the angle � between two vectors
using

cos � D
EA � EB

j EAjj EBj
D
AxBx C AyBy C A´B´

j EAjj EBj
;

� D cos�1
EA � EB

j EAjj EBj
D cos�1

AxBx C AyBy C A´B´

j EAjj EBj
:

Eq. (2.39), p. 78

Resolution of a vector into components. Important equations for using
the dot product to resolve a vector EF into parallel and perpendicular compo-
nents to a direction Er are collected in the following summary box:

Summary Box (See Fig. 2.41.)

Fk D component of EF acting in direction Er;

EFk D vector component of EF acting in direction Er;

F? D component of EF acting perpendicular to Er;

EF? D vector component of EF acting perpendicular to Er;

Fk D EF �
Er

jEr j
; EFk D Fk

Er

jEr j
;

F? D
q
F 2 � F 2

k
; EF? D EF � EFk:

Eq. (2.47), p. 80

Figure 2.41. (a) Vectors EF and Er in three dimensions. (b) Resolution of EF into scalar
components in directions parallel and perpendicular to Er . (c) Resolution of EF into vec-
tor components in directions parallel and perpendicular to Er .



Section 2.6 Chapter Review 107

Cross product. The cross product between two vectors EA and EB produces
a vector EC as shown in Fig. 2.42 and is defined as

EC D EA � EB

D .j EAjj EBj sin �/ Ou

D .AyB´ � A´By/ O{ C .A´Bx � AxB´/ O| C .AxBy � AyBx/
Ok

Eq. (2.48), p. 91, and Eq. (2.53), p. 92

For vectors with Cartesian representations, the cross product may conve-

Figure 2.42. (a) Vectors EA and EB in three dimensions. (b) To evaluate the cross product
between vectors EA and EB , the vectors can be arranged tail to tail to define angle � ,
which is measured in the plane containing the two vectors. (c) The result of EA� EB is a
vector whose direction is governed by the right-hand rule.

niently be evaluated by expanding the determinant

EA � EB D det

2
4 O{ O| Ok

Ax Ay A´
Bx By B´

3
5 D

ˇ̌̌
ˇ̌̌ O{ O| Ok

Ax Ay A´
Bx By B´

ˇ̌̌
ˇ̌̌

Eq. (2.58), p. 93

using Method 1 or 2 described in Section 2.5. Also, the magnitude of EA � EB
is the area of the parallelogram formed by EA and EB arranged tail to tail (see
Fig. 2.33).

Scalar triple product. A cross product that is followed by a dot product can
be simultaneously evaluated using the scalar triple product

. EA � EB/ � EC D

ˇ̌̌
ˇ̌̌ Cx Cy C´
Ax Ay A´
Bx By B´

ˇ̌̌
ˇ̌̌ :

Eq. (2.61), p. 95

The scalar triple product produces a scalar. Also, the value produced by . EA �
EB/ � EC is the volume of the parallelepiped defined by EA, EB , and EC arranged

tail to tail (see Fig. 2.34).
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R E V I E W P R O B L E M S

Problem 2.106

The manufacturer of a welded steel bracket specifies the working loads depicted in the
figure of Rn versus Rt . Values of Rn and Rt that lie within the shaded region are al-
lowable, while values that lie outside of the region are unsafe. Such a diagram is often
called an interaction diagram because it characterizes the combined effect that multi-
ple loads have on the strength of a component. For the loading and geometry shown,
determine the range of values load P may have and still satisfy the manufacturer’s
combined loading criterion.

Figure P2.106

Problem 2.107

For the loading and geometry shown, use the interaction diagram of Prob. 2.106 to
determine if the manufacturer’s combined loading criterion is satisfied.Figure P2.107

Problems 2.108 and 2.109

(a) Determine the resultant ER of the three forces EF C EP C EQ.

(b) If an additional force ET in the ˙x direction is to be added, determine the magni-
tude it should have so that the magnitude of the resultant is as small as possible.

Figure P2.108 Figure P2.109
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Problems 2.110 and 2.111

An architect specifies the roof geometry shown for a building. Each of linesEAB ,BD,
DCG, EG, and AC are straight. Two forces of magnitude P and Q acting in the �y
direction are applied at the positions shown.

Problem 2.110 Determine the components of the force P in directions normal and
parallel to the roof at point A. Express your answer in terms of P .

Problem 2.111 Determine the components of the force Q in directions normal and
parallel to the roof at point C . Express your answer in terms of Q.

Figure P2.110 and P2.111Problem 2.112

A specimen of composite material consisting of ceramic matrix and unidirectional ce-
ramic fiber reinforcing is tested in a laboratory under compressive loading. If a 10 kN
force is applied in the�´ direction, determine the components, and vector components,
of this force in directions parallel and perpendicular to the fiber direction f , where this
direction has direction angle �´ D 40ı and remaining direction angles that are equal
(i.e., �x D �y ).

Figure P2.112

Problem 2.113

An automobile body panel is subjected to a force EF from a stiffening strut. Assuming
that region ABC of the panel is planar, determine the components, and vector compo-
nents, of EF in the directions normal and parallel to the panel. Figure P2.113

Problem 2.114

An I beam is positioned from points A to B . Because its strength and deformation
properties for bending about an axis through the web of the cross section are different
than those for bending about an axis parallel to the flanges, it is necessary to also
characterize these directions. This can be accomplished by specifying just one of the
direction angles for the direction of the web from A to C , which is perpendicular to
line AB , plus the octant of the coordinate system in which line AC lies.

(a) If direction angle �´ D 30
ı for line AC , determine the remaining direction angles

for this line.

(b) Determine the unit vector in the direction perpendicular to the web of the beam
(i.e., perpendicular to lines AB and AC ).

Figure P2.114
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Problem 2.115

Determine the smallest distance between the infinite lines passing through bars AB
and CD.

Figure P2.115

Problem 2.116

The tetrahedron shown arises in advanced mechanics, and it is necessary to relate the
areas of the four surfaces. Show that the surface areas are related by Ax D A cos �x ,
Ay D A cos �y , and A´ D A cos �´ where A is the area of surface ABC , and cos �x ,
cos �y , and cos �´ are the direction cosines for normal direction En. Hint: Find En by
taking the cross product of vectors along edges AB , AC , and/or BC , and note the
magnitude of this vector is 2A. Then by inspection write expressions for Ax , Ay , and
A´ (e.g., Ax D y´=2 and so on).

Figure P2.116



3 Equilibrium of Particles

Many engineering problems can be accurately
idealized as a single particle or system of parti-
cles in equilibrium. This chapter discusses cri-
teria for when a particle, or system of parti-
cles, is in equilibrium and presents a system-
atic analysis procedure that can be applied
to general problems. Early sections of this
chapter focus on two-dimensional problems,
and later sections treat three-dimensional prob-
lems. Engineering design applications are also
discussed.

3.1 Equilibrium of Particles in Two
Dimensions

In mechanics, a particle is defined to have zero volume, but potentially may
have mass. While there are no true particles in nature, under the proper circum-
stances it is possible to idealize a real life object as a particle. An object that
is small compared to other objects and/or dimensions in a problem can often
be idealized as a particle. A large object may often be idealized as a particle,
and whether or not this is possible depends on the forces that are applied to
the object. In the example shown in Fig. 3.1, the lines of action of all forces
intersect at a common point, and this is called a concurrent force system. An
object subjected to a concurrent force system may be idealized as a particle as
shown in the figure. There are other circumstances in which an object, even if
large, may be idealized as a particle. In this chapter you will begin to develop
the ability to recognize when an object may be idealized as a particle, and
as you progress through subsequent chapters of this book, this ability will be
further sharpened.

Figure 3.1
Example of a two-dimensional concurrent force
system where the lines of action of all forces
intersect at a common point. When subjected to
a concurrent force system, an object – even if it
is very large – can be idealized as a particle for
many purposes.

Newton’s laws, discussed in Chapter 1, provide the conditions under which
a particle subjected to forces is in static equilibrium. In particular, Newton’s
second law states

P
EF D mEa, where we have included the summation sign

to emphasize that all forces applied to the particle must be included. Static

111



112 Equilibrium of Particles Chapter 3

equilibrium means Ea D E0. For brevity, throughout the rest of this book we will
use the word equilibrium to mean static equilibrium. Hence the conditions for
equilibrium of a particle are

X
EF D E0;

or
�X

Fx

�
O{ C

�X
Fy

�
O| D E0;

or
X

Fx D 0; and
X

Fy D 0:

(3.1)

In Eq. (3.1), the expression
P
EF D E0 is valid regardless of the type of vector

representation used, while the remaining expressions result if Cartesian vector
representation is used. The expressions

P
EF D .

P
Fx/ O{ C .

P
Fy/ O| D E0

states conditions for equilibrium in vector form, while the expressions
P
Fx

D 0 and
P
Fy D 0 state conditions for equilibrium in scalar form. Both the

vector and scalar forms are completely equivalent, and the choice of which of
these to use for a particular problem is a matter of convenience. The vector
form provides a compact and concise description of equilibrium. In complex
problems, especially in three dimensions, and especially when rigid bodies are
involved (these are addressed later in this book), it will often be advantageous
to use this form. For many problems, especially in two dimensions where the
geometry of forces is straightforward, the scalar form will be effective. When
using the scalar form, we compute components of forces in x and y directions
and sum forces in each of these directions.

Helpful Information

More on static equilibrium. A particle is in
static equilibrium if its acceleration is zero
(Ea D E0). Thus, a particle is in static equi-
librium if it has no motion (i.e., is at rest)
or if it moves with constant velocity (i.e.,
has uniform speed and uniform direction).
A particle that has changing velocity (i.e.,
has nonuniform speed and/or nonuniform
direction) is not in static equilibrium, and
dynamics must be considered to determine
its response.

Particles and forces. In particle equilibrium problems, the particle under
consideration may represent an individual particle of a real body or structure,
or the particle may represent a portion of the real body or structure, or the par-
ticle may represent the entire body or structure (as in the example of Fig. 3.1).
When applying

P
EF D E0 to the particle, all forces that are applied to the

particle must be included. These forces have a number of sources, as follows.

� Some of the forces may be due to interaction of the particle with its envi-
ronment, such as weight due to gravity, force of wind blowing against a
structure, forces from magnetic attraction of nearby objects, and so on.

� Some of the forces may be due to structural members that are attached
to (or contain) the particle. For example, if a particular particle has a
cable attached to it, the cable will usually apply a force to the particle.

� Some of the forces may be due to supports. For example, if a particle
(or the body the particle represents) is glued to a surface, the glue will
usually apply forces to the particle. We call forces such as these reaction
forces, and more is said about these later in this section.

Free body diagram (FBD)

A free body diagram (FBD) is a sketch of a body or a portion of a body that
is separated or made free from its environment and/or other parts of the struc-
tural system, and all forces that act on the body must be shown in the sketch.
We often use the word cut to describe the path along which the free body is
removed from its environment. In this chapter, the FBD will always result in a
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particle that is in equilibrium. In subsequent chapters, the FBD may result in
an object of finite size in equilibrium.

An FBD is an essential aid for applying Newton’s law of motion. It is a
tool that helps ensure that all forces that are applied to the FBD are accounted
for, including their proper directions. Once an FBD is drawn, application ofP
EF D mEamay proceed. In statics we seek conditions so that Ea D E0, whereas

in subjects that follow statics, such as dynamics and vibrations, we seek to de-
termine Ea and how the motion of a body or structure evolves with time. Among
all of the concepts you will learn in mechanics, regardless of how advanced a
level at which you eventually study, the ability to draw accurate FBDs is one of
the most important skills you will need. For students and practicing engineers
alike, FBDs are used on a daily basis.

Helpful Information

Free body diagram (FBD). An FBD is an
essential aid, or tool, for applying Newton’s
law of motion

P
EF D mEa. Among the

many skills you will need to be successful
in statics, and in the subjects that follow,
and as a practicing engineer, the ability
to draw accurate FBDs is essential. An
incorrect FBD is the most common source
of errors in an analysis.

Procedure for Drawing FBDs

1. Decide on the particle whose equilibrium is to be analyzed.

2. Imagine this particle is “cut” completely free (separated) from the
body, structure, and/or its environment. That is:

� In two dimensions, think of a closed line that completely encir-
cles the particle.

� In three dimensions, think of a closed surface that completely
surrounds the particle.

3. Sketch the particle (i.e., draw a point).

4. Sketch the forces:

(a) Sketch the forces that are applied to the particle by the environ-
ment (e.g., weight).

(b) Wherever the cut passes through a structural member, sketch the
forces that occur at that location.

(c) Wherever the cut passes through a support, sketch the reaction
forces that occur at that location.

5. Sketch the coordinate system to be used. Add pertinent dimensions
and angles to the FBD to fully define the locations and orientations of
all forces.

Because this chapter deals with equilibrium of particles, Step 3 in the
above procedure is trivial. But, with very small modification the same pro-
cedure will be used for rigid body equilibrium where this step will require
slightly greater artistry. The order in which the forces are sketched in Step 4
is irrelevant. For complicated FBDs, it may be difficult to include all of the
dimensions and/or angles in Step 5. When this is the case, some of this infor-
mation may be obtained from a different sketch.

In many problems it will be relatively clear which particle should be used
for drawing an FBD. In complex problems this selection may require some
thought and perhaps some trial and error. For a single particle in two dimen-
sions, Eq. (3.1) provides two scalar equations

P
Fx D 0 and

P
Fy D 0,



114 Equilibrium of Particles Chapter 3

and if the FBD involves two unknowns, then these equilibrium equations are
sufficient to yield the solution.� In more complex problems, the FBD will of-
ten involve more than two unknowns, in which case FBDs must be drawn and
equilibrium equations written for additional particles so that the final system
of equations has as many equations as unknowns.

� Mini-Example. A skier uses a tow rope as shown in Fig. 3.2(a) to reach
the top of a ski hill. If the skier weighs 150 lb, if the snow-covered slope can
be considered frictionless, and if the portion of the tow rope behind the skier is
slack,� determine the force required in the tow rope to pull the skier at constant
velocity.

Figure 3.2. (a) Photograph of a skier being towed up a snow-covered slope at constant velocity. (b) Sketch of the skier showing the
orientation of the slope and tow rope, and the cut to be used for drawing the FBD. (c) Free body diagram of the skier showing the lines of
action of all forces intersecting at a common point. (d) Free body diagram where the skier is idealized as a particle. All FBDs assume the
portion of the tow rope behind the skier is slack.

Solution.
Draw FBD. To draw the FBD and to determine if the skier can be idealized
as a particle, we use the cut shown in Fig. 3.2(b) to separate the skier from
the environment. The forces applied to the skier’s body by the environment
outside of the cut are shown in Fig. 3.2(c), as follows. The 150 lb force repre-
sents the skier’s weight. Where the cut passes through the tow rope in front of
the skier, the tow rope applies a force T to the skier’s hands. Where the cut
passes through the tow rope behind the skier, there is no force since we have
assumed that portion of the rope to be slack. Where the cut passes between the
skis and the slope, there is a reaction force R. Note that between the skis and
the slope, the actual forces are distributed over the full contact area of the skis,
and this distribution is probably complicated. In Fig. 3.2(c), we are modeling
this distribution by a single force R.

As seen in Fig. 3.2(c), all of the forces applied to the skier by the environ-
ment outside of the cut intersect at a common point (pointA). Thus, the skier’s
body may be idealized as a particle. That this is true will be more thoroughly
explored when rigid bodies are discussed in Chapter 5. Furthermore, since the
skier is to move with constant velocity, the skier’s acceleration is zero and
hence this is a problem of static equilibrium of a particle. To complete the

�There are occasional subtle exceptions to this statement, such as when a structure is simulta-
neously statically indeterminate and a mechanism. Such exceptions are discussed later in this
book.

� In Problem 3.4, you will let the portion of the tow rope behind the skier be taut.
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FBD, we select a coordinate system. Since the 15ı and 20ı orientations are
given with respect to the horizontal direction, a coordinate system where x
and y are horizontal and vertical is convenient.

Once the appropriate particle has been identified and its FBD has been
drawn, we may then write the equations of equilibrium, followed by solving
these to determine the unknowns (i.e., the force T in the tow rope and the
reaction R between the skis and slope). In what follows, we demonstrate a
vector solution, followed by a scalar solution, followed by comments on the
merits of using an alternate coordinate system.

Helpful Information

What forces should be included in the
FBD? When drawing an FBD, only forces
that are external to the FBD (i.e., external
to the cut used to construct the FBD) are
included on the FBD. A common source of
error is to include forces that are internal to
the FBD. For example, the skier’s boots are
attached to the skis, and there are forces
between the boots and skis that keep them
connected to one another. However, these
forces are internal to the FBD, because the
cut that was used to construct the FBD did
not separate the boots from the skis. To
take this idea a step further, every atom of
material within the skier’s body and cloth-
ing exerts forces on neighboring atoms.
However, all such forces are internal to the
FBD and hence do not appear on the FBD.

Vector solution of equilibrium equations. To carry out a vector solution,
we begin by writing vector expressions for all forces as follows:

EW D �150 lb O| ; (3.2)

ET D T
�
cos 15ı O{ C sin 15ı O|

�
; (3.3)

ER D R
�
� sin 20ı O{ C cos 20ı O|

�
: (3.4)

Next we apply Newton’s law with Ea D E0 to write

X
EF D E0 W EW C ET C ER D E0; (3.5)�

T cos 15ı �R sin 20ı
�
O{

C
�
�150 lbC T sin 15ı CR cos 20ı

�
O| D E0: (3.6)

For the above vector equation to be satisfied, both the x and y components
must be zero independently, which provides two scalar equations. Also, we
observe that there are two unknowns, T andR. Thus the system of equations is
determinate, meaning there are as many equations as unknowns, and a solution
for the unknowns is obtainable. Writing the two scalar equations contained in
Eq. (3.6) provides

T cos 15ı �R sin 20ı D 0; (3.7)

T sin 15ı CR cos 20ı D 150 lb: (3.8)

Basic algebra is used to solve these equations. For example, if Eq. (3.7) is
multiplied by cos 20ı and Eq. (3.8) is multiplied by sin 20ı and the results are
added, the terms containing R sum to zero and we obtain

T
�
cos 15ı cos 20ı C sin 15ı sin 20ı

�
D .150 lb/ sin 20ı (3.9)

) T D 51:5 lb: (3.10)

Once one of the unknowns has been determined, T in this case, either of
Eqs. (3.7) and (3.8) may be used to determine the other unknown. Using
Eq. (3.7), we write

R D
T cos 15ı

sin 20ı
D 145 lb; (3.11)

which completes the solution.

Helpful Information

Some useful checks of our solution.
Intuitively, we know that the portion of
the tow rope in front of the skier will be
in tension. From Fig. 3.2(c), we observe
the direction of T in the FBD has been
assigned so that a positive value of T
corresponds to tension in the rope. Thus,
we expect the solution to this problem to
display a positive value for T , and indeed
this is the case. Further, the reaction R is
positive in compression. Thus, we expect
the solution to this problem to display a
positive value for R, and indeed this is
also the case. Had we obtained a negative
value for either T or R, then we would
suspect an error in our solution.
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Scalar solution of equilibrium equations. We examine Fig. 3.2(d) and sum
the x and y components of forces to write

X
Fx D 0 W T cos 15ı �R sin 20ı D 0; (3.12)X
Fy D 0 W T sin 15ı CR cos 20ı � 150 lb D 0: (3.13)

These equations are identical to Eqs. (3.7) and (3.8), and thus the solution is
the same as that obtained using the vector approach.
Solution with alternate coordinate system. In the foregoing solutions we
elected to use a horizontal-vertical Cartesian coordinate system, but this selec-
tion was arbitrary and in some problems a coordinate system with different
orientation may be more convenient. For example, consider the tn coordinate
system shown in Fig. 3.3. Using a scalar solution approach, we sum forces in
t and n directions to obtain

Figure 3.3
(a) Skier being towed up a slope at constant ve-
locity. (b) Free body diagram with orientation
of forces given with respect to a tn coordinate
system where t and n are parallel and perpen-
dicular to the slope, respectively. This FBD as-
sumes the portion of the tow rope behind the
skier is slack.

X
Ft D 0 W �.150 lb/ sin 20ı C T cos 5ı D 0; (3.14)X
Fn D 0 W �.150 lb/ cos 20ı � T sin 5ı CR D 0: (3.15)

Notice that because of the choice of coordinate system, Eq. (3.14) has only
one unknown, which is easily found to be

T D
.150 lb/ sin 20ı

cos 5ı
D 51:5 lb: (3.16)

Then, using Eq. (3.15), the remaining unknown R is found to be

R D .150 lb/ cos 20ı C T sin 5ı D 145 lb: (3.17)

As expected, both solutions are the same as those obtained earlier. �

Modeling and problem solving

The process of drawing a FBD involves modeling, wherein a real life problem
is replaced by an idealization. For example, in Fig. 3.2, the actual distribution
of forces between the skis and slope was modeled by a single reaction force,
friction between the skis and slope was neglected, the portion of the tow rope
behind the skier was assumed to be slack, and so on. In modeling, reasonable
assumptions are made about what is physically important in a system and what
is not, with the goal of developing a model that contains the essential physics
while hopefully being simple enough to allow for a tractable mathematical
solution. Effective modeling is both an art and a science. Sometimes it may
take several iterations to develop a good model for a problem. Once a model
has been established, the next step of an analysis is largely an exercise in
mathematics. In the example problems in this book that deal with equilibrium
concepts,� the following structured problem solving approach will be used:

� In example problems that do not deal with equilibrium concepts, such as those in Chapters 1
and 2, the modeling step may not be required.
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Structured Problem Solving Approach

� Road Map: An overall strategy for solving a problem is discussed.

� Modeling: Reasonable assumptions are made, leading to the develop-
ment of an FBD for a problem.

� Governing Equations: Equations of equilibrium, plus perhaps equa-
tions for other physical phenomena pertinent to a problem, are written.

� Computation: The equations that govern the model for the problem
are solved.

� Discussion and Verification: The results for the problem are critically
examined and interpreted.

Occasionally, some of the above steps may be done in combination.

Helpful Information

More on Governing Equations. Some of
the examples in this book will involve failure
criteria, deformable members, friction,
or other criteria related to the physical
behavior of a structural system. When
this is the case, the governing equations
category in our structured problem solving
approach will be subdivided to include, as
appropriate,

� Equilibrium equations.

� Force laws.

� Kinematic equations.

The specific meanings of force laws and
kinematic equations are discussed later in
this and subsequent chapters.

Cables and bars

In the foregoing example of Fig. 3.2, the FBD was constructed so that a posi-
tive value of T corresponded to tension in the tow rope that pulls the skier up
the slope. It may not be obvious that this statement is true, and it is important
that you fully understand why, because construction of FBDs and interpreta-
tion of the results of many problems require this understanding. Consider the
structure shown in Fig. 3.4(a), consisting of a bar and two cables that support
a bucket weighing 100N. As discussed in Section 2.3, the forces supported

Figure 3.4. (a) A structure consisting of a bar and two cables supports a bucket weigh-
ing 100N. Two cuts are taken to draw two FBDs. (b) FBD of the bucket. (c) FBD of
point A where FAC is defined to be positive in tension. (d) FBD of point A where FAC
is defined to be positive in compression.

by the bar and cables are collinear with their respective axes. To model the
structure in Fig. 3.4(a), you might begin by considering the bucket, to arrive
at the intuitively obvious conclusion that if the bucket weighs 100N, then the
force in cable AD must be 100N. This conclusion is reached more formally
by examining Fig. 3.4(a) to identify point D as the location of a concurrent
force system. A cut is then taken to separate point D from its environment,
and this cut passes through cable AD, leading to the FBD shown in Fig. 3.4(b).
With this FBD, writing

P
Fy D 0 provides FAD � 100N D 0, whose solution

is FAD D 100N. Thus, one of the cable forces has been determined.
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To determine the forces supported by the bar and the remaining cable, we
again examine Fig. 3.4(a) to identify point A as the location of another con-
current force system. A cut is then taken to separate point A from its environ-
ment, and this cut passes through one bar and two cables. Two possible FBDs
resulting from this cut are shown in Fig. 3.4(c) and (d), where we have taken
advantage of the result FAD D 100N. In both Fig. 3.4(c) and Fig. 3.4(d), the
direction for the cable force FAB is such that a positive value corresponds to
a tensile force in the cable. For the force in the bar, the FBD in Fig. 3.4(c)
defines the direction of FAC such that a positive value corresponds to a tensile
force in the bar, while the FBD in Fig. 3.4(d) defines the direction such that a
positive value corresponds to a compressive force in the bar.

If it is not clear that these statements are true, then drawing additional FBDs
will fully clarify the situation. In fact if you are ever in doubt about whether
a positive value for a particular cable or bar force means tension or compres-
sion, the construction of an additional FBD will always provide clarification.
To illustrate, in Fig. 3.5(b) the FBD for point A is shown, along with FBDs
for portions of the cable and bar. Note that in drawing these FBDs, we have
invoked Newton’s third law, which states that forces of action and reaction are
equal in magnitude, opposite in direction, and collinear. Examining the FBD
of cable AB in Fig. 3.5(b) unquestionably confirms that a positive value of
FAB corresponds to tension in the cable. Examining the FBD of bar AC in
Fig. 3.5(b) also confirms that a positive value of FAC corresponds to tension
in the bar. Examining the FBD of bar AC in Fig. 3.5(c) shows that in this case
a positive value of FAC corresponds to compression in the bar.

Figure 3.5. (a) The structure of Fig. 3.4 shown again with more extensive FBDs to
clarify different sign conventions for the force supported by a bar. (b) A positive value
of FAC corresponds to tension in bar AC . (c) A positive value of FAC corresponds to
compression in bar AC .

Figure 3.6
Examples of pulleys in use.

Since cables buckle when subjected to very low compressive force, it is
common to assume they can support only tensile forces. Thus we will always
assign cable forces in FBDs so that positive values correspond to tension. If,
after the analysis of a particular problem, you find that a cable supports a
compressive load, then either you have made an error or the structure has
a serious flaw; namely, equilibrium of the structure is relying on a cable to
support a compressive force whereas in reality the cable cannot do this.

In contrast to cables, bars can support both tensile and compressive forces,
and thus we always confront the question of what direction should be used
to represent the forces they support when drawing FBDs. The answer is that
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it really does not matter what convention you follow, provided your FBDs are
consistent within a particular problem, and that you understand the proper
interpretation for the forces you compute. In a problem as simple as that of
Fig. 3.4(a), where there are a small number of structural members and the
loading is simple, it is probably obvious that the cables will be in tension
and the bar in compression. Thus, many people would draw the FBD shown
in Fig. 3.4(d) where the bar force is taken positive in compression. In more
complicated problems, however, it is often not possible to identify before-
hand which bars will be in tension and which will be in compression. Thus, a
good practice when drawing FBDs is to assign the forces supported by all bars
such that positive values correspond to tension. Mixed sign conventions where
some bars have forces that are positive in tension and the others are positive
in compression are manageable for simple problems, but are cumbersome for
larger problems since you must always consult the original FBDs to discern
which are in tension and compression because the sign of the member’s force
alone is not sufficient to make this determination.

Figure 3.7
A cable with negligible weight wrapped around
a pulley.

Figure 3.8
(a) A single cable wrapped around several pul-
leys and subjected to a force T at its end.
(b) If the pulleys are frictionless and the cable
has negligible weight, then the magnitude of the
force throughout the entire cable is the same.

Figure 3.9
Demonstration of how a pulley may be ideal-
ized as a particle. (a) A frictionless pulley is sup-
ported by a shackle. (b) Free body diagram of
the pulley removed from shackle. (c) Free body
diagram of the shackle removed from the pul-
ley, showing how the pulley’s cable forces have
been “shifted” to point A.

Pulleys

Cables are often used in conjunction with pulleys. A pulley, as shown in
Figs. 3.6 and 3.7, is a simple device that changes the orientation of a cable
and hence changes the direction of the force a cable supports. If a pulley is
idealized as being frictionless (that is, the pulley can rotate on its bearing with-
out friction) and the cable has negligible weight, then the magnitude of the
force supported by the cable is unchanged as it wraps around the pulley. For
the present, we must accept this statement without proof. In Chapter 5, when
rigid bodies are discussed, we will show this statement is true. To carry this
concept further, if a cable with negligible weight is wrapped around several
frictionless pulleys, such as shown in Fig. 3.8(a), then the magnitude of the
force is the same throughout the entire cable, as shown in Fig. 3.8(b). Note
that the sketches of pulleys in Fig. 3.8(b) are not FBDs, because the pulleys
have not been completely removed from their environment and thus there are
additional forces acting on the pulleys that are not shown. If a cable has sig-
nificant weight, then the force supported by the cable will vary throughout
its length, even if frictionless pulleys are used. Throughout most of this book,
cables are assumed to have negligible weight and pulleys are assumed to be
frictionless.

To idealize a pulley as a particle, such as when drawing an FBD, you can
look for the point of intersection of all forces applied to the pulley, or better
yet, you can simply “shift” the cable forces to the bearing of the pulley, as
follows. Figure 3.9(a) shows a pulley that is supported by a shackle. To see
how the pulley and shackle may be idealized as a particle, first we remove the
pulley from the shackle to begin drawing the FBDs in Fig. 3.9(b) and (c). In
Fig. 3.9(b) we introduce two forces, equal in magnitude to the cable force T
but in opposite directions, on the bearing A of the pulley. Then on the FBD of
the shackle in Fig. 3.9(c) we use Newton’s third law to include these same two
forces on point A, but in opposite directions. The shackle shown in Fig. 3.9(c)
is then easily modeled as a particle since it is a concurrent force system where
all forces intersect at the bearing A of the pulley.
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Reactions

As previously stated, a reaction force, or simply reaction, is a force exerted
by a support on a body or a structure. We will study support reactions exten-
sively later in this book, but some remarks in addition to those already made
are needed now. We begin with an example that is easy to relate to. Consider
yourself as you stand on a horizontal floor, as shown in Fig. 3.10(a). It is be-
cause the floor exerts a force on your body that you remain in equilibrium.
Thus, the floor exerts on your body a vertical force of magnitude R, and your
body in turn exerts on the floor a force of magnitude R in the opposite direc-
tion. The principal feature of the floor is that it prevents vertical motion of
your body, and it will generate whatever force is needed to accomplish this.
Thus, if you also wear a backpack while standing on the floor, the floor will
produce an even larger reaction on your body so that you have no vertical
motion.Figure 3.10

(a) Person standing on a horizontal surface.
(b) Free body diagram of the person, showing
the reaction the floor exerts on the person’s
body.

In the example shown in Fig. 3.11, imagine you are now standing on a
slope, such as a sidewalk on a gentle hill. Assuming the sidewalk is sufficiently
rough so that your feet do not slip, there are now two components of reaction
forces in the directions shown. The reaction R arises because the sidewalk
does not let your body move in the direction normal to the surface, and the
tangential component F arises because the sidewalk does not let your feet
slide. The sidewalk provides constraint of motion in two directions, and hence
there are two reactions in those directions. If the sidewalk is covered with ice
so that it is frictionless, then the sidewalk no longer prevents slip, F D 0, and
an unpleasant experience results! When ice-covered, the sidewalk constrains
motion in just one direction, and hence there is only one reaction, R.

The foregoing examples illustrate a thought process that will always allow
us to identify the number and direction of reaction forces associated with a
particular support. Namely, if a support prevents motion in a certain direction,
it can do so only by producing a reaction force in that direction. When we are
solving particle equilibrium problems, the supports and associated reactions
shown in Fig. 3.12 occur often. It is not necessary to memorize these reactions;
rather, you should reconstruct these as needed. For example, consider the par-
ticle pinned to a surface. The particle may be subjected to external forces or
may be a connection point between several cables and/or bars, which give rise
to the forces F1, F2, and F3 shown. The surface to which the particle is fixed
prevents motion of the particle in the y direction, so there must be a reaction
in this direction; and the surface also prevents motion of the particle in the x
direction, so there must also be a reaction in this direction. For the slider on a
frictionless bar shown in Fig. 3.12, the fixed bar prevents motion of the slider
in the direction normal to the bar, so there must be a reaction in this direction.
The slider is free to move along the frictionless bar, hence there is no reaction
in that direction.

Figure 3.11
(a) Person standing on a rough slope. (b) Free
body diagram of the person, showing the reac-
tions the surface exerts on the person’s body.

End of Sect ion Summary

In this section, the equations governing static equilibrium of a particle were
discussed, and analysis procedures were described. Some of the key points are
as follows:

� For a particle in two dimensions, the equations of equilibrium written
in vector form are

P
EF D E0 and in scalar form are

P
Fx D 0 and
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Figure 3.12. Some common supports and reactions in two dimensional particle equi-
librium problems. Forces F1, F2, and F3 are hypothetical forces applied to a particle
by cables and/or bars that might be attached to the particle, and forces Rx and Ry are
reactions.

P
Fy D 0. In these summations, all forces applied to the particle must

be included.

� A free body diagram (FBD) is a sketch of a particle and all forces applied
to the particle. The FBD is an essential tool to help ensure that all forces
are accounted for when you are writing the equilibrium equations.

� Complex problems may require more than one FBD. In two dimensions,
each FBD allows two equilibrium equations to be written (i.e.,

P
EF D

.
P
Fx/ O{C.

P
Fy/ O| D E0, or

P
Fx D 0 and

P
Fy D 0), thus allowing

for an increased number of unknowns to be determined.

� Cables and straight bars are structural members supporting forces hav-
ing the same orientation and line of action as the member’s geometry.

� A pulley is used to change the direction of a cable and hence change the
direction of the force supported by a cable. If a single cable with negli-
gible weight is wrapped around any number of frictionless pulleys, then
the magnitude of the force throughout the cable is the same everywhere.
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E X A M P L E 3.1 Cables, Bars, and Failure Criteria

Figure 1

Consider the structure discussed earlier in this section (Figs. 3.4 and 3.5) shown again
here in Fig. 1 where the loading now consists of a vertical force P applied to point A.

(a) If P D 100N, determine the forces supported by cable AB and bar AC .

(b) If cable AB can support a tensile force of 1200N before breaking, and bar AC
can support a compressive force of 1600N before buckling, determine the largest
force P that can be applied.

S O L U T I O N

Part (a)

Road Map An FBD of point A will involve three forces: the force P applied to the
structure and the forces supported by the cable and bar. Because P is known to be
100N, the FBD will contain two unknowns, and since there are two equilibrium equa-
tions available, we expect to be able to determine the forces supported by the cable and
bar.

Modeling We draw the FBD shown in Fig. 2, where positive values of FAB and FAC
correspond to tensile forces in the cable and bar, respectively. We also select the xy
coordinate system shown.

Figure 2
Free body diagram of point A where P D

100N.
Governing Equations The equilibrium equations are written by summing forces in
the x and y directionsX

Fx D 0 W FAB cos 30ı C FAC cos 45ı D 0; (1)X
Fy D 0 W FAB sin 30ı � FAC sin 45ı � 100N D 0: (2)

Computation Equations (1) and (2) are easily solved to obtain

FAB D 73:2N;

FAC D �89:7N:

(3)

(4)

Part (b)

Road Map We are given the maximum loads the cable and bar can support. It is im-
portant to understand that it is unlikely that both the bar and cable will simultaneously
be at their failure loads, and the margin note at the end of this example provides further
discussion of this. One solution strategy is to use the results of Part (a) to determine
the largest load the structure can support by exploiting linearity, as follows. In Part (a),
the solutions for FAB and FAC were obtained using P D 100N. If P is doubled, then
FAB and FAC are doubled, and so on. This assumes the angles shown in Fig. 2 remain
the same as the load changes. Thus, we may scale the load P until FAB D 1200N or
FAC D �1600N.

A generally preferable way to solve problems with multiple failure criteria is to
determine the forces supported by each member in terms of P , where P is yet to be
determined, and this is the approach we will use here. A feature of this approach is that
you do not need to guess which of several members will fail first.

Modeling The FBD shown in Fig. 3 is the same as that for Part (a) except that P is
unknown.

Figure 3
Free body diagram of point A where P is un-
known.
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Governing Equations & Computation

Equilibrium Equations The equilibrium equations are the same as Eqs. (1) and (2),
except with the 100N force replaced by P .X

Fx D 0 W FAB cos 30ı C FAC cos 45ı D 0; (5)X
Fy D 0 W FAB sin 30ı � FAC sin 45ı � P D 0: (6)

Solving Eqs. (5) and (6) provides

FAB D .0:7321/ P; (7)

FAC D .�0:8966/ P: (8)

Force Laws Now the various failure criteria can be applied using Eqs. (7) and (8):

If FAB D 1200N; then P D 1640N: (9)

If FAC D �1600N; then P D 1790N: (10)

Only the smaller value of P in Eqs. (9) and (10) will simultaneously satisfy the failure
criteria for both the bar and cable. Thus, the maximum value P may have is

Pmax D 1640N; (11)

and cable AB will fail first.

Common Pitfall

Failure loads. A common error in solv-
ing problems with failure criteria, such as
Part (b) of this example, is to assume that
all members are at their failure loads at the
same time. With reference to the FBD of
Fig. 3, you will be making this error if you
take FAB D 1200N and FAC D �1600N;
in fact, if you do this, you will find thatP
Fx D 0 (Eq. (5)) cannot be satisfied! An-

other way to describe this problem is to con-
sider slowly increasing force P from zero.
Eventually, one of the members will reach
its failure load first, while the other will be
below its failure load.

Discussion & Verification As expected from intuition, solutions to both parts of this
example show FAB is positive, meaning the cable is in tension, and FAC is negative,
meaning the bar is in compression. After this check, we should substitute the solutions
for FAB and FAC into the original equilibrium equations; in Part (a) both of Eqs. (1)
and (2) must be satisfied, and in Part (b) both of Eqs. (5) and (6) must be satisfied. This
is a useful check to avoid algebra errors, but unfortunately it does not catch errors in
drawing FBDs and writing equilibrium equations.
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E X A M P L E 3.2 Cables, Pulleys, and Failure Criteria

Figure 1

The cable and pulley system shown is used by a camper to hoist a backpack into a tree
to keep it out of the reach of bears. If cables AB and AC have breaking strengths of
200 lb and cable DAE has a breaking strength of 100 lb, determine the largest weight
W that may be lifted.

S O L U T I O N

Road Map Our strategy is to find the forces in each cable in terms of weight W and
then to apply the failure criteria to determine the largest value W may have.

Modeling The force the camper applies to the cable at point D will be called T , and
assuming the cable’s weight is negligible, the orientation of this force is the same as
the 30ı orientation of the cable segment. CableDAE is a single continuous cable, and
assuming the pulleys are frictionless, in addition to the assumption of negligible weight
of the cable, the tensile force throughout this cable is the same with value T . The FBDs

for points A and E are shown in Fig. 2,� where as discussed in Fig. 3.9 on p. 119, the
cable forces applied to pulley A have been shifted to the bearing of that pulley, and
similarly for pulley E.

Governing Equations & Computation

Equilibrium Equations The equilibrium equations for point A are

Figure 2
Free body diagrams of points A and E. The
force systems for points A and E are both con-
current, although these figures show some of
the forces to be slightly separated for clarity.

Helpful Information

Notation for forces. In problems where
we take the force supported by a structural
member to be positive in tension, such as
T , TAB , and TAC in this example, we will
often use the symbol T to emphasize that
a positive value means tension.

X
Fx D 0 W �TAB C TAC cos 50ı C T sin 30ı D 0; (1)X
Fy D 0 W TAC sin 50ı � T � T � T cos 30ı D 0: (2)

Equations (1) and (2) are a system of two equations with three unknowns (T , TAB ,
and TAC ), and hence an additional equation is needed. Thus, we also need the FBD for
point E in Fig. 2, and we write the equilibrium equationX

Fy D 0 W T C T �W D 0 ) T D
W

2
: (3)

Using the solution T D W=2 obtained in Eq. (3), Eqs. (1) and (2) may be solved for

TAB D .1:452/W; (4)

TAC D .1:871/W: (5)

Force Laws The various failure criteria can now be applied using Eqs. (3)–(5):

If T D 100 lb; then W D 200 lb: (6)

If TAB D 200 lb; then W D 138 lb: (7)

If TAC D 200 lb; then W D 107 lb: (8)

Only the smallest value ofW in Eqs. (6)–(8) will simultaneously satisfy all three failure
criteria. Thus the largest value W may have is

Wmax D 107 lb; (9)

and cable AC will be the first to fail.

Discussion & Verification As expected, Eqs. (3)–(5) show that all cable forces are
tensile. After this check, we should substitute all our solutions into the equilibrium
equations to verify that each of them is satisfied. A common error in problems such as
this is to assume that all cables are at their failure loads simultaneously.

�The need for the FBD at E may not be apparent until the equilibrium equations for point A are
written and we find there are too many unknowns.
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E X A M P L E 3.3 A Problem Requiring Multiple FBDs

Figure 1

A small cable car is used to transport passengers across a river. If the cable car and
its contents have a mass of 400 kg, determine the force in cables AC and ED and the
force in bar AB . Point A is a pin.

S O L U T I O N

Road Map We begin this problem by searching for an appropriate particle, or parti-
cles, whose equilibrium should be analyzed. Points A and B are likely choices, and we
will see that both of these are needed to obtain enough equations for a solution.

Modeling The FBDs for points A and B are shown in Fig. 2 where for pulley B the
cable forces have been shifted to the bearing of the pulley. The weight of the cable car
and its contents is .400 kg/.9:81m=s2/ D 3924N D 3:924 kN. We will assume pulley
B is frictionless so that the tensile force throughout cable ED is the same. Note that
the orientation of bar AB is unknown. An xy coordinate system is also selected.

Figure 2
Free body diagrams of points A and B .

Common Pitfall

Don’t confuse mass and weight. A com-
mon error, especially when you are using SI

units, is to mistake mass for weight when
drawing FBDs, writing equilibrium equa-
tions, and so on. Mass must be multiplied
by acceleration due to gravity to obtain
weight. With reference to Fig. 2, if you incor-
rectly give the weight of the cable car and
its contents a value of 400 , then the values
you obtain for TAB , TAC , and TED are all
about an order of magnitude too small!

Governing Equations The equilibrium equations for point A areX
Fx D 0 W �TAB sin˛ C TAC cos 20ı D 0; (1)X
Fy D 0 W TAB cos˛ C TAC sin 20ı � 3:924 kN D 0: (2)

While we would like to immediately solve these two equations, we observe that there
are three unknowns, TAB , TAC , and ˛. Thus, additional equilibrium equations are
needed, and to produce these we also consider the equilibrium of point B . Thus, from
the FBD of point B shown in Fig. 2, we writeX

Fx D 0 W TAB sin˛ � TED cos 10ı C TED cos 20ı D 0; (3)X
Fy D 0 W �TAB cos˛ � TED sin 10ı C TED sin 20ı D 0: (4)

Computation There are now four equations and four unknowns, TAB , TAC , TED ,
and ˛. Solving a system of four equations is rarely fun and is often tedious, especially
when trigonometric functions of the unknowns are involved. While use of software
such as Mathematica or Maple can considerably ease this burden, in many problems
some careful study of the equation system will offer a simple solution strategy, and
before reading further, you should examine these equations to see if you can identify
such a strategy.

Solving for the term TAB sin˛ in Eq. (1) and substituting this into Eq. (3), and
solving for the term TAB cos˛ from Eq. (2) and substituting this into Eq. (4), provide
a system of two equations in two unknowns, TAC and TED , which can then be solved
to obtain

TAC D 1:019 kN and TED D 21:23 kN: (5)

Now, using Eqs. (1) and (2) to compute the ratio TAB sin˛=.TAB cos˛/, we obtain an
expression for tan˛ which then provides

˛ D 15:00ı: (6)

Finally, TAB may be found from any of Eqs. (1)–(4) as

TAB D 3:70 kN: (7)

Discussion & Verification As expected, the solution shows all cables are in tension.
Furthermore, by intuition we also expect the force supported by bar AB to be tensile.
After these checks, we should substitute all our solutions into the equilibrium equations
to verify that each of them is satisfied.
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E X A M P L E 3.4 Reactions and Force Polygons

Figure 1

The structure consists of a collar at B that is free to slide along a straight fixed bar AC .
Mounted on the collar is a frictionless pulley, around which a cable supporting a 5 lb
weight is wrapped. The collar is further supported by a bar BD.

(a) If ˛ D 0ı, determine the force in barBD needed to keep the system in equilibrium.

(b) Determine the value of ˛ that will provide for the smallest force in bar BD, and
determine the value of this force.

S O L U T I O N

Road Map Part (a) will involve two unknowns, the force in bar BD and the reaction
between the collar and the fixed bar AC . Because there are two equilibrium equations
available, we expect the solution to be reasonably straightforward. Part (b) is more
challenging: here there will be three unknowns, and in addition to the two equilibrium
equations, a minimization criterion will be needed.

Part (a)

Modeling In drawing the FBD for the collar, we cut through the cable twice and bar
BD once, and we separate the collar from bar AC . Assuming the pulley is frictionless
and the cable is weightless, the tensile force is the same throughout the cable. Further,
there is a reaction between the collar and bar AC . We could consult Fig. 3.12 to deter-
mine the direction for this reaction, but it is easy to construct this as follows. The collar
may not move perpendicular to bar AC , thus there must be a reaction in this direction.
The collar is free to slide along bar AC , so there is no reaction in this direction. Hence
the FBD is as shown in Fig. 2.

Governing Equations The equilibrium equations for point B are
Figure 2
Free body diagram for point B when ˛ D 0ı. X

Fx D 0 W �R sin 30ı C FBD � 5 lb D 0; (1)X
Fy D 0 W R cos 30ı � 5 lb D 0: (2)

Computation Solving Eqs. (1) and (2) provides

R D 5:77 lb and FBD D 7:89 lb: (3)

Part (b)

Modeling With the orientation of member BD unknown, the FBD for point B is
shown in Fig. 3. The easiest and most insightful way to determine the orientation ˛

Figure 3
Free body diagram for point B when ˛ ¤ 0ı.

for which the force in member BD is smallest is to use the force polygon concepts of
Section 2.1.� Newton’s law

P
EF D E0 can be evaluated by constructing a closed force

polygon. Thus, in Fig. 4 we add all forces applied to point B in head-to-tail fashion to
form a closed polygon. In principle, the order in which forces are added does not matter;
but visualization and computation are more straightforward if forces having known
magnitude and direction are added first, followed by forces having unknown magnitude
and/or unknown direction. Thus, in Fig. 4(a) we assemble the two 5 lb cable forces
first. Of the two remaining forces, the reaction R has known direction but unknown
magnitude, whereas FBD has unknown direction and magnitude. Thus, it is best to
assemble R next and FBD last. Note that if ˛ D 0ı, then the polygon corresponds to
the forces found in Part (a).

�Problem 3.32 guides you to use calculus to solve this problem another way.
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Figure 4
Force polygons for equilibrium of point B .

Governing Equations & Computation We now study the force polygon in Fig. 4(a)
to see what orientation ˛ will give the smallest value of FBD . Clearly that orientation
is when FBD is perpendicular to the direction of R, and the force polygon for this case
is shown in Fig. 4(b). Hence, ˛ D �30ı, where the negative sign� is used because the
angle found here is opposite to the direction defined in Fig. 1.

To determine R and FBD , we could use the geometry of the force polygon shown
in Fig. 4(b), but it is easier to use the FBD in Fig. 3 to write the equilibrium equationsX

Fx D 0 W �R sin 30ı C FBD cos˛ � 5 lb D 0; (4)X
Fy D 0 W R cos 30ı � FBD sin˛ � 5 lb D 0: (5)

Substituting ˛ D �30ı into the above expressions, we may solve them to obtain

R D 1:83 lb and FBD D 6:83 lb: (6)

Alternate solution. Using a tn coordinate system where t and n are tangent and
normal, respectively, to barAC provides for an alternate solution that, for this problem,
is effective. Using these tn directions, the FBD for pointB is shown in Fig. 5, where for
convenience an angle ˇ is defined such that ˇ D 30ı C ˛. The equilibrium equations
are X

Ft D 0 W �.5 lb/ cos 30ı � .5 lb/ sin 30ı C FBD cosˇ D 0; (7)X
Fn D 0 W RC .5 lb/ sin 30ı � .5 lb/ cos 30ı � FBD sinˇ D 0: (8)

The merit of using this tn coordinate system is that Eq. (7) may be immediately solved

Figure 5
Free body diagram for point B using a tn coor-
dinate system.

to obtain

FBD D
1

cosˇ
.5 lb/.cos 30ı C sin 30ı/: (9)

Inspection of Eq. (9) shows that the smallest value of FBD occurs when cosˇ D 1.
Hence, ˇ D 0 and since ˇ D 30ıC˛, we determine that ˛ D �30ı, which is the same
conclusion obtained by using the force polygons in Fig. 4. To complete this solution,
we use ˇ D 0 in Eq. (9) to obtain FBD D 6:83 lb, and then we solve Eq. (8) to obtain
R D 1:83 lb, both of which agree with the solutions found in Eq. (6).

Discussion & Verification As discussed in the road map, Part (a) was reasonably
straightforward while Part (b) was more difficult because we were asked to minimize
a particular force. In Part (b), three equations were needed, and if you re-solve this
problem using the calculus approach described in Prob. 3.32, you will see that the
additional equation is the optimization condition dFBD=d˛ D 0. The feature of using
the force polygon approach is that the solution for ˛ can be found by inspection, which
then leaves the two equilibrium equations that were easily solved.

�Rather than using ˛ D �30ı, we could use ˛ D 330ı instead.
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P R O B L E M S

General Instructions. In all problems, draw FBDs and label all unknowns. It is
recommended that you state forces in cables and bars using positive values for tension.
In problems where forces due to gravity are present, unless otherwise stated, these
forces are in the downward vertical direction in the illustration provided. Tip: To prac-
tice extra problems quickly, draw FBDs and write equilibrium equations, but do not
solve for unknowns.

Problem 3.1

Consider an airplane whose motion is described below. For each case, state whether or
not the airplane is in static equilibrium, with a brief explanation.

(a) The airplane flies in a straight line at a constant speed and at a constant altitude.

(b) The airplane flies in a straight line at a constant speed while climbing in altitude.

(c) The airplane flies at a constant speed and at a constant altitude while making a
circular turn.

(d) After touching down on the runway during landing, the airplane rolls in a straight
line at a constant speed.

(e) After touching down on the runway during landing, the airplane rolls in a straight
line while its brakes are applied to reduce its speed.

Note: Concept problems are about explanations, not computations.

Problems 3.2 and 3.3

In a machining setup, workpiece B , which weighs 20 lb, is supported by a fixed V
block E and a clamp at A. All contact surfaces are frictionless, and the clamp applies
a vertical force of 35 lb to the workpiece. Determine the reactions at points C and D
between the V block and the workpiece.

Figure P3.2 Figure P3.3

Problem 3.4

A skier uses a taut tow rope to reach the top of a ski hill. The skier weighs 150 lb, the
snow-covered slope is frictionless, and the tow rope is parallel to the slope.

(a) If T2 D 200 lb, determine the value of T1 to move the skier up the slope at constant
velocity and the reaction between the skier and the slope.

(b) If T1 D 200 lb, determine the value of T2 to move the skier up the slope at constant
velocity and the reaction between the skier and the slope.

Figure P3.4
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Problem 3.5

The dimension h is to be determined so that a worker can comfortably slide boxes
weighing up to 100 lb up and down a frictionless incline. If the worker can apply a
50 lb horizontal force to the box, what is the largest value h should have?

Figure P3.5

Problem 3.6

Blocks A and B each have 5 kg mass, and all contact surfaces are frictionless.

(a) Determine the force F needed to keep the blocks in static equilibrium and the
forces on all contact surfaces.

(b) If the value of F determined in Part (a) is applied, will the blocks move? Explain.

(c) If F is smaller than the value determined in Part (a), describe what happens.

Figure P3.6

Problem 3.7

Bead A has 1 kg mass and slides without friction on bar BC .

(a) Determine the force F needed to keep the bead in static equilibrium and the reac-
tion force between the bead and bar.

(b) If the value of F determined in Part (a) is applied, will the bead move? Explain.

(c) If F is larger than the value determined in Part (a), describe what happens.

Figure P3.7

Problem 3.8

A crane is used to lift a concrete pipe weighing 5 kN into place. If d D 0:25m, deter-
mine the tension in cables AB and AC .

Figure P3.8 and P3.9

Problem 3.9

A crane is used to lift a concrete pipe weighing 5 kN into place. For precision position-
ing, the worker at C can apply up to a 400N force to cable AC . Determine the largest
distance d the concrete pipe may be moved.

Problem 3.10

Guy wireAB is used to help support the utility poleAC . Assuming the force supported
by the utility pole is directed along the line AC ,� determine the force in wire AB and
pole AC if P D 800N.

Figure P3.10 and P3.11�Whether or not this statement is true depends on details of how end C of the utility pole is
supported. Such issues are explored in Chapter 5.
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Problem 3.11

Guy wire AB is used to help support the utility pole AC . If the guy wire AB can
support a maximum tensile force of 500 lb, and if the pole AC can support a maximum
compressive force of 800 lb before buckling, determine the largest force P that can be
supported.

Problem 3.12

Two schemes are shown for hanging a large number of flowerpots side by side on
an outdoor porch. The flowerpots are to have 60 cm spacing. Each flowerpot weighs
175N.

(a) Determine the force in wire AB .

(b) Determine the forces in wires CD and CE.

(c) Compared to the scheme using one wire, the scheme using two wires may be more
resistant to adjacent flowerpots hitting one another in high winds. Do you believe
this statement is valid? Explain. Hint: Consider the application of a horizontal
wind force P to points A and C . Then compare the values of P needed to produce
the same horizontal displacement of, say, 10 cm.

Figure P3.12

Problem 3.13

A hydraulic cylinder AB produces a 4500 lb compressive force. Determine the forces
in members BD and BC .

Figure P3.13

Problem 3.14

The pulley is frictionless and all weights are negligible.

(a) Show that � D ˛.

(b) By drawing an FBD of the pulley and writing and solving equilibrium equations,
determine the force F in terms of the force T and angle � . Plot the ratio F=T
versus � for 0 � � � 90ı.

(c) Imagine a structure has the pulley and cable arrangement shown, and you carefully
measure � and ˛ and find they are not equal. Explain possible circumstances that
might cause this to occur.

Figure P3.14

Problem 3.15

Due to settlement of soil, a recently planted tree has started to lean. To straighten it, the
cable system shown is used, where a turnbuckle on cable AB is periodically tightened
to keep the cable taut as the tree gradually straightens. If the force in cableAB is 450N,
determine the force in cable CBD.Figure P3.15
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Problems 3.16 and 3.17

The symmetric cable and pulley arrangement shown is used to lift a fragile architectural
stone beam. If the only significant mass in the system is the 800 kg massm of the beam,
determine the forces in cables ACB and CDE.

Figure P3.16 Figure P3.17 and P3.18

Problem 3.18

Cables ACB and FEG each can support a maximum force of 3 kN. Cable CDE can
support a maximum force of 9 kN. The spreader bar CE can support a maximum
compressive force of 5 kN. Determine the largest mass m of the stone beam that may
be lifted, assuming this is the only significant mass in the system.

Problem 3.19

BlocksA andB each weigh 100 lb and rest on frictionless surfaces. They are connected
to one another by cable AB . Determine the force P required to hold the blocks in the
equilibrium position shown and the reactions between the blocks and surfaces. Figure P3.19

Problem 3.20

Two weights are suspended by cable ABCD. With the geometry shown, if one of the
weights is 2000N, determine the other weight W and the cable tensions.

Figure P3.20

Problem 3.21

The system shown consists of cables AB and AC , horizontal cable CE, and vertical
bar CD. If the cables and bar have the failure strengths shown, determine the largest
load P that can be supported by the system.

Figure P3.21
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Problem 3.22

The cable-pulley systems shown are used to support a weight W .

(a) Assuming the segments of cable between the pulleys are vertical, determine the
cable tension T in terms of W .

(b) If the segments of cable between the pulleys are not precisely vertical, will your
answer to Part (a) be affected? Explain.

Figure P3.22

Problem 3.23

The cable-pulley systems shown are used to support a weight W . Determine the cable
tension T in terms of W .Figure P3.23

Problem 3.24

The hoist shown is used in a machine shop to position heavy workpieces in a lathe.
If the cable between pulleys A and B can support a force of 300 lb, all other cables
can support a force of 500 lb, and bar CE can support a compressive force of 600 lb,
determine the largest weight W that may be lifted.

Figure P3.24

Problem 3.25

The cable system shown is used to help support a water pipe that crosses a creek. The
water pipe applies forces WA and WD to the ends of cables AB and DE, respectively,
where it is known that WA CWD D 800 lb. If cable BE is horizontal and cables AB
and DE are vertical, determine the tension in each cable and the forces WA and WD .

Figure P3.25
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Problem 3.26

Compared to the cable system shown in Prob. 3.25, the system shown here may provide
for more uniform support of a water pipe that crosses a creek. The water pipe applies
forces WA, WD , and WG to the ends of cables AB , DE, and GH , respectively, where
it is known that WA CWD CWG D 800 lb. If cables AB , DE, and GH are vertical,
determine the tension in each cable and the forces WA, WD , and WG .

Figure P3.26

Problem 3.27

The frictionless sliderB has a frictionless pulley mounted to it, around which is wrapped
a cable that supports weight W D 30 lb as shown. The pulley at D is also frictionless,
and member BE is a bar.

(a) If ˛ D 20ı, determine the force in bar BE and the reaction between the slider and
bar AC .

(b) Determine the value of ˛ that will provide for the smallest force in bar BE, and
determine the value of this force. Figure P3.27

Problem 3.28

If W D 225N, determine the tension in cable BCA and angle � .

Figure P3.28 and P3.29

Problem 3.29

Consider a configuration where � D 30ı. Is this configuration possible? Explain.

Problem 3.30

Determine the weights W1 and W2 needed for the pulley-cable structure to have the
equilibrium configuration shown. Figure P3.30
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Problem 3.31

Load P is supported by cables AB , AC , and AD. Cable AC is vertical. When you
solve for these cable tensions, a “problem” arises. Describe this problem and, if possi-
ble, its physical significance.

Figure P3.31

Problem 3.32

Repeat Part (b) of Example 3.4 on p. 126, using optimization methods of calculus.
Hint: Solve Eqs. (4) and (5) in Example 3.4 for FBD as a function of ˛. Then solve
for the value of ˛ that makes dFBD=d˛ D 0 (this equation is difficult to solve analyt-
ically, and you may need to solve it graphically or by other approximate means). This
problem can also be effectively solved using computer mathematics programs such as
Mathematica or Maple.
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3.2 Behavior of Cables, Bars, and Springs

We begin this section by more thoroughly examining the theoretical underpin-
nings of the equilibrium analyses performed in the previous section. We then
introduce springs and the inclusion of deformable members in equilibrium
problems. Finally, we present a very brief introduction to statically indetermi-
nate problems in an example problem.

Equilibrium geometry of a structure

When analyzing equilibrium by summing forces in Newton’s law
P
EF D E0,

the orientation of forces in the equilibrium configuration must be used, and
this generally means the orientation or shape of the structure after loads have
been applied must be known, or must be determined. To explore the ramifica-
tions of this statement, reconsider the example shown in Fig. 3.13, which was
previously analyzed in Example 3.1 on p. 122. The crucial question is, Do the
30ı and 45ı angles shown correspond to the geometry of the structure before
force P is applied, after P is applied, or both?

Figure 3.13
A structure consisting of a cable and bar sub-
jected to a force P . This structure was analyzed
in Example 3.1 on p. 122.

To answer this question, we first note that all materials are deformable,
meaning if a material is subjected to a force, the material will change shape.
After force P is applied in Fig. 3.13, the cable AB will support a tensile
force and hence will lengthen, or elongate, and the bar AC will support a
compressive force and hence will shorten, or contract. These statements are
true regardless of the material the cable and bar are made of, or the size of their
cross sections.� Thus, if the 30ı and 45ı angles correspond to the geometry of
the structure before P is applied, then the geometry of the structure after P is
applied is different, or vice versa.

Typically, the geometry of a structure before loads are applied is known.
For example, when constructing the structure shown in Fig. 3.13, we first cut
the cable and bar to prescribed lengths and then assemble them, producing a
structure with known initial geometry. After loads are applied, the structure’s
geometry changes and is unknown. So we immediately confront a problem
when writing

P
Fx D 0 and

P
Fy D 0, namely, What angles should be used

to resolve forces into x and y components?
Fortunately, for many problems, the members that constitute a structure

are sufficiently stiff and appropriately arranged so that the structure’s geom-
etry changes very little after loads are applied; and accurate results may be
obtained by taking the geometries of the structure before loads are applied
and after loads are applied to be the same. Words such as sufficiently stiff and
adequately arranged are imprecise and difficult to quantify, so in most of stat-
ics, we idealize materials to be undeformable, as described in the following
subsections.

Cables

We generally assume cables to be inextensible and perfectly flexible . In other
words, we assume a cable’s length does not change, regardless of how large
its tensile load is. Also, we assume a cable is perfectly flexible, so that it may

�Some materials are inherently more resistant to shape change than others, and increasing a
cable’s or bar’s cross section size will also help increase its resistance to deformation.
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be freely bent, such as when it is wrapped around a pulley. A perfectly flexible
cable will immediately buckle if it is subjected to a compressive force. In
addition, the cable may have a maximum tensile load limit, beyond which the
cable will be unsafe or will fail.

Bars

We generally assume bars to be inextensible, in both tension and compression.
In other words, we assume a bar’s length does not change, regardless of how
large its tensile or compressive load is. In Chapter 5, some additional features
of the behavior of bars are discussed within the context of rigid bodies. In
addition, a bar may have maximum tensile load and compressive load limits,
beyond which the bar will be unsafe or will fail.

Modeling idealizations and solution of
P
EF D E0

The idealizations of behavior discussed above allow us to approximate a real
life problem by a mathematical model where only the equilibrium equationsP
EF D E0 are needed to obtain the solution. Because of these assumptions, the

geometry of a structure after loads are applied is assumed to be known, and
the methods of analysis discussed in this book give exact results for the forces
in structural members and the support reactions.

Springs

A spring is a mechanical device that produces a force when it undergoes a de-
formation. Springs come in myriad shapes, sizes, and materials. A coil spring
is a particular type of spring that is constructed of wire (or other material)
wound in the shape of a helix (usually). Figure 3.14 shows several examples
of coil springs. A few examples of other types of springs include an elastic
band, an elastic cord, and a gas spring, which consists of a column of gas in a
sealed cylinder that is compressed by forces applied to it.

Figure 3.14. An assortment of small coil springs made of wire. While coil springs are
usually wrapped in the shape of a helix, two of the springs shown here are wrapped in
the shape of a square.

Springs such as those shown in Fig. 3.14 are important and common struc-
tural members. However, cables and bars are also springs. In problems where
the deformation of a structure is large, it is usually necessary to model the
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members of the structure, especially those that are very flexible, using springs.
Even if the deformations are not large, it may be necessary to determine the
deformation of the structure, in which case its members may be modeled as
springs.

The behavior of a linear elastic spring is characterized in Fig. 3.15. Linear

Figure 3.15. Spring law for a linear elastic spring.

means there is a linear relation between the force Fs supported by the spring
and the change in its length ı. Elastic means the spring returns to its original
length, or shape, after the force Fs is removed. The equation governing the
spring’s behavior is often called the spring law and is

Fs D kı

D k.L � L0/
(3.18)

where

Fs is the force supported by the spring;
ı is the elongation of the spring from its unstretched or unde-

formed length;
k is the spring stiffness (units: force/length);
L0 is the initial (unstretched) spring length;
L is the final spring length.

Helpful Information

Spring law sign conventions. The sign
conventions for the spring law given in
Eq. (3.18) are

Fs > 0 tension;

Fs < 0 compression;

ı D 0 unstretched position; (3.19)

ı > 0 extension;

ı < 0 contraction:

As stated in the Helpful Information margin note, in Eq. (3.19), the con-
vention in writing the spring law is that positive values of force Fs correspond
to tension and negative values to compression, and positive values of ı cor-
respond to elongation and negative values to contraction. The constant k is
called the spring stiffness: it is always positive, and a large value means the
spring is stiff whereas a low value means the spring is flexible. It is possible to
use other conventions for positive force and deformation. For example, if Fs
and ı are positive in compression and contraction, respectively, the spring law
is still given by Eq. (3.18). If Fs is positive in compression and ı is positive in
elongation, or vice versa, then the spring law becomes Fs D �kı.

Interesting Fact

Springs. Springs are important structural
members in their own right, but they are
also important for laying the groundwork for
characterizing more general engineering
materials and members, which you will
study in subjects that follow statics. Simply
stated, almost all materials are idealized
as springs, albeit more complex than that
shown in Fig. 3.15, over at least some
range of forces.

Springs are used to represent a variety of deformable members in engineer-
ing problems. When the deformations of cables and bars must be accounted
for, they are usually represented by springs where their stiffness depends on
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the material, length, and cross-sectional area of the bar or cable.� Other de-
formable members or structures, even if very complex, may also be character-
ized by a simple spring, such as the examples shown in Fig. 3.16. The nail

Figure 3.16. Examples of structures or devices that may be idealized as springs.

clipper and lock washer each have a metal part that deforms as loads are ap-
plied. The teacup rests on a cushion of foam packaging that deflects due to

�For both cables and bars, the spring stiffness is k D AE=L, where A and L are the cross-
sectional area and length, respectively, of the cable or bar, and E , called the elastic modulus
with units of force/area, is a property of the material that characterizes its inherent stiffness.
For example, nylon has E D 4�105 lb=in:2, while steel, which is much stiffer, has E D
30�106 lb=in:2.
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forces from vibrations during handling. The tire of the wheelbarrow supports
loads by changing its shape and compressing the air within it. The multistory
building deflects when a force, perhaps due to wind, is applied as shown. In
all cases cited here, the linear elastic spring law Fs D kı may be used over
at least a portion of the full range of response that these devices display, al-
though determining the value of k usually requires further analysis. Note that
in all of these problems, as the deflection ı increases beyond some point, the
response probably becomes nonlinear. For example, the nail clipper becomes
very stiff once the cutting edges come into contact. The multistory building,
on the other hand, will likely become less stiff as ı increases beyond some
limit because the structural members within the building will sustain damage
if they are loaded too severely.

Occasionally springs are designed to be nonlinear, such as the leaf spring
suspension for a truck shown in Fig. 3.17. When the load supported by the axle
is small, only a few of the leaves in the spring will engage and the stiffness
is low. As the load increases, more leaves engage and the stiffness becomes
progressively higher. Although nonlinear, a leaf spring is still elastic since it
returns to its original shape when the load is removed.

Figure 3.17
Truck axle with multileaf spring suspension.
Such springs are elastic, but nonlinear.

End of Sect ion Summary

In this section, some of the finer points regarding static equilibrium were re-
viewed, and springs were discussed in detail. Some of the key points are as
follows:

� When you are writing equilibrium equations
P
EF D E0, the geometry of

the structure in the equilibrium position must be used.

� A spring is a deformable member that undergoes a change of length
when subjected to a force. The spring law is Fs D kı, where k is called
the spring stiffness and k � 0. In writing this equation it is assumed that
force Fs and displacement ı are positive in the same direction. The force
Fs and displacement ı may be measured positive in opposite directions,
but it may be necessary to introduce a negative sign in the spring law
(i.e., Fs D �kı) as discussed on p. 137.
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E X A M P L E 3.5 Springs

Figure 1
Briefcase latch in the open position.

A model for the latch of a briefcase is shown. Spring AB has stiffness k D 3N=cm
and 6 cm unstretched length.

(a) Determine the force F needed to begin closing the latch from the open position
shown.

(b) Determine the force F needed to begin opening the latch from the closed position
where member BC is horizontal.

S O L U T I O N

Road Map This problem involves a spring, and to determine the force it supports
requires that we use the spring law, Eq. (3.18) on p. 137. This equation is in addition
to the equilibrium equations.

Part (a)

Modeling Free body diagrams for points B and C are shown in Fig. 2. Note in the
FBD for B there are two reactions Rx and Ry between the roller at B and the track it
rolls in. However, at the instant the latch begins to close, contact between the roller and
vertical surface is broken and hence, Rx D 0.

Figure 2
Free body diagrams of points B and C for clos-
ing the latch from the open position.

Governing Equations & Computation

Force Laws To determine the spring force, one of the forms of Eq. (3.18) will always
be applicable, with the choice depending on the form of data available in the problem.
Here the initial length of the spring is L0 D 6 cm, and the final length of the spring,
from Fig. 1, is L D 4 cm. Hence, in this problem the second form of Eq. (3.18) is more
useful. In the geometry shown, when the latch begins to close, the spring force Fs is

Fs D

�
3

N

cm

�
.4 cm � 6 cm/ D �6N: (1)

Recall that in developing Eq. (3.18), and hence in writing Eq. (1), the spring force Fs is
positive in tension. Thus, the negative sign that appears in Eq. (1) indicates the spring
is in compression. However, in the FBD of point B , the force Q applied by the spring
to point B is taken to be positive in compression. Thus, Q D �Fs D 6N. This mental
accounting of sign is simple to perform; but if there is any confusion, then adding the
FBD of the spring to that of point B , as shown in Fig. 3, provides full clarification,
where it is seen that Newton’s third law requires Q D �Fs .

Figure 3
Free body diagrams of point B and the spring
showing that force Q and spring force Fs are
related by Newton’s third law with the result
Q D �Fs .

Equilibrium Equations Writing equilibrium equations for point B providesX
Fx D 0 W Q �Rx C TBC .2=

p
5/ D 0; (2)X

Fy D 0 W Ry C TBC .1=
p
5/ D 0: (3)

With Rx D 0 and Q D 6N, Eqs. (2) and (3) may be solved to obtain

TBC D �6:708N and Ry D 3:000N: (4)

Writing equilibrium equations for point C providesX
Fx D 0 W �TBC .2=

p
5/C TCD D 0; (5)X

Fy D 0 W �TBC .1=
p
5/ � F D 0: (6)

By using the result for TBC in Eq. (4), Eqs. (5) and (6) may be solved for:

TCD D �6:000N and F D 3:000N: (7)

Hence, a downward force F D 3:00N will cause the latch to begin closing.
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Part (b)

Modeling In the closed position, member BC is horizontal as shown in Fig. 4. The
FBDs of pointsB andC are shown in Fig. 5 where, for convenience, we have reassigned
F to be positive upward since clearly a force in this direction is needed to open the
latch. Note in the FBD for C , there is a reaction RC between point C and the surface
it contacts. However, at the instant the latch begins to open, this contact is broken and
hence, RC D 0.

Figure 4
Briefcase latch in the closed position.

Governing Equations & Computation

Force Laws To obtain TBC , the force Q exerted by the spring on point B is needed.
The initial length of spring AB is known, and the final length L of the spring can be
evaluated, using the geometry in Figs. 1 and 4, as

L D 4 cmC 2 cmC 6 cm � .
p
5 cmC

p
35 cm/ D 3:848 cm: (8)

In Eq. (8), 4 cmC2 cmC6 cm is obtained from Fig. 1 as the horizontal distance between
pointsA andD, and

p
5 cmC

p
35 cm is obtained from Fig. 4 as the horizontal distance

between points B and D. The second form of Eq. (3.18) then provides

Fs D

�
3

N

cm

�
.3:848 cm � 6 cm/ D �6:456N: (9)

Equilibrium Equations From the FBD of pointB in Fig. 5, the equilibrium equations
for point B are as follows:X

Fx D 0 W QC TBC D 0; (10)X
Fy D 0 W Ry D 0: (11)

As argued earlier in Fig. 3, Q D �Fs D 6:456N, and the solutions of Eqs. (10) and

Figure 5
Free body diagrams for points B and C for
opening the latch from the closed position.

(11) are, respectively,

TBC D �6:456N and Ry D 0 : (12)

Writing equilibrium equations for point C provides

X
Fx D 0 W �TBC C TCD

 p
35

6

!
D 0; (13)

X
Fy D 0 W F C TCD

 
1

6

!
CRC D 0: (14)

By using the results for TBC from Eq. (12) and noting RC D 0, Eqs. (13) and (14)
may be solved for:

TCD D �6:548N and F D 1:091N: (15)

Hence, an upward force F D 1:09N will cause the latch to begin opening.

Discussion & Verification In this example, it was possible to evaluate the material
models (i.e., spring law) independently of solving the equilibrium equations. In some
problems, such as Example 3.6, the material models and the equilibrium equations are
coupled and must be solved simultaneously.
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E X A M P L E 3.6 Introduction to Statically Indeterminate Problems

Figure 1

A drop hammer is used in some sheet metal forming and forging operations. With
this machine, die B is dropped onto die A, and due to impact forces, the workpiece
between A and B is hammered into the shape of the cavity or die between them. Both
diesA andB slide on low-friction fixed vertical bars so they maintain proper alignment.
Special coil springs CD and EF , called die springs, are used to help isolate the severe
vibrations of the dies from being transmitted to the floor that supports the machine.

The user of the machine determines that additional stiffness is needed for vibration
isolation. Although the die springs could be replaced with heavier springs, this requires
disassembly of the machine. Rather, additional vertical springs such as GH and IJ are
more easily added and removed when they are no longer needed. The springs have
stiffnesses k1 D 5000 lb=in: and k2 D 1500 lb=in: If all springs are unstretched when
ı D 0, determine the deflection ı if die A is subjected to a downward vertical force
P D 1 kip.

S O L U T I O N

Road Map A solution to this problem will require as many equations as there are
unknowns. As described in the margin note, the equations of equilibrium alone are not
sufficient in number, and additional equations must be added that describe the behavior
of the springs.

Figure 2
Free body diagram of die A modeled as a
particle.

Modeling Assuming the vertical guides allow die A to undergo only vertical motion
with no rotation, both springs at the bottom of A are compressed by the same amount,
and hence develop the same forceQ1. Similarly, both springs on the sides ofA develop
the same force Q2. Idealizing die A as a particle allows the FBD shown in Fig. 2 to
be drawn, where Q1 and Q2 are taken to be positive in compression and tension,
respectively.

Equilibrium Equations The equilibrium equation for A is

Helpful Information

Statically indeterminate structures. A
characteristic of a statically indeterminate
structure is that there are extra “load paths”
available to support the applied loads. In
this example, the springs at the base, by
themselves, are adequate to support the
applied loads, and equations of equilibrium
will determine exactly what value of force
they must support. Conversely, the springs
on the sides, by themselves, are also
adequate to support the applied loads,
and equations of equilibrium will determine
exactly what value of force they must sup-
port. With both sets of springs present, it is
unclear from the equations of equilibrium
alone what portions of the applied force are
supported by each set of springs. Either
set of springs could be viewed as providing
an extra load path.

Static indeterminacy makes analysis
more difficult, but is often a desirable fea-
ture to have in structures. For example, if
one load path in a statically indeterminate
structure is lost because of an accident or
failure, the remaining load paths may be
sufficient for the structure to remain in static
equilibrium. Static indeterminacy is studied
in greater detail in later chapters of this
book.

X
Fy D 0 W 2Q1 C 2Q2 � P D 0: (1)

Since no forces act in the x direction, the equation
P
Fx D 0 is automatically satisfied

regardless of the values forQ1,Q2, and P , and hence this equation provides no useful
information.

Equation (1) is unlike any we have encountered thus far in this book. Even though
P D 1 kip, there remain two unknowns and only one equation with which to determine
them. Such a problem has no unique solution. Rather, there are an infinite number of
solutions for Q1 and Q2 that will satisfy Eq. (1). We call such problems statically
indeterminate, because the equations of static equilibrium alone are not sufficient to
determine the unknowns. To obtain the appropriate solution among the infinite number
of solutions that are possible, additional information is needed. In this problem, this
information corresponds to descriptions of the deformability of the springs, which we
address next.

Force Laws Since all the springs are uncompressed when ı D 0, the first form of
Eq. (3.18) on p. 137 allows us to write for each set of springs

Q1 D k1ı D .5000 lb=in:/ ı; (2)

Q2 D k2ı D .1500 lb=in:/ ı: (3)

In writing Eq. (2),Q1 is positive in compression and positive ı gives contraction of the
springs at the base. Hence, the negative signs associated with each of these quantities,
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compared to our normal convention of spring force being positive in tension and spring
deformation being positive in extension, compensate one another.

Computation Combining Eqs. (1)–(3) provides

2

�
5000

lb

in
C 1500

lb

in

�
ı � P D 0: (4)

With P D 1000 lb, we now have one equation and one unknown, and Eq. (4) may be
solved for

ı D 0:0769 in: (5)

Once ı is known, if desired, we may return to Eqs. (2) and (3) to determine the
portion of the force P that is supported by each spring to obtain

Q1 D 385 lb and Q2 D 115 lb: (6)

Discussion & Verification We expect the die to move downward, and hence our
solution should show ı > 0, which it does. We expect springs CD and EF to be in
compression, and since Q1 was defined to be positive in compression, our solution
should show Q1 > 0, which it does. Similarly, we expect springs GH and IJ to be in
tension, and since Q2 was defined to be positive in tension, our solution should show
Q2 > 0, which it does. After these simple checks, we should verify that our solutions
for ı, Q1, and Q2 satisfy all governing equations, which consist of the equilibrium
equation, Eq. (1), and the force laws, Eqs. (2) and (3).

Figure 3. A drop hammer used for sheet metal forming. A finished part is shown in the
lower left-hand corner.
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P R O B L E M S

Problem 3.33

A device for tensioning recording tape in a video cassette recorder is shown. The tape
wraps around small pins atA,B , and C . The pins atA and C are fixed, and the pin atB
is supported by a spring and can undergo vertical motion in the frictionless slot. Friction
between the tape and pins is negligible. The spring has stiffness k D 0:5N=mm and is
unstretched when h D 25mm. Neglecting the size of the pins, determine the tension in
the tape when

(a) h D 18mm.

(b) h D 10mm.
Figure P3.33

Problem 3.34

The brake linkage for a vehicle is actuated by pneumatic cylinder AB . Cylinder AB ,
springs CD, EF , and GH , and the slotted tracks at A, C , E, and G are all parallel. If
the slotted tracks are frictionless, and cylinder AB produces a tensile force of 12 kip,
determine the deflection ı and forces in members AC , AE, and AG. All springs are
unstretched when ı D 0.

Figure P3.34

Problem 3.35

Collar A has negligible weight and slides without friction on the vertical bar CD. De-
termine the vertical force F that will produce � D 30ı if

(a) Spring AB is unstretched when � D 0ı.

(b) Spring AB has an unstretched length of 2 ft.

(c) Spring AB has an unstretched length of 4 ft.
Figure P3.35

Problem 3.36

Point A is supported by springs BC and DE and cable segments AB and AD. The
springs and cables have negligible weight, and the springs have identical stiffness k D
10N=cm and 20 cm unstretched length. The structure has the geometry shown when
F D 225N.

(a) Determine the lengths of cables AB and AD.

(b) Determine the coordinates of point A when F D 0.

Figure P3.36
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Problem 3.37

Spring AB is supported by a frictionless roller at B so that it is always vertical. If the
spring is unstretched when � D 0ı, determine � and the forces in spring AB and bar
AC when F has the value indicated. Hint: The force supported by bar AC is zero
when � < 90ı, and may be nonzero when � D 90ı.

(a) F D 25 lb.

(b) F D 50 lb.

Figure P3.37

Problem 3.38

The machine shown is used for compacting powder. Collar C slides on plunger AB
and is driven by a motor (not shown in the sketch) so that it has the oscillatory vertical
motion ı D .10mm/.sin�t/ where t is time in seconds. Plunger AB weighs 4N
and is pressed against the powder by the spring whose end is driven by the motion
of collar C . The spring has stiffness k D 0:1N=mm and 100mm unstretched length.
Assume there is no friction in the system (other than friction between individual grains
of powder), and assume the motion of C is slow enough that there are no dynamic
effects. Determine the largest and smallest forces the plunger applies to the powder
over a full cycle of motion of C if

(a) The powder column is at its initial height h D 110mm.

(b) The powder column is at its compacted height h D 80mm.
Figure P3.38

Problem 3.39

A fuel pump is driven by a motor-powered flywheel. The pump behaves as a spring with
stiffness 2N=mm that is unstretched when ˛ D ˙60ı. Neglect any possible dynamic
effects.

(a) Determine the largest tensile and compressive forces spring AB experiences dur-
ing one revolution of the flywheel, and state the positions ˛ where these occur.

(b) Without further analysis, is it certain that the largest tensile and compressive forces
in crank arm BC occur at the same positions ˛ determined in Part (a)? Explain.

Figure P3.39
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Problem 3.40

The suspension for the landing gear of an aircraft is shown. The wheel is attached
to bar BC , which slides vertically without friction in housing A, which is fixed to the
frame of the aircraft. The spring is precompressed so that it does not undergo additional
deflection until the force supported by the landing gear is sufficiently large. Further, if
the force supported by the landing gear exceeds a limit, the suspension “bottoms out”
and deflects no more. Specify the spring stiffness and initial length if h D 18 in: for
F � 500 lb and h D 12 in: for F � 1500 lb.

Figure P3.40

Problem 3.41

A hanger is made of cord-reinforced rubber. It is used as a spring support with limited
travel for a wide variety of applications. If prototype samples are available, an effective
means to characterize its nonlinear stiffness is by testing in a laboratory, where forces
of known magnitude are applied and the deflections that result are measured. Imagine
this produces the load-deflection data provided in the table of Fig. P3.41.

(a) Determine the constants a, b, and c that will fit the general quadratic equation
F D aC bı C cı2 to the load-deflection data for this hanger.

(b) Plot the load-deflection relation determined in Part (a).

(c) Speculate on the range of values for F for which the relation obtained in Part (a)
will be reasonably accurate.

Figure P3.41

Problem 3.42

In Prob. 3.41, imagine that the load-deflection data for the hanger is such that F D
.100 lb=in:/ ı C .200 lb=in:2/ ı2 and that three hangers are used to support a straight
rigid pipe from an uneven ceiling as shown. Assume the pipe may undergo vertical
motion only. Hanger 2 displaces by 0.50 in. more than hangers 1 and 3. Because of
symmetry, equal forces are supported by hangers 1 and 3. Further, the sum of the forces
supported by all three hangers equals the weight of the pipe and its contents, which is
600 lb. Determine the deflection of the pipe and the forces supported by each of the
three hangers.

Figure P3.42
Problems 3.43 and 3.44

If k D 5N=mm and W D 100N, determine ı. Springs are unstretched when ı D 0.

Figure P3.43 Figure P3.44
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Problem 3.45

A fragile item A, with weight W , is to be shipped within a box B using the vertical
spring suspension shown. Springs 1 and 2 have stiffnesses k1 and k2, respectively, and
unstretched lengths L1 and L2, respectively. The springs are installed by stretching
them to the same length h and then attaching them to A. The vertical deflection ı is
measured such that ı D 0 is the position where A is in the middle of box B .

(a) Show that W and ı are related by ı D
W � k1.h � L1/C k2.h � L2/

k1 C k2
.

(b) Explain why ı ¤ 0 when W D 0.

(c) Suggest some mathematical tests you can perform to verify the accuracy of the
expression in Part (a). For example, if ı D 0 and k2 D 0, show that W has the
expected value.

Figure P3.45

Problem 3.46

A model for the suspension of a truck is shown. Block A represents the chassis of the
truck, and it may undergo vertical motion only with no rotation. Force F represents the
portion of the truck’s weight and payload that is supported by this suspension. Due to
F , block A deflects by amount ı. When F D 0, both springs are undeformed and there
is a gap h between the second spring and the chassis. When ı is less than h, only one
spring supports F ; and when ı exceeds h, the second spring engages and helps support
F . If k1 D 1200 lb=in., k2 D 600 lb=in., and h D 1:3 in:,

(a) Determine ı when F D 1400 lb.

(b) Determine ı when F D 2800 lb.
Figure P3.46

Problem 3.47

A model for a push button or key, such as on a calculator or computer keyboard, is
shown. The model has the feature that if F is sufficiently large, point A snaps through
to give the user positive tactile feedback that the keystroke was properly entered. Both
springs have stiffness 2N=mm, and when F D 0, the structure has the geometry shown
and all springs are unstretched.

(a) Derive an expression that gives F as a function of ı.

(b) Plot F versus ı for 0 � ı � 5mm.

(c) Determine the approximate largest value that F has for 0 � ı � 2 mm.

(d) What deficiency does this model display for representing a push button?
Figure P3.47

Problem 3.48

The model of Prob. 3.47 is revised to include a third spring. Springs AB and AC have
stiffness 2N=mm; and spring AD has stiffness 0:3N=mm. When F D 0, the structure
has the geometry shown and all springs are unstretched.

(a) Derive an expression that gives F as a function of ı.

(b) Plot F versus ı for 0 � ı � 5mm.

(c) Determine the approximate largest value that F has for 0 � ı � 2 mm.

(d) Does spring AD serve a useful purpose in this model? Explain.
Figure P3.48
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3.3 Equilibrium of Particles in Three
Dimensions

The conditions for static equilibrium of a particle in three dimensions areX
EF D E0;

or
�X

Fx

�
O{ C

�X
Fy

�
O| C

�X
F´

�
Ok D E0;

or
X

Fx D 0 and
X

Fy D 0 and
X

F´ D 0:

(3.20)

The first two expressions in Eq. (3.20) state conditions for equilibrium in vec-
tor form, while the last expression states conditions in scalar form. In three-
dimensional problems, it will very often be advantageous to use the vector
form.

Figure 3.18
(a) Temporary grandstand erected at Edinburgh
Castle, Scotland. (b) Close-up view showing
numerous bar members that intersect at joints.
Each of these joints may be modeled as a parti-
cle in equilibrium.

Fundamentally, everything stated in earlier sections for equilibrium of par-
ticles in two dimensions also applies to equilibrium in three dimensions, ex-
cept now all vectors have, in general, three components. The procedure for
drawing an FBD of a particle is as described in Section 3.1, except now it is
useful to think of the cut as being a closed surface that completely surrounds
the particle. The procedure for analysis is also as described in Section 3.1, ex-
cept now forces in the ´ direction must also sum to zero. All remarks made
in Sections 3.1 and 3.2 on pulleys and the forces supported by bars, cables,
and springs are still applicable. Some additional remarks on reactions and the
solution of algebraic equations are helpful.

Reactions

We use the same thought process described in Section 3.1 to construct reac-
tions for a particle in three dimensions. Namely, if a support prevents motion
of a particle in a certain direction, it can do so only by producing a reaction
force in that direction. When you are solving particle equilibrium problems,
the supports and associated reactions shown in Fig. 3.19 occur often. It is not
necessary to memorize these reactions; rather, you should reconstruct these as
needed. For example, consider the slider on a fixed frictionless bar. The bar
prevents motion of the slider in both the y and ´ directions, so there must
be reactions in both of these directions. The slider is free to move in the x
direction, hence there is no reaction in this direction.

Solution of algebraic equations

Analysis of equilibrium of one particle in three dimensions will typically pro-
duce three simultaneous linear algebraic equations (equilibrium equations)
with three unknowns. More complicated problems may require several FBDs,
and there will generally be three equations and three unknowns for each. If
the problem has convenient geometry and/or symmetry, then solving these
equations may be straightforward. In general, however, the solution of three
or more equations is tedious.

Fortunately, efficient techniques for solving systems of simultaneous al-
gebraic equations have been developed. Most scientific pocket calculators in-
clude programs for solving such equations, and you may wish to review the
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Figure 3.19. Some common supports and reactions in three-dimensional particle equi-
librium problems. Forces F1, F2, and F3 are hypothetical forces applied to a particle
by cables and/or bars that might be attached to the particle; and forces Rx , Ry , and R´
are reactions.

owner’s manual that came with your calculator to become familiar with this
feature. In addition, programs such as Mathematica, Maple, Mathcad, EES
(Engineering Equation Solver), MATLAB, and many others are available for
use on personal computers and workstations. You are strongly encouraged to
become familiar with some of these tools, as they will help you throughout
statics and subjects that follow, and in your professional practice.

While computing tools are indispensable in engineering, it is your respon-
sibility to be sure the answers produced by a calculator or computer are correct.
Errors can arise from a variety of sources including poor modeling, errors in
input data and/or program options that are selected, occasional software errors
(these are rare, but do occur), outright blunders, and so on. Any solution you
obtain, whether by computer or hand calculation, must be thoroughly interro-
gated so that you are certain it is correct. This is accomplished by substituting
your solutions into all of the governing equations for the problem (i.e., the
equilibrium equations plus perhaps other equations pertinent to the problem)
and verifying that all of these equations are satisfied. This check does not ver-
ify that FBDs have been accurately drawn and equations have been accurately
written. Thus, it is also necessary to scrutinize the solution to verify that it
is physically reasonable. These comments hold for both two-dimensional and
three-dimensional problems. However, it is generally more challenging to ver-
ify the validity of a solution to a three-dimensional problem.
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Summing forces in directions other than x, y , or ´

Most often, we choose coordinate directions x, y, and ´ for a particular prob-
lem because they provide a convenient description of geometry. As a result,
writing vector expressions for forces and summing forces in these directions
are usually straightforward. Occasionally, it will be useful to sum forces in a
direction other than x, y, or ´. While we could use a new coordinate system
for this purpose where one of the new x, y, or ´ directions is coincident with
the direction we are interested in, this is often not convenient because the nec-
essary geometric information for writing vector expressions for forces may
not be available or may be difficult to determine. An easier way is to use the
dot product, as follows.

Newton’s law in vector form isX
EF D E0 W EF1 C EF2 C � � � C EFn D E0: (3.21)

Of course, because the force vectors in Eq. (3.21) are written in terms of x,

Helpful Information

Vector equation versus scalar equation.
You should contrast Eqs. (3.21) and (3.22)
to see that the first of these is a vector
equation whereas the second is a scalar
equation.

y, and ´ components, Eq. (3.21) amounts to summation of forces in the x,
y, and ´ directions. Let Er be the direction in which we would like to sum
forces. Often Er will be a position vector. However, its physical significance is
irrelevant, other than it describes a direction that is useful for summing forces.
To sum forces in the direction of Er , we take the dot product of both sides of
Eq. (3.21) with the unit vector� Er=jEr j to obtain the scalar equilibrium equation

Summation of forces in the Er direction:X
Fr D 0 W EF1 �

Er

jEr j
C EF2 �

Er

jEr j
C � � � C EFn �

Er

jEr j
D 0: (3.22)

In the above expression, EF1 � Er=jEr j is the portion (or component) of force EF1
that acts in the direction Er , EF2 � Er=jEr j is the portion (or component) of EF2
that acts in the direction Er , and so on. On the right-hand side is the scalar
0, which of course is the portion (or component) of the vector E0 that acts in
the direction Er . Use of Eq. (3.22) is especially convenient in problems where
we might know that some of the forces are perpendicular to Er , in which case
the dot product of these forces with Er is zero. This technique is illustrated in
Example 3.8.

End of Sect ion Summary

In this section, the equations governing static equilibrium of a particle in three
dimensions were discussed. The main differences compared to equilibrium
in two dimensions are that reactions are more complex, FBDs depict forces
in three dimensions, and the equation systems that must be solved are larger.
Some of the key points are as follows:

� Problems in three dimensions with simple geometry can often be effec-
tively solved using a scalar approach. But very often a vector approach
will be more tractable.

�Because the right-hand side of Eq. (3.22) is zero, a unit vector in the direction of Er is not needed

and we could just as well evaluate EF1 � Er C EF2 � Er C � � � C EFn � Er D 0.
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� The selection of an xy´ coordinate system is dictated largely by the
geometry that is provided for a particular problem. Often it will be ef-
fective to sum forces in directions other than the x, y, or ´ direction,
and this is easily done using the dot product, as given by Eq. (3.22).

� Software for solving systems of simultaneous algebraic equations can
be very helpful. Regardless of how you obtain your solution for a partic-
ular problem, whether it be analytically or by using software, it is your
responsibility to verify the solution is correct, both mathematically and
physically.
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E X A M P L E 3.7 Cables, Bars, and Failure Criteria

Figure 1

The weight W is supported by boom AO and cables AB , AC , and AD, which are
parallel to the y, x, and ´ axes, respectively.

(a) If cables AB and AC can support maximum forces of 5000 lb each, and boomAO

can support a maximum compressive force of 8000 lb before buckling, determine
the largest weight W that can be supported. Assume that cable AD is sufficiently
strong to support W .

(b) If the supports at points B and C are relocated to points B 0 and C 0, respectively,
and W D 1000 lb, determine the forces supported by boom AO and cables AB ,
AC , and AD.

S O L U T I O N

Road Map In both parts of this problem, the solution approach is the same: make
appropriate modeling decisions to draw an FBD, write vector expressions for forces,
write equilibrium equations, and then solve these equations. In Part (a), we then apply
failure criteria to each member to determine the largest load W that can be supported.
In Part (b), we are given W D 1000 lb; and then we determine the force supported by
each member. By inspection,� the force in cable AD is equal to the weight W .

Part (a)

Modeling The FBD for point A is shown in Fig. 2, where the cable forces and boom
force are shown such that positive values correspond to tension. Vector expressions for
the cable forces and weight may be written by inspection, while the force supported by
the boom is written using position vector ErAO , with the following results:

Figure 2
Free body diagram of point A where, by in-
spection, the force in cable AD is equal to the
weight W .

EW D W.� Ok/; EFAB D FAB .� O|/; EFAC D FAC .�O{/;

EFAO D FAO
ErAO
jErAO j

D FAO
�9 O{ � 20 O| � 12 Ok

25
:

(1)

Governing Equations & Computation

Equilibrium Equations Applying Newton’s law with terms grouped by direction
provides X

EF D E0 W

�
FAO

�9

25
� FAC

�
O{ C

�
FAO

�20

25
� FAB

�
O|

C

�
FAO

�12

25
�W

�
Ok D E0: (2)

For Eq. (2) to be satisfied, each term must be zero independently. Thus, the following
system of equations results:

FAO
�9

25
� FAC D 0; (3)

FAO
�20

25
� FAB D 0; (4)

FAO
�12

25
�W D 0: (5)

The solution to Eqs. (3)–(5) is easily obtained and is

FAO D �
25

12
W; FAB D

5

3
W; and FAC D

3

4
W: (6)

� If this statement is not clear, you may formally arrive at this conclusion by drawing a FBD of
pointD (as in Fig. 3.4(b) on p. 117) and then use

P
F´ D 0.
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With weightW being a positive number that still needs to be determined, Eq. (6) shows
the forces supported by both cables are positive and hence they are in tension, and the
force supported by the boom is negative and hence it is in compression.

Force Laws Using Eq. (6), the various failure criteria can be applied as follows:

If FAO D �8000 lb; then W D 3840 lb: (7)

If FAB D 5000 lb; then W D 3000 lb: (8)

If FAC D 5000 lb; then W D 6670 lb: (9)

Only the smallest value ofW in Eqs. (7)–(9) will simultaneously satisfy all three failure
criteria, and thus the largest value W may have is 3000 lb.

Part (b)

Modeling The FBD of point A is the same as that shown in Fig. 2, except the orienta-
tions of FAB and FAC are slightly different. Vector expressions for the weight, boom
force, and cable force are

EW D 1000 lb.� Ok/; (10)

EFAB D FAB
ErAB
jErAB j

D FAB
5 O{ � 20 O| � 4 Ok

21
; (11)

EFAC D FAC
ErAC
jErAC j

D FAC
�9 O{ � 2 O| C 6 Ok

11
; (12)

EFAO D FAO
ErAO
jErAO j

D FAO
�9 O{ � 20 O| � 12 Ok

25
: (13)

Governing Equations Writing
P
EF D E0 provides the system of equations

FAB
5

21
� FAC

9

11
� FAO

9

25
D 0; (14)

�FAB
20

21
� FAC

2

11
� FAO

20

25
D 0; (15)

�FAB
4

21
C FAC

6

11
� FAO

12

25
D 1000 lb: (16)

Computation This system of equations is not as easy to solve as that in Part (a).
Systems of equation that are difficult to solve are a fact of life in engineering, and you
must be proficient in solving them. The basic strategy for hand computation (where one
of the equations is solved for one of the unknowns in terms of the others and then this
result is substituted into the remaining equations, and so on) is workable for systems
of three equations, but it rapidly becomes very tedious for larger systems of equations.

➠ You should take this opportunity to use a programmable calculator or one of
the software packages mentioned earlier to find the solutions to Eqs. (14)–(16), which
are

FAB D 1027 lb; FAC D 930 lb; and FAO D �1434 lb: (17)

➠

In addition to the results in Eq. (17), the force supported by cable AD is equal to W ,
therefore FAD D 1000 lb.

Discussion & Verification For both parts of this example, we expect the cables to
be in tension, and the boom to be in compression, and indeed our solutions show this.
A common error made in problems such as Part (a), where each member has its own
failure criterion, is to assume that each member is at its failure load at the same time.



154 Equilibrium of Particles Chapter 3

E X A M P L E 3.8 Summing Forces in a Direction Other Than x, y, or ´

Bar AB is straight and is fixed in space. Spring CD has 3N=mm stiffness and 200mm
unstretched length. If there is no friction between collar C and bar AB , determine

(a) The weight W of the collar that produces the equilibrium configuration shown.

(b) The reaction between the collar and bar AB .

S O L U T I O N

Road Map The initial length of the spring is given, and sufficient information is
provided to determine the final length of the spring. Thus, the spring force will be
determined first. Then we will use the dot product to sum forces applied to the collar in
the direction of barAB . For Part (b), we will use the equilibrium equation to determine
the reaction between the collar and bar.

Part (a)

Modeling The FBD for collar C is shown in Fig. 2. In accord with Fig. 3.19, there
are two reactions components between the collar and bar AB . If we select the direction
for ER1 first, so that it is perpendicular to bar AB , whose direction is ErAB , then the re-
maining reaction ER2 must be perpendicular to both ER1 and ErAB . Observe that there are
an infinite number of choices for the direction of ER1 with the only requirement being
that its direction must be perpendicular to ErAB . Once ER1 is selected, the requirement
that ER2 be perpendicular to both ER1 and ErAB dictates the only direction it may have.
With this approach, ER1 and ER2 have known directions but unknown magnitudes. Al-
ternatively, we may call the reaction simply ER, where ER is perpendicular to ErAB , but
otherwise has unknown direction and magnitude; this approach is employed later in
this problem.

Figure 1

Figure 2
Free body diagram for the collar C .

Governing Equations

Force Laws The spring’s final length is the magnitude of the position vector from
C to D (or vice versa). We could determine the coordinates of point C , and this along
with the coordinates of point D would allow us write ErCD . However, we will use the
following approach:

ErCD D ErCA C ErAD D .240mm/
ErBA
jErBAj

C ErAD

D .240mm/
�120 O{ � 240 O| C 240 Ok

360
C .120 O{ � 60 O| C 40 Ok/mm

D .40 O{ � 220 O| C 200 Ok/mm: (1)

Hence, the final length of the spring is L D jErCD j = 300mm, and using Eq. (3.18) on
p. 137, the force supported by the spring is

FCD D k.L � L0/ D

�
3

N

mm

�
.300mm � 200mm/ D 300N: (2)

Equilibrium Equations Using the FBD in Fig. 2, Newton’s law may be written for
the collar as X

EF D E0 W EFCD C ER1 C ER2 C EW D E0: (3)

Vector expressions for the weight and spring force are

EW D W.� Ok/; EFCD D FCD
ErCD
jErCD j

D .300N/
40 O{ � 220 O| C 200 Ok

300
: (4)
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Vector expressions for ER1 and ER2 can be developed using a variety of strategies.�

However, some careful thought will allow us to avoid the use of these vectors altogether
for Part (a) of this example! Referring to the FBD shown in Fig. 2, observe that ER1 and
ER2 are both perpendicular to direction BA. Thus, if we sum forces in this direction,

we know ER1 and ER2 will not appear in this equation since they have no component
in this direction. This can be accomplished by using the dot product on each force to
determine how much of them, or what component, acts in the BA direction. Thus, as
discussed in connection with Eq. (3.22) on p. 150, we take the dot product of both sides
of Eq. (3) with the unit vector ErBA=jErBAj to write

EFCD �
ErBA
jErBAj

C ER1 �
ErBA
jErBAj„ ƒ‚ …
D0

C ER2 �
ErBA
jErBAj„ ƒ‚ …
D0

C EW �
ErBA
jErBAj

D E0 �
ErBA
jErBAj„ ƒ‚ …
D0

: (5)

In Eq. (5) the dot product with the zero vector on the right-hand side is of course zero.
Because ER1 and ER2 are orthogonal to ErBA, their dot products must also be zero and
because of this knowledge we may altogether avoid evaluating those dot products in
Eq. (5). Evaluating the remaining two dot products in Eq. (5) results in

0 D .300N/
40 O{ � 220 O| C 200 Ok

300
�
�120 O{ � 240 O| C 240 Ok

360

CW.� Ok/ �
�120 O{ � 240 O| C 240 Ok

360

(6)

D .300N/.0:8889/ �W.0:6667/: (7)

Computation Equation (7) is a scalar equation, and its solution is

W D 400N: (8)

Note that as promised, this clever solution approach avoided having to compute the
reactions between the collar and bar.

Helpful Information

Use of dot product to sum forces. Use of
the dot product to sum forces in a direction
other than a coordinate direction can be
very helpful, as illustrated in this example.
This example can also be solved by directly
solving Eq. (3) (i.e.,

P
EF D E0), but this

requires writing expressions for ER1 and ER2
and some possibly tedious algebra.

Part (b)

Computation To determine the reactions between the collar and bar, we return to
Eq. (3) and solve for the reaction ER D ER1 C ER2 as

ER D � EFCD � EW

D .�300N/
40 O{ � 220 O| C 200 Ok

300
� .400N/.� Ok/

D .�40 O{ C 220 O| C 200 Ok/N; (9)

and the magnitude of the above reaction is

j ERj D 300N: (10)

Discussion & Verification As a partial check of our solution, we can verify that
ER given by Eq. (9) is perpendicular to bar BA by showing ER � ErBA D 0. While ER

must be given by the expression determined in Eq. (9) for equilibrium to prevail, there
are an infinite number of vectors ER1 and ER2 that are perpendicular to bar AB and
perpendicular to one another and will still sum to ER. If you construct ER1 and ER2 using
the suggestions provided in the footnote on this page, then you will obtain one of these
possible combinations. Problem 3.66 asks you to do this.

�One strategy is to evaluate the cross product ErBA � ErCD , then make this result a unit vector

called Ou1, and then ER1 D R1 Ou1. Next evaluate ErBA� ER1, make this result a unit vector called

Ou2, and then ER2 D R2 Ou2.
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P R O B L E M S

Problem 3.49

The object atD is supported by boom AO and by cables AB , AC , and AD, which are
parallel to the x, y, and ´ axes, respectively. If the mass of object D is mD D 100 kg,
determine the forces supported by the boom and three cables.

Figure P3.49 and P3.50

Problem 3.50

In Prob. 3.49, if the cables and boom have the failure strengths given below, determine
the largest mass mD that can be supported.

Member Strength

AO 2000N compression
AB 1500N
AC 1000N
AD 2000N

Problem 3.51

A weight W is supported at A by bars AB and AD and by cable AC . Bars AB and
AD are parallel to the y and x axes, respectively. IfW D 1000N, determine the forces
in each bar and the cable.

Figure P3.51

Problem 3.52

In Prob. 3.51, if the cable can support a maximum force of 2 kN, and bars AB and AD
can support maximum compressive forces of 1 kN and 3 kN, respectively, determine
the largest weight W that may be supported.

Problem 3.53

When in equilibrium, plate BCD is horizontal. If the plate weighs 1:6 kN, determine
the forces in cables AB , AC , and AD.

Figure P3.53
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Problem 3.54

A circular ring with weight W and inside radius r is supported by three identical
springs having stiffness k and that are unstretched when d D 0. When in equilibrium,
the ring is horizontal.

(a) Derive an expression that relates the weight W to d and r .

(b) If W D 300 lb, k D 25 lb=in:, and r D 20 in:, determine d (an accurate approxi-
mate solution is acceptable).

Figure P3.54

Problem 3.55

In the cable system shown, point D lies in the y´ plane and force P is parallel to the
´ axis. If P D 500 lb, determine the force in cables AB , AC , AD, and AE.

Figure P3.55 and P3.56

Problem 3.56

In the cable system shown, point D lies in the y´ plane and force P is parallel to the
´ axis. If cables AB and AC have 500 lb breaking strength, and cables AD and AE
have 1000 lb breaking strength, and if all cables are to have a factor of safety� of 1:5
against failure, determine the largest force P that may be supported.

Problem 3.57

Repeat Prob. 3.55 with point A having coordinates A.1; 8; 0/ ft.

Problem 3.58

Repeat Prob. 3.56 with point A having coordinates A.1; 8; 0/ ft.

�The factor of safety against failure is defined to be the failure load for a member divided by the
allowable load for the member. Thus, the largest load the member may be subjected to is its
failure load divided by the factor of safety.
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Problem 3.59

Force P is supported by two cables and a bar. Point A lies in the y´ plane, and points
B and C lie in the x´ plane. If P D 3 kip, determine the forces supported by the cables
and bar.

Problem 3.60

Force P is supported by two cables and a bar. Point A lies in the y´ plane, and points
B and C lie in the x´ plane. The compressive load that causes the bar to buckle and
the breaking strength of each cable are specified below. If factors of safety against
failure (see the footnote of Prob. 3.56) of 1:7 and 2:0 are to be used for cables and bars,
respectively, determine the allowable force P that can be supported.

Member Strength

AO 3000 lb compression
AB 6000 lb
AC 5000 lb

Figure P3.59 and P3.60

Problem 3.61

Member OA buckles when the compressive force it supports reaches 400N. Cables
AC and AD each have 300N breaking strength. Assuming the cabling between A
and B is sufficiently strong, determine the force T that will cause the structure to fail.
Assume the pulleys are frictionless with diameters that are small enough so that all
cables between A and B are parallel to line AB .

Figure P3.61

Problem 3.62

A portable tripod hoist for moving objects in and out of a manhole is shown. The hoist
consists of identical-length bars AB , AC , and AD that are connected by a socket at
A and are supported by equal 8 ft length cables BC , BD, and CD to prevent ends
B , C , and D of the bars from slipping. Cable FAE passes around a frictionless pulley
at A and terminates at winch E, which is fixed to bar AB . Idealize points A and E
to be particles where all bar and cable forces pass through these points. If the tripod
is erected on level ground and is 7 ft high, and the object being lifted in the manhole
weighs 300 lb,

(a) Determine the forces in bars AC and AD and in portion AE of bar AB .

(b) Determine the force in portion EB of bar AB .

Figure P3.62

Hint: Define an xy´ coordinate system where the x and y directions lie in the plane
defined by points B, C, and D, and where the x or y direction coincides with one of
cables BC , BD, or CD. Then determine the coordinates of points B , C , and D. The
x and y coordinates of point A are then the averages of the coordinates of points B , C ,
and D.
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Problem 3.63

A worker standing on a truck uses rope AB to slowly lower object B down a chute.
The object weighs 100 lb and fits loosely against the walls of the chute and slides with
no friction. In the position shown, the center of object B is halfway down the chute.
The person’s hand A lies in the xy plane, and the chute lies in a plane parallel to the
y´ plane.

(a) Determine the tension in rope AB and the reactions between the object and the
chute.

(b) If the worker wishes to slowly pull the object up the chute, explain how your
answers to Part (a) change.

Figure P3.63

Problem 3.64

Due to a poorly designed foundation, the statue at point A slowly slides down a grass-
covered slope. To prevent further slip, a cable is attached from the statue to point B ,
and another cable is attached from the statue to point C . The statue weighs 1000 lb, and
idealize the surface on which the statue rests to be frictionless. Determine the minimum
tensile strength each cable must have, and the magnitude of the reaction between the
statue and the slope.

Figure P3.64

Problem 3.65

Channel AB is fixed in space, and its centerline lies in the xy plane. The plane contain-
ing edges AC and AD of the channel is parallel to the x´ plane. If the surfaces of the
channel are frictionless and the sphere E has 2 kg mass, determine the force supported
by cord EF , and the reactions RC and RD between the sphere and sides C and D,
respectively, of the channel. Figure P3.65

Problem 3.66

Follow the suggestions made in the footnote of Example 3.8 on p. 154 to write vector
expressions for ER1 and ER2. Then determine the magnitude of these, and weight EW , by
applying

P
EF D E0. Show that the magnitude of EW and the vector sum ER1C ER2 agree

with the results reported in Example 3.8.
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Problem 3.67

RodAB is fixed in space. SpringCD has stiffness 1:5N=mm and an unstretched length
of 400mm. If there is no friction between the collar and rod, determine the weight
of the collar W that produces the equilibrium configuration shown, and the reaction
between the collar and rod AB .

Figure P3.67

Problem 3.68

In Prob. 2.81 on p. 89, the elastic cord CD has stiffness k D 2N=mm and 100mm
unstretched length. Bead C has negligible weight and is subjected to a force of mag-
nitude P that lies in the xy plane and is tangent to the curved rod AB in the position
shown. Determine the value of P needed for equilibrium and the reaction between the
bead and curved rod AB .

Problem 3.69

In Prob. 2.82 on p. 89, elastic cord BD has spring constant k D 3N=mm and 20mm
unstretched length, and bead B has a force of magnitude P in direction BC applied
to it. Determine the value of P needed for equilibrium in the position shown, and the
reaction between bead B and rod AC .

Problem 3.70

Two identical traffic lights each weighing 120 lb are to be suspended by cables over an
intersection. For pointsE andF to have the coordinates shown, it is necessary to add an
additional weight to one of the lights. Determine the additional weight needed, the light
to which it should be added, and forces in each cable. Remark: The system of equations
can be solved manually, but solution by calculator or computer is recommended.

Figure P3.70
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3.4 Engineering Design

While there are many different ways to define engineering design, the descrip-
tion that follows encompasses the key points. Engineering design is a process
that culminates in the description and specifications of how a structure, ma-
chine, device, procedure, and so on is to be constructed so that needs and re-
quirements that were identified in the design process are achieved. The word
engineering implies that laws of nature, mathematics, and computing are at
the core of the design. Design is a creative and exciting activity, and broadly
speaking, proficiency in doing this is what sets engineering apart from the
sciences. Indeed, the ability to design is a distinct point of pride among all
engineers!

The word process in the above definition is important. Design should not
be conducted solely by iterations of trial and error, but rather by iterations of
identifying and prioritizing needs, making value decisions, and exploiting the
laws of nature to develop a sound solution that optimizes all of the objectives
while satisfying constraints that have been identified. As you progress in your
education, you will learn about structured procedures and algorithms for de-
sign, including exposure to pertinent performance standards, safety standards,
and design codes. In the meantime, your knowledge of particle equilibrium
allows you to begin some meaningful engineering design.

Figure 3.20
An engineer examines the design of the Cos-
worth XF Champ car engine, and a photograph
of this engine as manufactured is shown. This
was the first Cosworth engine that was designed
completely using computer aided design (CAD)
tools. While CAD tools help alleviate the bur-
den of performing complicated calculations, the
engineers who use these tools must be experts
in modeling, interpretation of results, ability to
perform hand calculations on simpler models
to help verify the results of more sophisticated
models, and in the methodology of design.

Objectives of design

Our discussion of the objectives of design and the design process will be brief
in this section. Chapter 5 contains additional discussion. At a minimum, struc-
tures, machines, mechanical devices, and so on must be designed to achieve
the following criteria:

1. They will not fail during normal use.

2. Performance objectives are adequately met.

3. Hazards are adequately addressed.

4. All foreseeable uses must be anticipated and accounted for to the extent
possible or reasonable.

5. Design work must be thoroughly documented and archived.

In addition, a good design will also consider

6. Cost.

7. Ease of manufacture and assembly.

8. Energy efficiency in both manufacture and use.

9. Impact on the environment in manufacture, use, and retirement.

The need for item 1 is obvious. Further, your design should not contain
unnecessary hazards. Through good design, it may be possible to eliminate
or reduce a hazard. Clearly some devices, due to their very nature, contain
hazards that are unavoidable. For example, a machine to cut paper, whether
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Figure 3.21. Two table-top paper cutters.

it be a simple scissors, a tabletop cutter, or a device for cutting large rolls
of paper, must contain sharp cutting edges. Consider the two tabletop paper
cutters shown in Fig. 3.21. The traditional cutter shown in Fig. 3.21(a) uses
a long, heavy steel blade that is unavoidably exposed to a user’s fingers and
hands, whereas the more contemporary cutter shown in Fig. 3.21(b) employs
a small circular cutting wheel that is less exposed and easier to guard and in
fact performs better. When hazards are unavoidably present, they should be
guarded to the extent feasible, and warnings should be included to pictorially
show users what the hazards are. Thus, the hierarchy in managing hazards is
as follows: eliminate or reduce the hazard through design, guard users from
the hazard, and finally warn users of the hazard.

An extremely important aspect of design, and one that is unfortunately
sometimes overlooked, is anticipation of and accounting for how a structure,
machine, or device might be used, even if it was not intended for such use.
While we may occasionally need to consider malicious misuse, here we are
more concerned with a well-intentioned user who pushes the limits of a prod-
uct in an effort to complete some task. For example, imagine you design a
jack for use in lifting an automobile so a tire may be changed. If the jack is
designed to have 2000 lb lifting capacity, most certainly someone will try to
lift more. While your design does not need to be capable of lifting more than
2000 lb plus some reasonable margin for error, the main question is, What is
the consequence of attempting to lift more? Will the jack collapse, allowing
the vehicle to fall and potentially hurt someone, or can it be designed so the
result is less catastrophic?

Regardless of how fertile and creative a mind you have, it will be difficult
for your ideas to have an impact if you cannot communicate effectively, both
orally and in writing, with other engineers, scientists, professionals, and lay-
people. It is necessary that your design and analysis work be documented and
archived. This information may be needed in the future by you or others, to
show how your design was developed, to aid in modifications, to help support
patent rights, and so on. Expectations of engineers are high, and it is necessary
that you perform your work precisely and conduct your behavior to the highest
standards of ethics and professionalism.

Particle equilibrium design problems

For the problems in this section, imagine you are employed as an intern work-
ing under the supervision of an engineer who asks you to conduct a design
study, or to add details to a design that is started. You will be presented
with a problem that is suitable to your level of knowledge along with some
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pertinent data. But, unlike most textbook homework problems, the informa-
tion provided may not be complete, and you may not be instructed on every-
thing that needs to be done. This is not an attempt to be artificially vague,
but rather is a reflection of how design and modeling of real life problems
are conducted. Typically, a design begins with an idea or the desire to ac-
complish something. What information is needed and the analysis tasks to be
performed are often not fully known at the outset, but rather are discovered as
the design and analysis process evolves. It is in this spirit that the problems
of this section are presented, and you may need to make reasonable assump-
tions or seek out additional information on your own. Your work should cul-
minate in a short written technical report that is appropriate for an engineer
to read, where you present your design, state assumptions made, and so on.
Appendix A of this book gives a brief discussion of technical writing that may
be helpful.

Strength of steel cable, bar, and pipe

Many of the problems in this section involve steel cable, bar, and pipe. For
these problems, use the allowable loads given in Tables 3.1–3.3, which are

Table 3.1
Allowable loads for steel cable. Includes suit-
able factor of safety for repeated loads.

Steel Cablea

U.S. Customary and SI units

Nominal diameter Allowable load

1=4 in. 6mm 1;300 lb 6:0 kN
3=8 in. 10mm 3;000 lb 13 kN
1=2 in. 13mm 5;000 lb 20 kN
5=8 in. 16mm 8;000 lb 35 kN
3=4 in. 19mm 11;000 lb 50 kN
7=8 in. 22mm 15;000 lb 70 kN
1 in. 25mm 20;000 lb 90 kN

a1=4 and 3=8 in. (6 and 10mm) diameter cable is
6� 19 construction; others are 6� 26 construc-
tion. Allowable load is obtained using a factor
of safety of 5 against breaking loads published
by manufacturer: Performance Series 620 Rope,
Wire Rope Industries, Ltd. If pulleys are used,
pulley diameter is recommended to be at least 34
times the nominal cable diameter, and 51 times is
suggested.

Table 3.2. Allowable loads for round steel bar. Includes suitable factors of safety for
repeated loads.

Steel Bara

U.S. Customary units

Nominal
diameter

Tensile load
not to exceed

Compressive load:
not to exceed the smaller ofb

1=8 in. 200 lb 200 lb or 1; 700 lb�in.2=L2

1=4 in. 850 lb 850 lb or 28.10/3 lb�in.2=L2

1=2 in. 3;500 lb 3;500 lb or 450.10/3 lb�in.2=L2

3=4 in. 7;500 lb 7;500 lb or 2:2.10/6 lb�in.2=L2

1 in. 14;000 lb 14;000 lb or 7:2.10/6 lb�in.2=L2

SI units

Nominal
diameter

Tensile load
not to exceed

Compressive load:
not to exceed the smaller ofc

3mm 0:85 kN 0:85 kN or 3:9.10/6 N�mm2=L2

6mm 3:5 kN 3:5 kN or 62.10/6 N�mm2=L2

12mm 14 kN 14 kN or 1.10/9 N�mm2=L2

18mm 30 kN 30 kN or 5.10/9 N�mm2=L2

24mm 55 kN 55 kN or 16.10/9 N�mm2=L2

a Allowable tension load and first column of allowable compressive load are obtained using a
factor of safety of 2 against yielding for 36 ksi (250MPa) steel. Second column of allowable
compressive load is obtained using a factor of safety of 2 against the theoretical buckling load
for a centrically loaded pin-supported bar.

bL represents the length of the member in inches.
cL represents the length of the member in mm.
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Table 3.3. Allowable loads for standard weight steel pipe. Includes suitable factors of
safety for repeated loads.

Steel Pipea

U.S. Customary units

Nominal
inside

diameter
Tensile load

not to exceed
Compressive load:

not to exceed the smaller ofb

0:5 in. 4;500 lb 4;500 lb or 2:5.10/6 lb�in.2=L2

1 in. 8;500 lb 8;500 lb or 12.10/6 lb�in.2=L2

1:5 in. 14;000 lb 14;000 lb or 45.10/6 lb�in.2=L2

2 in. 19;000 lb 19;000 lb or 98.10/6 lb�in.2=L2

SI units

Nominal
inside

diameter
Tensile load

not to exceed
Compressive load:

not to exceed the smaller ofc

13mm 20 kN 20 kN or 6:9.10/9 N�mm2=L2

25mm 40 kN 40 kN or 36.10/9 N�mm2=L2

38mm 60 kN 60 kN or 120.10/9 N�mm2=L2

51mm 85 kN 85 kN or 270.10/9 N�mm2=L2

a Allowable tension load and first column of allowable compressive load are obtained using a
factor of safety of 2 against yielding for 36 ksi (250MPa) steel. Second column of allowable
compressive load is obtained using a factor of safety of 2 against the theoretical buckling
load for a centrically loaded pin-supported bar. Geometric data used to compute these forces
is obtained from the Manual of Steel Construction — Load and Resistance Factor Design ,
vol. I, American Institute of Steel Construction, 1998, and the Metric Conversion Volume of
the same title, 1999.

bL represents the length of the member in inches.
cL represents the length of the member in mm.

generally applicable for situations in which loads may be cyclically applied
and removed many times. Allowable loads, or working loads, are the forces to
which components can be safely subjected, and these are obtained by dividing
the failure strength of a member by a factor of safety. Thus,

Allowable load D
failure load

factor of safety
or

Factor of safety D
failure load

allowable load
:

(3.23)

The failure load can be defined in different ways. In some applications it may
be the load at which a member breaks or ruptures, while in other applica-
tions it may be the load at which a member starts to yield (i.e., take on per-
manent deformation) or otherwise fails to perform adequately. The factor of
safety helps account for uncertainties in loads and strength, consequences of
failure, and many other concerns. Determining a suitable factor of safety re-
quires many value decisions to be made. Sometimes an appropriate factor of
safety is recommended by the manufacturer of a component and is reflected
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in the allowable load data the manufacturer provides, or it may be specified
by industry standards or design codes. Often you will need to make such deci-
sions. Determining an appropriate factor of safety may be problem-dependent
and if industry or government standards are available, you may be required
to use these. Even if use of these is voluntary, it is obviously prudent to ad-
here to these as minimum standards. While the data of Tables 3.1–3.3 is safe
and reasonable for many real life applications, more stringent factors of safety
may be required for specific applications. However, you should not indiscrim-
inately use excessive factors of safety, as this generally implies more massive
components, which increases cost and may decrease performance.

Cables, bars, and pipes can support tensile forces, and the allowable ten-
sile loads listed in Tables 3.1–3.3 should not be exceeded. Pipes and bars can
also support compressive forces, as follows. If the member is short, then its
allowable compressive load is similar in magnitude to, or even the same as,
its allowable tensile load. However, if the member is long, then it may fail by
buckling, and the susceptibility to buckling increases rapidly with increasing
length. Thus, the allowable compressive load for bar and pipe is the smaller of
the two values listed in Tables 3.2 and 3.3, where it is seen that the buckling
load depends on the inverse of the member’s length squared. For most applica-
tions of bars and pipes loaded in compression, buckling considerations usually
govern allowable loads. Buckling is discussed in greater detail in Chapter 6.

A cable, sometimes called wire rope, is a complex composite structural
member consisting of an arrangement of wires twisted into strands, which are
then twisted into a cable, often having a core of different material that is in-
tended to improve flexibility or performance. Cables are manufactured in an
enormous variety of materials, sizes, and constructions for different purposes.
Cables that are used in conjunction with pulleys are more severely loaded than
cables used solely as straight, static structural tension members. When a cable
is wrapped around a pulley, it is subjected to high bending loads and if the
pulley’s diameter is too small, the cable’s life will be substantially reduced.
The allowable loads reported in Table 3.1 are for a very common construction
of steel cable and use a factor of safety of 5 against breakage of a straight seg-
ment of cable. These loads can also be employed for cables used with pulleys
provided the pulleys have a diameter that is at least about 34 times the nominal
diameter of the cable (51 is suggested). However, the factor of safety is then
not as generous. For many applications, the factor of safety should be taken
higher. For example, in passenger elevators a factor of safety of at least 10 is
generally used.
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E X A M P L E 3.9 Engineering Design

Figure 1

Cabling is to be designed to support two traffic lights such that both lights are at the
same 19 ft height above the road, with the horizontal spacing shown in Fig. 1. Each
of the supporting poles has 22 ft height. Specify dimensions h1 and h2 where ends of
the steel cable should be attached to the support poles. Also specify the appropriate
diameter of a single steel cable, from the selection in Table 3.1, that will safely support
the weight of the two traffic lights.

S O L U T I O N

Road Map Possible values for h1 and h2 are between 19 and 22 ft. Further, these
values are not independent. That is, if specific values for both h1 and h2 are assumed,
it is unlikely the equilibrium configuration will have both traffic lights at the same 19 ft
height above the roadway. Rather, if a value for h1 is assumed, equations of equilibrium
will determine the value h2 must have, and vice versa. In this problem, the cost of
the cabling is small and thus is not a major concern. Rather, our design priorities are
driven primarily by performance objectives. The merit of having h1 and h2 as large
as possible is that the forces in the cables will be smaller. Some thought about the
geometry shown in Fig. 1 suggests that the lights may experience vibratory motion in
the vertical direction, most likely due to aerodynamically produced forces from wind,
where as one light moves up, the other moves down, in oscillatory fashion. Selecting
small values of h1 and h2 will provide for shorter cabling which may help minimize
the possible amplitude of such motion. Thus, for our initial design we will select h2 D
20 ft.

Modeling Neglecting the weight of the cables, FBDs are shown in Fig. 2.

Figure 2
Free body diagrams of points B and C .

Governing Equations & Computation The equilibrium equations for point C areX
Fy D 0 W TCD sinˇ � 195 lb D 0; (1)X
Fx D 0 W �TBC C TCD cosˇ D 0; (2)

where

cosˇ D
15 ftp

.15 ft/2 C .h2 � 19 ft/2
D 0:9978; (3)

sinˇ D
h2 � 19 ftp

.15 ft/2 C .h2 � 19 ft/2
D 0:0665: (4)

Solving Eqs. (1) and (2) provides

TCD D 2931 lb; (5)

TBC D 2925 lb: (6)

The equilibrium equations for point B areX
Fy D 0 W TBA sin˛ � 103 lb D 0; (7)X
Fx D 0 W �TBA cos˛ C TBC D 0: (8)

Solving Eqs. (7) and (8) provides

tan˛ D
103 lb

TBC
) ˛ D 2:02ı; (9)
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TBA D 2927 lb: (10)

From the geometry of Fig. 1,

tan˛ D
h1 � 19 ft

9 ft
; (11)

which provides h1 D 19:32 ft, which is less than the maximum permitted value of
22 ft.

To specify an appropriate cable, note the largest tensile force to be supported is
2931 lb in portion CD of the cable. Thus, consulting Table 3.1, we see that any ca-
ble with 3=8 in. nominal diameter or larger will be acceptable. However, because the
2931 lb cable force is very close to the 3000 lb allowable load for the 3/8 in. cable, we
will select the 1/2 in. diameter size. To summarize, our initial design calls for

TBA D 2927 lb; TBC D 2925 lb; TCD D 2931 lb; (12)

h1 D 19:32 ft; h2 D 20:00 ft; and cable diameter D 1=2 in. (13)

Discussion & Verification The cable forces in this initial design are very large.
While they may be acceptable, we might question the ability of the support poles to
be subjected to these. Note that even if the support poles themselves were deemed to
be strong enough, the soil that supports the bases of the poles may not be. These con-
siderations go beyond information that is available and our analysis ability at this time.
Nonetheless, we reanalyze this design, starting with h2 D 21 ft, with the results

TBA D 1466 lb; TBC D 1463 lb; TCD D 1475 lb; (14)

h1 D 19:63 ft; h2 D 21:00 ft; and cable diameter D 3=8 in: (15)

Although a subjective decision, the design reported in Eq. (15) would seem prefer-
able to that in Eq. (13), due to the substantially lower forces the support poles are
subjected to.

To complete the design, we should write a brief technical report, following the
guidelines of Appendix A, where we summarize all pertinent information. It should
be written using proper, simple English that is easy to read. A sketch along with crit-
ical dimensions should be included. We should discuss the objectives and constraints
considered in the design and the process used to arrive at our final design. Detailed cal-
culations, such as Eqs.(1)–(11) should not be included in the main body of the report,
but should be included in an appendix. In addition to the immediate use of the report
in helping to erect the traffic lights, it will be archived for possible future reference.
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E X A M P L E 3.10 Engineering Design

Figure 1

A large construction company plans to add plastic 60L water coolers to the back of
most of its trucks, as shown in Fig. 1. Your supervisor asks you to use the model shown
in Fig. 2 to specify the dimension h and the diameter of round steel bars to be used for
membersAB ,AC , andAD. Although a more refined model is possible using concepts
discussed in Chapter 5, the model shown in Fig. 2 is useful for this design problem. In
this model, load P is vertical and member AB is parallel to the y axis. Your supervisor
also tells you to allow for loads up to twice the weight of the cooler in a crude attempt
to allow for dynamic forces, and to use the allowable loads given in Table 3.2.

Figure 2
Model for the water cooler support shown in
Fig. 1.

S O L U T I O N

Road Map The most poorly defined part of this problem is the loading the water
cooler support will be subjected to. Thus, assumptions on the size of loads will need
to be made. Furthermore, different loading conditions may need to be considered, and
our design should be safe for all of these. Finally, this design problem does not have a
unique solution. That is, there is not a single value of h that will work. Rather, we may
need to assume reasonable values for some parameters and then calculate the values of
others based on this.

Modeling When full, the weight of water in the cooler is�

W D 1000
kg

m3„ ƒ‚ …
�

60L
.0:1m/3

L„ ƒ‚ …
V

9:81
m

s2„ ƒ‚ …
g

D 589N: (1)

We next use our judgment to add to the above value a nominal amount of 60N to
account for the weight of the container itself. Thus, the total weight to be supported is
589NC 60N D 649N.

Doubling the weights (or use of other multiplicative factors) is an imprecise but
common approach to account for inertial forces produced when the truck hits bumps
in the road. Thus, we obtain the approximate load P D 1300N. Before continuing
with this load, we should consider other possible load scenarios. For example, if the
cooler is removed, the support might make a convenient step for a worker to use while
climbing on or off the truck. Consider a person weighing 890N (200 lb). Since it is
extremely unlikely a person would be standing on the support when the truck is moving
and hitting bumps, it is not necessary to further increase this value as was done earlier.
Since the weight of this person is lower than the force determined earlier, we will
proceed with the design, using P D 1300N.

Small values of dimension h will lead to large forces in all members, while larger
values of h will decrease these forces. However, the allowable load data in Table 3.2
shows that allowable compressive load decreases rapidly as the length of members
increases. Thus, we will select for an initial design the value h D 250mm, in which
case the length of members AC and AD is 716mm.

The FBD for point A is shown in Fig. 3.

Figure 3
Free body diagram for point A.

Governing Equations Vector expressions for forces are

EP D 1300N .� Ok/; (2)

�One liter (1 L) is defined to be the volume of 1 kg of pure water at 4ıC and pressure of 76 cm
of mercury. For practical purposes, however, the transformation 1L D 1000 cm3 D 0:001m3

may be used with less than 0.003% error.
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EFAB D FAB .� O|/; (3)

EFAC D FAC
300 O{ � 600 O| � 250 Ok

716
; (4)

EFAD D FAD
�300 O{ � 600 O| � 250 Ok

716
: (5)

Writing
P
EF D E0 and grouping x, y, and ´ direction terms provide the system of

equations

FAC
300

716
C FAD

�300

716
D 0; (6)

FAB .�1/C FAC
�600

716
C FAD

�600

716
D 0; (7)

FAC
�250

716
C FAD

�250

716
D 1300N: (8)

Computation The solution of Eqs. (6)–(8) is

FAB D 3120N; FAC D �1860N; and FAD D �1860N: (9)

To determine appropriate members to support these loads, we consult Table 3.2
on p. 163. For the tensile load in member AB , any bar with diameter 6mm or larger
is acceptable. For the compressive load in members AC and AD, we first check the
suitability of the 6mm bar, which can support a maximum compressive force that is the
smaller of 3500N or 62.10/6 N�mm2=L2 D 62.10/6 N�mm2=.716mm/2 D 120:9N;
hence this bar is not acceptable. The next larger size bar has 12mm diameter, which
allows a maximum compressive load that is the smaller of 14 and 1:95 kN; hence this
bar is acceptable for members AC and AD.

Discussion & Verification Our design thus far requires

h D 250mm

member AB: use 6mm diameter steel bar or larger.

members AC , and AD: use 12mm diameter steel bar or larger.

(10)

For convenience in fabrication, we will recommend that the same size bar be used for
all three components, in which case 12mm diameter bar or larger is to be used. Finally,
we consider whether the use of a diameter greater than 12mm is warranted. This is
analogous to incorporating an even greater factor of safety in the design, which does
not seem necessary, since the factors of safety incorporated in the allowable loads and
forces applied to the structure are already generous. Further, we have applied the entire
weight of the water cooler to point A whereas in reality, a portion of this weight will
be supported by point B .

To summarize, our final design is

h D 250mm

members AB , AC , and AD: use 12mm diameter steel bar.
(11)

To complete our work, we should prepare a short report following the guidelines
described in Appendix A.
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D E S I G N P R O B L E M S

General Instructions. In problems requiring the specification of sizes for steel ca-
ble, bar, or pipe, selections should be made from Tables 3.1–3.3. In all problems, write
a brief technical report following the guidelines of Appendix A, where you summarize
all pertinent information in a well-organized fashion. It should be written using proper,
simple English that is easy to read by another engineer. Where appropriate, sketches,
along with critical dimensions, should be included. Discuss the objectives and con-
straints considered in your design, the process used to arrive at your final design, safety
issues if appropriate, and so on. The main discussion should be typed, and figures, if
needed, can be computer-drawn or neatly hand-drawn. Include a neat copy of all sup-
porting calculations in an appendix that you can refer to in the main discussion of your
report. A length of a few pages, plus appendix, should be sufficient.

Design Problem 3.1

A scale for rapidly weighing ingredients in a commercial bakery operation is shown.
An empty bowl is first placed on the scale. Electrical contact is made at point A, which
illuminates a light indicating the bowl’s contents are underweight. A bakery ingredient,
such as flour, is slowly poured into the bowl. When a sufficient amount is added, the
contact at A is broken. If too much is added, contact is made at B , thus indicating an
overweight condition. If the contents of the bowl are to weigh 18 lb˙ 0:25 lb, specify
dimensions h and d , spring stiffness k, and the unstretched length of the spring L0.
The bowl and the platform on which it rests have a combined weight of 5 lb. Assume
the scale has guides or other mechanisms so that the platform on which the bowl rests
is always horizontal.Figure DP3.1

Design Problem 3.2

A plate storage system for a self-serve salad bar in a restaurant is shown. As plates are
added to or withdrawn from the stack, the spring force and stiffness are such that the
plates always protrude above the tabletop by about 60mm. If each plate has 0:509 kg
mass, and if the support A also has 0:509 kg mass, determine the stiffness k and un-
stretched lengthL0 of the spring. Assume the spring can be compressed by a maximum
of 40% of its initial unstretched length before its coils begin to touch. Also specify the
number of plates that can be stored. Assume the system has guides or other mecha-
nisms so the support A is always horizontal.

Figure DP3.2 and DP3.3

Design Problem 3.3

In Design Problem 3.2, the spring occupies valuable space that could be used to store
additional plates. Repeat Design Problem 3.2, employing cable(s) and pulley(s) in con-
junction with one or more springs to design a different system that will allow more
plates to be stored. Pulleys, cables, and springs can be attached to surfaces A, B , C ,
and D. For springs in compression, assume they may not contract by more than 40%
of their initial unstretched length before their coils begin to touch.
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Design Problem 3.4

A push button for a pen is shown in cross section. Pressing the push button and re-
leasing it advance the ink cartridge so that the pen may be used for writing. Pressing
the push button and releasing it again retract the ink cartridge so that the pen may be
stored. The mechanism that keeps the ink cartridge in the advanced or retracted posi-
tion is not shown. Design the spring for the pen by specifying the spring’s stiffness k
(units: N/mm), the spring’s unstretched length L0, and the dimensions d and t (units
for L0, d , and t : mm). To prevent the coils of the spring from making contact with
one another, the spring should not be compressed by more than 50% of its unstretched
length.

Figure DP3.4

Design Problem 3.5

You are working for the Peace Corps in an impoverished country that needs your help.
Your job is to design a simple, but accurate scale for weighing bulk materials such as
food and construction materials. A possible idea consists of a loading platform D, that
is supported by cable AB , where end A is attached to a large tree limb. After loading
platform D, weight W3 is applied, which causes point B to move horizontally by a
small distance ı that is to be measured with a yardstick.

Assume:

W2 D weight of the loading platform D 100 lb;

W1 D weight of materials to be weighed � 500 lb;

Cable segment BC is horizontal,

Pulley C is frictionless:

You are to specify

L D length of cable AB , where 10 ft � L � 15 ft;

W3 D weight of the counterweight, where W3 � 40 lb:

For the specific values of L and W3 you choose, produce a graph with W1 and ı as the
vertical and horizontal axes, respectively. Thus, by measuring the deflection ı, your
graph will tell the user the weight W1.

Figure DP3.5

Design Problem 3.6

An aviation museum has exhibits in a room that is 60m wide by 35m high. A cable
system is to be designed to suspend a new display, namely, a Mercury space capsule.
Using this cabling system, point A (where the two cables attach to the capsule) will
be slowly maneuvered to a final position in the "permanent position region" indicated
in Fig. DP3.6. The cabling system must be sufficiently strong that the factor of safety
against breaking is at least 5 while the capsule is maneuvered, and is at least 10 when
the capsule is anywhere in the permanent position region. Note that during maneuver-
ing, the display will be closed to the public, so that the factor of safety during maneu-
vering can be lower than the final factor of safety. Your analysis may neglect the size
of the pulleys at points B and C . You are to select the smallest cable diameter possible
and to specify the dimensions d , l , h1, and h2.

Figure DP3.6
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Design Problem 3.7

A utility pole supports a wire that exerts a maximum horizontal force of 500 lb at the
top of the pole as shown. Although the pole is to be buried in soil at end A, for in-plane
behavior it is conservative to idealize this support to be a pin, and thus the net force
supported by the pole is directed along the axis of the pole. Design a support system
for the pole, considering that it is located in a congested region. Your design can utilize
steel cable and/or steel pipe. Whatever support members you choose, only one support
member may be attached to the utility pole, and this must be at the eyebolt C . Specify
the size eyebolt to be used (if needed, see Section 2.2 for a description of these load
multipliers). The support system you design cannot be attached to the adjacent building
or to any point on the sidewalk or roadway. Safe pedestrian passage on the sidewalk
should be considered.

Figure DP3.7

Design Problem 3.8

A ferry is being designed to cross a small river having a strong current. The ferry
has no engine and is supported by a steel cable ABCA. At B the cable is wrapped
around a winch so that it does not slip, and at C the cable passes around a freely
rotating pulley. Both ends of the cable are fixed to the ferry at A. The drag force on
the ferry is highest at midstream and lowest at the banks, and it is given by F.x/ D
.4 kN/Œ1C sin.�x=98 m/�. The winch moves the ferry slowly, so there are no other in-
plane forces applied to the ferry beyond F and the cable forces. Specify the necessary
diameter for cable ABCA. The owner of the ferry also wants to know the position x
(within˙ a few meters) where the load on the cable is the greatest.Figure DP3.8
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Design Problem 3.9

A company is designing an after-market hoist to be installed on a pickup truck. Thus,
the dimensions of the hoist have largely been determined by the available space inside
the bed of the truck. The hoist consists of two pipes, AC and AD, and two cables,
AE and FABA. The hoist is to be capable of lifting a maximum of 4000 lb. You are to
specify

The diameter of the steel wire rope FABA;

The diameter of steel wire rope AE;

The diameter of steel pipes AC and AD;

The torque rating for the winch F (equal to the force cable

FABA supports multiplied by 6 in:):

In your calculations, you may assume cable segments AB are vertical, and the bed of
the truck is horizontal. Although the hoist is to be designed for a maximum load of
4000 lb, surely some user will attempt to lift more. Discuss in your report the conse-
quences of doing this and how your specifications account for this possibility.

Figure DP3.9

Design Problem 3.10

A bar and cable system is to be designed to support a weight W suspended from point
A. Due to handling and positioning of the weight, a small force equal to 10% of W
laying in a horizontal plane is also applied at point D. If W D 5 kN, specify

� Dimensions d and h, where d � 1:0m and h � 1:4m.

� The diameter of the steel wire ropes AB and AC .

� The diameter of the steel pipe AO .
Figure DP3.10
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Design Problem 3.11

Design the cable support system for a radio tower of height 25m. This includes speci-
fying the radius R of the supports at point B , C , and D (as measured from the base of
the tower) and the diameter of the steel cable.
Remarks:

� All supports will be erected on a horizontal surface.

� Supports B , C , and D will each be located at the same radial distance R from
the base of the tower (point O) such that †BOC D †BOD D †COD D
120ı.

� The cables must be able to support a maximum horizontal storm force F D
18 kN from any direction in the horizontal plane.

� Neglect the weight of the cables in your calculations.

� Assume one of the cables is always slack and supports no load. For example,
when force F lies in sector CAD (as shown), cable AB is slack.

In your report describe the merits of large versus small values of R and why you se-
lected the value you did. State which orientation(s) of the storm force F lead to the
most severe cable loads and how you determined these orientations.Figure DP3.11
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3.5 Chapter Review

Important definitions, concepts, and equations of this chapter are summarized.
For equations and/or concepts that are not clear, you should refer to the origi-
nal equation numbers cited for additional details.

Equilibrium of a particle. A particle is in static equilibrium if

X
EF D E0;

or
�X

Fx

�
O{ C

�X
Fy

�
O| C

�X
F´

�
Ok D E0;

or
X

Fx D 0 and
X

Fy D 0 and
X

F´ D 0:

Eq. (3.20), p. 148

The above summations must include all forces applied to the particle. For equi-
librium of a system of particles, the above equilibrium equations are written
for each particle, and then the resulting system of simultaneous equations is
solved.

Free body diagram. The free body diagram (FBD) is an essential aid for
helping ensure that all forces applied to a particle are accounted for when you
write equations of equilibrium. When you draw an FBD, it is helpful to imagine
enclosing the particle by a closed line in two dimensions, or a closed surface
in three dimensions. Wherever the cut passes through a structural member, the
forces supported by that member must be introduced in the FBD. Wherever
the cut passes through a support, the reaction forces that the support applies to
the particle must be introduced in the FBD.

Cables and bars. Cables and straight bars are structural members that sup-
port forces that are collinear with their axis. We assume cables may support
tensile forces only and may be freely bent, such as when wrapped around a
pulley. We usually assume cables have negligible weight. Bars may support
both tensile and compressive forces.

Pulleys. A pulley is a device that changes the direction of a cable, and hence
changes the direction of the force that is supported by the cable. If the pulley
is frictionless and the cable is weightless, then the magnitude of the force
throughout the cable is uniform.

Springs. Behavior of a linear elastic spring is shown in Fig. 3.22 and is
described by the spring law

Fs D kı

D k.L � L0/

Eq. (3.18), p. 137

where k is the spring stiffness (units: force/length), ı is the elongation of the

Helpful Information

Spring law sign conventions. The sign
conventions for the spring law given in
Eq. (3.18) are as follows:

Fs > 0 tension;

Fs < 0 compression;

ı D 0 unstretched position;

ı > 0 extension;

ı < 0 contraction:
spring from its unstretched length, L0 is the initial (unstretched) spring length,
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Figure 3.22. Spring law for a linear elastic spring.

and L is the final spring length. In solving problems with springs, one of the
forms of Eq. (3.18) will usually be more convenient than the other, depending
on what data is provided. These equations are written with the convention
that positive values of force Fs correspond to tension and positive values of ı
correspond to elongation. Other conventions are possible, such as force being
positive in compression and/or deformation being positive in contraction, but
it may be necessary to introduce a negative sign on the right-hand side of
Eq. (3.18), as described in Section 3.2.

Summing forces in directions other than xx, yy, or ´́. To sum forces in a
direction Er , we take the dot product of all vectors in the expression

P
EF D E0

with the unit vector� Er=jEr j to obtain

Summation of forces in the Er direction:X
Fr D 0 W EF1 �

Er

jEr j
C EF2 �

Er

jEr j
C � � � C EFn �

Er

jEr j
D 0:

Eq. (3.22), p. 150

Use of
P
Fr D 0 is especially convenient when it is known that some forces

are perpendicular to Er .

Allowable load. Allowable loads, sometimes called working loads, are forces
structural components can safely be subjected to, and they are obtained by
dividing the failure strength of a member by a factor of safety. Thus,

Allowable load D
failure load

factor of safety
or

Factor of safety D
failure load

allowable load
:

Eq. (3.23), p. 164

�Because the right-hand side of Eq. (3.22) is zero, a unit vector in the direction of Er is not needed

and we could just as well evaluate EF1 � Er C EF2 � Er C � � � C EFn � Er D 0.
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R E V I E W P R O B L E M S

Problem 3.71

Consider a problem involving cables and bars only. For the conditions listed below, is
the solution obtained from

P
EF D E0 using geometry of the structure before loads are

applied approximate or exact? Explain.

(a) Cables are modeled as inextensible, and bars are modeled as rigid.

(b) Cables and bars are modeled as linear elastic springs.

Note: Concept problems are about explanations, not computations.

Problem 3.72

The frictionless pulley A weighs 20N and supports a box B weighing 60N. When
you solve for the force in cable CD, a “problem” arises. Describe this problem and its
physical significance. Figure P3.72

Problem 3.73

To produce a force P D 40N in horizontal member CD of a machine, a worker applies
a force F to the handle B . Determine the smallest value of F that can be used and the
angle ˛ it should be applied at.

Figure P3.73
Problem 3.74

The structure shown consists of five cables. Cable ABCD supports a drum having
weight W D 200 lb. Cable DF is horizontal, and cable segments AB and CD are
vertical. If contact between the drum and cable ABCD is frictionless, determine the
force in each cable.

Figure P3.74 and P3.75

Problem 3.75

In Prob. 3.74, if cable ABCD has 600 lb breaking strength and all other cables have
200 lb breaking strength, determine the largest value W may have.

Problem 3.76

Two frictionless pulleys connected by a weightless bar AB support the 200 and 300N
forces shown. The pulleys rest on a wedge that is fixed in space. Determine the angle
� when the system is in equilibrium and the force in bar AB .

Figure P3.76
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Problem 3.77

To glue a strip of laminate to the edge of a circular table, n clamps are evenly spaced
around the perimeter of the table (the figure shows n D 8). Each clamp has a small
pulley, and around all pulleys a cable is wrapped. A turnbuckle is used to tighten the
cable, producing a force T . Assuming the diameter of each pulley is small, show that
the force R each clamp applies to the edge of the table is given by R D 2T cosŒ.n �
2/180ı=.2n/�. Does this expression give expected values when n D 2 and n D 1?
Explain. Hint: The sum of the interior angles of a polygon with m corners is .m �
2/180ı.

Figure P3.77

Problem 3.78

Spring AC is unstretched when � D 0. Force F is always perpendicular to bar AB .
Determine the value of F needed for equilibrium when � D 45ı.

Figure P3.78

Problems 3.79 and 3.80

If W D 100N and k D 5N=mm, determine ı1 and ı2. Springs are unstretched when
ı1 D ı2 D 0.

Figure P3.79 Figure P3.80

Problem 3.81

Frictionless sliders B and C have frictionless pulleys mounted to them, and are con-
nected by a spring with stiffness k D 12N=mm. Around the pulleys is wrapped a cable
that supports a weight W D 100N. Member CE is a bar.

(a) If ˛ D 30ı, determine the force in bar CE and the motion ı of slider B .

(b) Determine the value of ˛ that will provide for the smallest force in bar CE, and
determine this force.Figure P3.81
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Problem 3.82

A weight W is supported by four cables. Points B and C lie in the y´ plane. If W D
8 kN, determine the force supported by each cable.

Figure P3.82 and P3.83

Problem 3.83

A weight W is suspended by four cables. Points B and C lie in the y´ plane. If the
allowable strength of each cable is as specified below, determine the largest allowable
weight W that can be supported.

Cable Strength

AB 12 kN
AC 10 kN
AD 5 kN
AE 15 kN

Problem 3.84

Repeat Prob. 3.82 with points B and C having coordinates B.0; 6; 3/ m and
C.0; 6;�7/ m.

Problem 3.85

Repeat Prob. 3.83 with points B and C having coordinates B.0; 6; 3/ m and
C.0; 6;�7/ m.

Problem 3.86

Bead C has 2 lb weight and slides without friction on straight bar AB . The tensile
forces in elastic cords CD and CE are 0.5 and 1:5 lb, respectively. If the bead is re-
leased from the position shown with no initial velocity, will it slide toward point A or
B or will it remain stationary? Figure P3.86 and P3.87

Problem 3.87

Bead C has 2 lb weight and slides without friction on straight bar AB , and the tensile
force in elastic cord CE is 0:9 lb. Determine the force needed in cord CD for the bead
to be in equilibrium, and the magnitude of the reaction between the bead and bar AB .
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Problem 3.88

A hoist for lifting objects onto and off a truck is shown. All cables lie in the xy plane,
cable segment AB is horizontal, and the plane formed by bars CE and CF is parallel
to the y´ plane. Pulleys are frictionless and force P is vertical. If the object is being
slowly lifted and weighs W D 600 lb, determine the force P and forces supported by
all cables and bars.

Figure P3.88 and P3.89

Problem 3.89

For Prob. 3.88, determine the largest weight W that may be lifted if forces supported
by cables may not exceed 2000 lb and compressive forces supported by bars may not
exceed 2800 lb.



4 Moment of a Force and Equivalent
Force Systems

Additional concepts of forces and systems of
forces are discussed in this chapter. These con-
cepts are used extensively in the analysis of
equilibrium and motion of bodies and through-
out more advanced mechanics subjects.

4.1 Moment of a Force

To help demonstrate some of the features of the moment of a force, we will
consider an example of a steering wheel in a car. Figure 4.1 shows a classic
Ferrari sports car, and Fig. 4.2 shows the steering wheel in this car. The wheel

Figure 4.1
Ferrari 250 GTO sports car, circa 1962–1964.

lies in a plane that is perpendicular to the steering column AB (it would not
be very comfortable to use if this were not the case), and the steering wheel
offers “resistance” to being turned (for most vehicles, this resistance increases
for slower speeds and as a turn becomes sharper). Imagine you are driving this
car, and you wish to execute a right-hand turn. Figure 4.2 shows two possible
locations where you could position your left hand to turn the steering wheel,
and the directions of forces F1 and F2 that you would probably apply, where
both of these forces lie in the plane of the steering wheel. For a given speed
and sharpness of turn, clearly position C will require a lower force to turn the
wheel than position D (i.e., F1 < F2). Both forces F1 and F2 produce a mo-
ment (i.e., twisting action) about line AB of the steering column, and the size
of this moment increases as the force becomes larger and/or as the distance
from the force’s line of action to line AB increases. If the line of action of F1
is perpendicular to line AB (as we have assumed here), and if we let d be the

181
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shortest distance between these two lines, then the moment produced by F1
has size F1d and the direction of the twisting action is about line AB . Thus,

Figure 4.2. An accurate sketch of the Nardi Anni ’60 steering wheel in the Ferrari 250
GTO, showing two possible locations where your hand could be positioned to turn the
wheel.

we observe that the moment of a force has the properties of a vector, namely,
magnitude (or size) and direction. In the remainder of this section, we provide
a more precise definition and describe methods of evaluation.

The moment of a force, or simply moment, is a measure of a force’s ability
to produce twisting, or rotation about a point. Moment has both magnitude
(or size) and direction and is a vector quantity. For example, consider using a
wrench to twist a pipe, as shown in Fig. 4.3. By applying a force to the handle
of the wrench, the force tends to make the pipe twist. Whether or not the pipe
actually does twist depends on details of how the pipe is supported. To create
a greater tendency to twist the pipe, either we could apply a larger force to
the wrench or we could use a wrench with a longer handle. Moment can be
evaluated using both scalar and vector approaches, as follows.

Figure 4.3
Force applied to a wrench to twist a pipe.

Scalar approach

The moment of a force is a vector and can be evaluated using the scalar ap-
proach described here. Consider a force EF with magnitude F . As shown in
Fig. 4.4, this force produces a moment vector about point O (the twisting ac-
tion shown) where the magnitude of this moment is MO , which is given by

MO D Fd (4.1)

where

Figure 4.4
Scalar approach to evaluate the moment of a
force.

F is the magnitude of the force;
d is the perpendicular distance from point O to the line of action

of EF and is called the moment arm; and
MO has dimensions of force times length.

The moment of a force is a vector, and it has both magnitude and direction. In
the scalar evaluation of the moment, Eq. (4.1) conveniently gives the magni-
tude. The direction of the moment is not provided by Eq. (4.1), but is under-
stood to be as follows. The line of action of the moment is parallel to the axis
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through point O that is perpendicular to the plane containing EF and the mo-
ment arm. The direction of the moment along the line of action is given by the
direction of the thumb of your right hand when your fingers curl in the twist-
ing direction of the moment. For summing multiple moments, Eq. (4.1) must
be supplemented with the proper directions for each moment, as illustrated in
the mini-example that follows and in Examples 4.1 and 4.2.

Helpful Information

Units for moment. The dimensions for
moment are force times length, and the
following table gives the units we will
typically use.

Units for moment of a force

U.S. Customary SI

ft�lb or in.�lb N�m

From a fundamental point of view, the or-
der in which the units are written (e.g.,
ft�lb or lb�ft) is irrelevant. However, some
people follow the convention that moments,
whether in U.S. Customary units or SI units,
have the force unit first, followed by the
length unit.

Vector approach

The magnitude and direction of the moment of a force can be obtained using
the cross product as described here. As shown in Fig. 4.5, the moment of a
force EF about a point O is denoted by EMO and is given as

EMO D Er � EF (4.2)

where

EF is the force vector;
Er is a position vector from point O to any point� on the line of

action of EF .

In contrast to Eq. (4.1) for the scalar approach, Eq. (4.2) automatically pro-
vides both the magnitude and direction of the moment.

Figure 4.5
Vector approach to evaluate the moment of a
force.

Remarks

� The order in which the vectors are taken when computing the cross prod-
uct is important, and hence, vectors Er and EF in Eq. (4.2) may not be
interchanged.

� In Fig. 4.5, we show the moment vector using a double-headed arrow
to emphasize its physical differences compared to vectors that are repre-
sented using a single-headed arrow. That is, vectors describing force
and position represent physical phenomena that are directed along a
line, and we represent these using a single-headed arrow. Moment vec-
tors represent physical phenomena that are directed about (or twisting
around) a line, and we represent these using a double-headed arrow. The
convention between the direction of the double-headed arrow and the
twisting direction is given by the right-hand rule as described in Fig. 4.6.

Figure 4.6
Use of the right-hand rule to determine the
twisting direction for vectors with double-
headed arrows. With your right hand, position
your thumb in the direction of the vector’s ar-
rows; then your fingers define the direction of
the twisting action. If the direction of the twist-
ing action is known, wrap your fingers in this
direction; then your thumb defines the direction
of the vector.

� Observe that the moment of a force depends on the location of the point
about which the moment is computed. Hence, the moments of a force
EF computed about two different points are usually different, in both

magnitude and direction.

� Mini-Example. For the balance mechanism shown in Fig. 4.7(a), deter-
mine the value of F so that the resultant moment of all forces about point O
is zero.
Solution. Using a scalar approach first, we note that each force has a tendency
to twist the structure about point O in either a clockwise or counterclockwise
fashion. In other words, the moment of each force about point O is a vector

�Because the head of the position vector Er can be any point on the line of action of EF , there is
considerable flexibility in selecting Er . Problem 4.25 asks you to show this is true.
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that points either into or out of the plane of Fig. 4.7. Furthermore, we may dis-
tinguish between these by taking the counterclockwise direction to be positive
(see additional discussion in the margin note). Thus,

MO D �.8 kN/.3m/C .4 kN/.4m/C .5 kN/.2m/ � F.3m/ D 0; (4.3)

) F D 0:667 kN: (4.4)

Each term of Eq. (4.3) consists of the product of the magnitude of a force with

Figure 4.7
A balance mechanism subjected to several
forces.

its corresponding moment arm, where the moment arm is the shortest (perpen-
dicular) distance from point O to the line of action of the force. For example,
in Fig. 4.7(a), the line of action for the 8 kN force is shown, and the shortest
distance from point O to this line is 3m. The sign of each term is positive for
counterclockwise twisting about point O and negative for clockwise twisting.

Helpful Information

Direction for moments in two-dimen-
sional problems. In two-dimensional
problems, such as Fig. 4.7, the moment of
a force about a given point will be either
clockwise or counterclockwise. That is, the
moment of a force about a given point is a
vector in either the �´ direction or the C´
direction, respectively. In two-dimensional
problems, when using a scalar approach,
we will always take counterclockwise to be
the positive direction for moments.

Figure 4.8

This choice is consistent with the right-hand
rule for the xy coordinate system shown,
where the ´ direction, and hence the direc-
tion for positive moment vectors, is out of
the plane of the figure.

A vector approach can also be used for this problem with the following
force and position vectors [see Fig. 4.7(b)]:

EF1 D .8 O{ � 4 O|/ kN; Er1 D .�4 O{ C 3 O|/m; (4.5)

EF2 D �5 O| kN; Er2 D �2 O{m; (4.6)

EF3 D �F O| kN; Er3 D 3 O{m; (4.7)

EMO D Er1 � EF1 C Er2 � EF2 C Er3 � EF3;

D Œ2 kN�m � F.3m/� Ok D E0; (4.8)

) F D 0:667 kN: (4.9)

Remarks

� Since all forces and point O lie in the xy plane, the forces produce mo-
ment about the ´ axis only, and hence a scalar approach is very straight-
forward. In a fully three-dimensional problem the scalar approach may
be difficult to use, and the vector approach is often more effective.

� In the vector approach, since the 8 kN and 4 kN forces share the same
point of application, they are combined to yield a single force vector EF1
in Eq. (4.5). Thus, their moment can be obtained by evaluating just one
cross product.

� In the vector approach, the direction of positive moment is the positive
´ direction, which in this example is the direction out of the plane of
the figure as provided by the right-hand rule. To see that this is true, use
your right hand such that your thumb points in the positive ´ direction;
then the direction in which your fingers curl provides the twisting sense
of a positive moment.

� In the vector approach there is considerable flexibility in selecting the
position vectors. In this example, Er1 and Er2 are taken from pointO to the
actual points of application of EF1 and EF2, while Er3 is taken from point
O to a convenient point on the line of action of EF3. The same result for
EMO is obtained using, for example, Er3 D .3 O{C O|/m or Er3 D .3 O{� O|/m.
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� In general, there is no reason why the resultant moment of all forces
about point O should be zero. In this example, if F D 1:0 kN, then the
scalar approach yields MO D �1 kN�m and the vector approach yields
EMO D �1 kN �m Ok. The result of having a nonzero resultant moment

about point O is that the balance mechanism will tend to rotate about
point O . This topic is explored in detail in Chapter 5.

�

Varignon’s theorem

Varignon’s theorem , also known as the principle of moments, states that the
moment of a force is equal to the sum of the moments of the vector compo-
nents of the force. Thus, if EF has vector components EF1, EF2, and so on, then
the moment of EF about a point A is given by

EMA D Er � EF

D Er � . EF1 C EF2 C � � � /

D Er � EF1 C Er � EF2 C � � � ; (4.10)

where Er is a position vector from point A to any point on the line of action
of EF . This principle is simply a restatement of the distributive property of
the cross product, but in fairness to Varignon (1654–1722), he discovered the
concepts underlying Eq. (4.10) well before vector mathematics and the cross
product were invented. Varignon’s theorem remains very useful for evaluating
moments, especially for scalar evaluations. While the component forces will
often be Cartesian components, in which case EF1, EF2, and EF3 would usually be
called EFx , EFy , and EF´, in general the components do not need to be orthogonal,
and there may be an arbitrary number of them.

� Mini-Example. With reference to Figs. 4.9 and 4.10, use scalar and vector
approaches, respectively, to evaluate the moment of force EF about point A.

Figure 4.9
Scalar description of Varignon’s theorem
where, according to our sign convention, posi-
tive moment is counterclockwise.

Figure 4.10
Vector description of Varignon’s theorem.

Solution. Force EF has magnitude F and components Fx and Fy . The mag-

nitude of the moment of EF about a point A can be evaluated by the two scalar
approaches shown in Fig. 4.9. In the first of these, the magnitude of the mo-
ment is computed using the definition given in Eq. (4.1), where the moment
arm d is the perpendicular distance from point A to the line of action of the
force and positive values of MA are taken to be counterclockwise. In the sec-
ond evaluation in Fig. 4.9, the x and y components of the force are used, and
the moment of each of these is evaluated and summed, again with counter-
clockwise being positive. In practice, you should use the first approach if it
is easy to find the moment arm d; and the second approach if it is easier to
obtain the moment arms for the components of the force.

The vector approaches shown in Fig. 4.10 can also be used. In the first of
these, the position vector is taken from point A to the tail of EF , although a
position vector from A to any point on the line of action of EF is acceptable.
In the second evaluation in Fig. 4.10, the force is resolved into vector compo-
nents EFx and EFy , and the moment of each of these is computed and summed.
In practice, the first of these vector evaluations will almost always be more
convenient. �



186 Moment of a Force and Equivalent Force Systems Chapter 4

Which approach should I use: scalar or vector?

In simpler problems, such as two-dimensional problems when all forces are
coplanar (i.e., all forces lie in the same plane and hence produce moments
about the same axis, which is perpendicular to that plane), the scalar approach
for evaluating moments will usually be easier and faster, and use of clock-
wise and counterclockwise to distinguish moment direction is effective. For
more complicated problems, such as in three dimensions, a scalar approach
can sometimes be used effectively, but generally the vector approach is better.
You should contrast the scalar and vector solutions for the example problems
that follow to help refine your ability to select the easier approach for a partic-
ular problem.

Common Pitfall

What does the moment depend on? A
common misconception is that the moment
of a force is an inherent property of only the
force. The moment of a force depends on
both the force and the location of the point
about which the moment is evaluated. For
example, consider the moment of force EF
about point A and about point B .

In general, the moment of EF about these
two points is different, and EMA ¤ EMB .

End of Sect ion Summary

In this section, the moment of a force, or simply moment, is defined and scalar
and vector approaches for evaluation are discussed. Some of the key points are
as follows:

� The moment is a vector quantity.

� When we evaluate the moment using the scalar approach, the magni-
tude of the moment of a force EF about a point P is given byMP D Fd

where d is the moment arm, which is the perpendicular distance from
point P to the line of action of the force. The scalar approach does
not automatically provide the direction of the moment; this must be as-
signed manually.

� When we evaluate the moment using the vector approach, the moment
of a force EF about a point P is given by EMP D Er � EF , where Er is a
position vector measured from point P to anywhere on the line of action
of EF . The direction of EMP is automatically provided by this approach.

� The moment of a force depends on both the force and the location of
the point about which the moment is evaluated. The important charac-
teristics of the force are its magnitude, its orientation or direction, and
the position in space of its line of action.

� Varignon’s theorem , also known as the principle of moments, states that
the moment of a force is equal to the sum of the moments of the compo-
nents of the force.
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E X A M P L E 4.1 Moment: Vector and Scalar Evaluations for a Two-dimensional
Problem

Figure 1

A portion of a structure is acted upon by the 10 and 20 lb forces shown. Determine the
resultant moment of these forces about point A.

S O L U T I O N

Road Map Both scalar and vector approaches are effective for this problem. In the
scalar approach, we must find the moment arm for each force, and after evaluating
the moment of each force, we must be careful to sum the results according to a sign
convention for positive moment. With the vector approach, we must develop vector
expressions for forces and positions and then carry out cross products to determine the
moment. For two-dimensional problems, the vector approach will usually require more
computations, but does not require the careful visualization of the scalar approach.

Scalar solution

Governing Equations & Computation In Fig. 2, the moment arms for the 10 and
20 lb forces are determined. By applying Eq. (4.1) on p. 182 to each force and summing
the results, using the convention that positive moment is counterclockwise, the resultant
moment about point A is

Figure 2
A sketch showing the lines of action of each
force. The moment arm d1 for the 10 lb force
is the shortest distance from point A to the line
of action of this force, hence d1 D 5 in: The
moment arm d2 for the 20 lb force is the short-
est distance from pointA to the line of action of
this force, hence d2 D 10 in:

MA D .10 lb/.5 in./ � .20 lb/.10 in./ D �150 in.�lb: (1)

When writing Eq. (1), we used Eq. (4.1) to evaluate the magnitude of the moment for
the 10 lb force as .10 lb/.5 in:/, followed by examination of Fig. 1 to determine that
this force produces counterclockwise moment about point A and hence it is positive in
accordance with our sign convention. We then repeated this process for the 20 lb force
to determine the magnitude of its moment as �.20 lb/.10 in:/ where the negative sign
is used because this force produces clockwise moment about point A. Carrying out the
algebra in Eq. (1) yields the final answer: the moment of the two forces about point A
is �150 in.�lb counterclockwise.

If desired, the results of Eq. (1) can be used to write a vector expression for the
resultant moment about point A as

EMA D �150 in.�lb + (2)

where the + symbol specifies the direction and is analogous to the ] symbol used in
polar vector representation (described in the margin note on p. 31).

Vector solution

Governing Equations & Computation A vector approach can also be employed
using the vectors EF and ErAB shown in Fig. 3, which are

EF D .�10 O{ � 20 O|/ lb; ErAB D .10 O{ C 5 O|/ in. (3)

Using Eq. (4.2) on p. 183, the moment vector of the two forces about point A is

Figure 3
Force and position vectors used to determine
the moment of EF about point A.

EMA D ErAB � EF D �150
Ok in.�lb: (4)

Discussion & Verification While you should be proficient using both scalar and vec-
tor approaches, you should contrast these two solutions to help you recognize which
of the two will be more efficient for a particular problem. You can also use both ap-
proaches for a particular problem to help verify the accuracy of your answers.
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E X A M P L E 4.2 Moment: Different Points Along the Line of Action of the Force
May Be Used

Figure 1

A machine handle is connected to a shaft at B . Determine the moment produced by the
15 N force about point B .

S O L U T I O N

Road Map Both scalar and vector approaches are effective for this problem, and
several solutions will be carried out and contrasted. If a scalar solution is used, there
are several options for treatment of the force and determination of moment arms. If a
vector approach is used, there are options on selection of the position vector. Regardless
of your approach, the results should be the same, but some solutions may be easier to
carry out than others.

Solution 1

Governing Equations & Computation With the geometry provided, similar trian-
gles and trigonometry can be used (detailed calculations are given in Fig. 2) to deter-
mine that the moment arm is d D 160mm, as shown in Fig. 3(a). With our convention
that counterclockwise moments are positive, the moment about point B is

MB D �.15N/.160mm/ D �2400N�mm: (1)

Figure 2
Use of similar triangles and trigonometry to de-
termine the moment arm d needed for Solu-
tion 1. Other strategies for determining d are
possible.

Solution 2

Governing Equations & Computation We resolve the 15N force into its x and y
components as shown in Fig. 3(b) and use Varignon’s theorem (the principle of mo-
ments) to sum the moments produced by each of these components. With our conven-
tion that positive moment is counterclockwise,

MB D �.12N/.350mm/C .9N/.200mm/ D �2400N�mm: (2)

Solution 3

Governing Equations & Computation The moment of a force does not depend on
the specific location where the force is applied, but rather depends on the position and
orientation of the force’s line of action. Thus, we may consider the 15N force as being
positioned anywhere along its line of action, and we select point C shown in Fig. 3(c)
as a convenient location (you should verify for yourself the coordinates of point C –
Fig. 2 may be helpful). With our convention that positive moment is counterclockwise,

MB D �.12N/.200mm/C .9N/.0mm/ D �2400N�mm: (3)

Solution 4

Governing Equations & Computation We use the same approach employed in the
previous solution, except here we “move” the force to pointD shown in Fig. 3(d). With
our convention that positive moment is counterclockwise,

MB D .12N/.0mm/ � .9N/.266:7mm/ D �2400N�mm: (4)

Solution 5

Governing Equations & Computation A vector approach can also be employed
using the force and position vectors shown in Fig. 3(e), which are

EF D .12 O{ � 9 O|/N; ErBA D .�200 O{ C 350 O|/mm: (5)



Section 4.1 Moment of a Force 189

Figure 3. (a)–(d) Positioning of forces and/or resolution of forces into components so that a scalar approach can be used to determine the
moment of the 15N force about point B . (e) Force and position vectors that can be used in a vector approach.

Rather than using ErBA, the position vectors ErBC and ErBD are convenient choices that
could have been used instead. Evaluating the moment provides

EMB D ErBA � EF D �2400
OkN�mm: (6) Helpful Information

A useful tip. Sometimes, the distance
between a point and the line of action of
a force (or other vector) is desired, such
as d in Fig. 2. For situations where a
direct evaluation of d is tedious, such
as in this example, you may use one
of Solutions 2–5 to determine the mo-
ment of the force about point B (namely
�2400N�mm), then write Eq. (1) as
MB D �.15N/d D �2400N�mm, and
then solve for d D 160mm.

Discussion & Verification As expected, all solutions produce the same result. For
this example, Solution 1 is not especially convenient because the determination of the
moment arm is tedious. Solutions 2–5 are all effective with Solutions 2 and 5 probably
being the most straightforward.
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E X A M P L E 4.3 Moment: Vector and Scalar Evaluations for a
Three-dimensional Problem

Figure 1

The structure supports vertical forces F D 200 lb and P D 50 lb. Pipe segments BC
and CD are parallel to the y and x axes, respectively. Determine the resultant moment
of both forces about point O .

S O L U T I O N

Road Map Both vector and scalar solutions are possible, and both approaches will
be illustrated and contrasted. The vector approach is straightforward: we first write
expressions for force vectors and position vectors and then carry out the cross products
to obtain the desired moment. A scalar solution requires good visualization to identify
the appropriate moment arms and a consistent sign convention for moments.

Vector solution

Governing Equations & Computation We first write expressions for force vectors
and position vectors as follows:

EF D �200 O| lb; ErOD D .18 O{ � 12 O| C 36
Ok/ in.; (1)

EP D 50 O| lb; ErOC D .�12 O| C 36
Ok/ in. (2)

Using the vectors in Eqs. (1) and (2), we find the moment about point O is

EMO D ErOD � EF C ErOC � EP

D .5400 O{ � 3600 Ok/ in.�lb: (3)

Remarks

� Rather than using ErOD and ErOC in Eq. (3), the position vectors .18 O{C 36 Ok/ in.
and ErOB , respectively, could have been used. These are slightly better choices
since they each have fewer components, which will reduce the number of com-
putations needed to evaluate the cross products.

� The result for EMO in Eq. (3) has x and ´ components, meaning that EF and EP
combine to produce twisting action about both the x and ´ axes through point
O as shown in Fig. 2(a). Alternatively, the x and ´ components can be added to
give a single moment vector with magnitude MO , as shown in Fig. 2(b).

Figure 2. The resultant moment EMO of forces F and P about point O is shown.
(a) The components of EMO are shown. (b) The vector EMO is shown in its proper
orientation.
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Scalar solution

Governing Equations & Computation A scalar solution is possible, but requires Common Pitfall

Clockwise or counterclockwise? Earlier
example problems in this section all have
moments that are either into or out of the
plane containing the forces for each prob-
lem, and when we used the scalar ap-
proach, use of clockwise and counterclock-
wise for describing moment directions was
effective. For moments in three dimensions,
clockwise and counterclockwise are am-
biguous and have little meaning. When us-
ing the scalar approach to find moments
in three dimensions, you should use the
positive coordinate directions and the right-
hand rule to define positive moments, as il-
lustrated in this example.

good visualization to identify the appropriate moment arms and a consistent sign con-
vention for moments. In three-dimensional problems, it is very difficult to unambigu-
ously categorize moments with words like clockwise and counterclockwise. Thus, we
will usually take the positive coordinate directions to define the directions of positive
moments (i.e., the right-hand rule governs the direction of positive moment).

As shown in Fig. 3, we extend the lines of action for each force to help identify the
appropriate moment arms. Force F produces positive moment about the x axis where

Figure 3. Moment arms to be used in a scalar approach for determining the moment of
forces F and P about point O .

the moment arm is 36 in, and negative moment about the ´ axis where the moment arm
is 18 in. Since F is parallel to the y axis, it produces no moment about this axis. Force
P produces negative moment about the x axis where the moment arm is 36 in: and
produces no moment about the other two axes. Thus,

MOx D .200 lb/.36 in./ � .50 lb/.36 in./ D 5400 in.�lb; (4)

MOy D 0; (5)

MO´ D �.200 lb/.18 in./ D �3600 in.�lb: (6)

Discussion & Verification As expected, the x, y, and ´ components of the moment
about point O found by the scalar approach agree with those found using the vector
approach. Note that in the scalar approach, if you do not take positive moments to be
in the positive coordinate directions, then the signs of moment components may not
agree with those in the vector approach. Our recommendation is that you always take
moments to be positive in the positive coordinate directions.
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E X A M P L E 4.4 Maximizing the Moment of a Force

Figure 1

The belt tensionerABC is attached to an engine using a bearing atA having a torsional
spring. To release the belt tension, a ratchet wrench CD is applied to the tensioner at
point C . If a moment about point A of 50N �m is required to release the belt tension,
determine the smallest force F required and the angle ˛ at which the wrench should
be positioned. Consider the following two cases:

(a) The force F is always perpendicular to the handle of the wrench.

(b) The force F is always horizontal (parallel to the x axis).

S O L U T I O N

Road Map While both scalar and vector solutions are effective, only a scalar solution
will be used here. For both parts of this problem, our goal is to produce a 50N �m
moment about point A using the smallest force possible. This will be accomplished by
positioning the wrench handle so that the moment arm is as large as possible.

Part (a)

Governing Equations & Computation The moment of force F about point A is
required to be 50N�m clockwise. Thus,

MA D �Fd D �50N�m (1)

where the moment arm d is the distance from point A to the line of action of F , and
because F produces clockwise moment about point A, the negative signs are included.
To minimize F , we seek the position of the wrench handle D so that moment arm d is
maximized. Shown in Fig. 2 is the circular locus of possible locations of pointD, with
three example locations shown (points D1, D2, and D3) and their associated moment
arms (d1, d2, and d3). Examination of this figure shows that the largest moment arm
is achieved when the handle of the wrench is at point D2; thus ˛ D �60ı and d D
d2 D 550mm. Equation (1) can now be solved to obtain

F D
�MA
d
D
50N�m

0:550m
D 90:9N: (2)

Figure 2
Depending on the value of ˛, there are an infi-
nite number of possible positions for point D
and force F , and three possible positions, de-
noted byD1,D2, andD3, are shown with their
corresponding moment arms d1, d2, and d3, re-
spectively.

Part (b)

Governing Equations & Computation As with Part (a), we wish to maximize the
moment arm d in Eq. (1) where now force F is always horizontal. The locus of possible
locations for pointD is shown in Fig. 3, with three example locations illustrated (points
D1, D2, and D3). Clearly, d is largest when the handle of the wrench is vertical. For
this position ˛ D 0ı , the moment arm is d D .0:250m/ sin 30ıC0:300m D 0:425m.
Solving Eq. (1) provides

F D
�MA
d
D
50N�m

0:425m
D 118N: (3)

Figure 3
Among the infinite number of possible posi-
tions for point D, three possible positions, de-
noted by D1, D2, and D3, are shown.

Discussion & Verification Sketches such as Figs. 2 and 3 can be very helpful in
problems where you must maximize or minimize the moment of a force about a par-
ticular point. Without the insight these figures offer, this problem would otherwise be
more difficult.
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P R O B L E M S

General instructions. Unless otherwise stated, in the following problems you
may use a scalar approach, a vector approach, or a combination of these.

Problems 4.1 and 4.2

Compute the moment of force F about point B , using the following procedures.

(a) Determine the moment arm d and then evaluate MB D Fd .

(b) Resolve force F into x and y components at point A and use the principle of
moments.

(c) Use the principle of moments with F positioned at point C .

(d) Use the principle of moments with F positioned at point D.

(e) Use a vector approach.
Figure P4.1

Figure P4.2

Problems 4.3 and 4.4

The cover of a computer mouse is hinged at point B so that it may be “clicked.” Repeat
Prob. 4.1 to determine the moment about point B .

Figure P4.3 Figure P4.4

Problem 4.5

An atomic force microscope (AFM) is a state-of-the-art device used to study the me-
chanical and topological properties of surfaces on length scales as small as the size
of individual atoms. The device uses a flexible cantilever beam AB with a very sharp,
stiff tip BC that is brought into contact with the surface to be studied. Due to contact
forces at C , the cantilever beam deflects. If the tip of the AFM is subjected to the forces
shown, determine the resultant moment of both forces about point A. Use both scalar
and vector approaches. Figure P4.5
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Problem 4.6

The door of an oven has 22 lb weight that acts vertically through point D. The door
is supported by a hinge at point A and two springs that are symmetrically located on
each side of the door. For the positions specified below, determine the force needed in
each of the two springs if the resultant moment about point A of the weight and spring
forces is to be zero.

(a) ˛ D 45ı.

(b) ˛ D 90ı.

(c) Based on your answers to Parts (a) and (b), determine an appropriate stiffness for
the springs.

Figure P4.6

Problem 4.7

The ball of a trailer hitch is subjected to a force F . If failure occurs when the moment
of F about point A reaches 10,000 in.�lb, determine the largest value F may have and
specify the value of ˛ for which the moment about A is the largest. Note that the value
of F you determine must not produce a moment about A that exceeds 10,000 in.�lb for
any possible value of ˛.

Figure P4.7 and P4.8

Problem 4.8

Repeat Prob. 4.7 if the moment at point B may not exceed 5000 in.�lb.

Problem 4.9

The port hull of a catamaran (top view shown) has cleats at points A, B , and C . A rope
having 100N force is to be attached to one of these cleats. If the force is to produce the
largest possible counterclockwise moment about pointO , determine the cleat to which
the rope should be attached and the direction the rope should be pulled (measured
positive counterclockwise from the positive x direction). Also, determine the value of
MO produced. Assume all cleats, point O , and the rope lie in the same plane.Figure P4.9

Problem 4.10

FrameABC has a frictionless pulley at C around which a cable is wrapped. Determine
the resultant moment about point A produced by the cable forces if W D 5 kN and

(a) ˛ D 0ı.

(b) ˛ D 90ı.

(c) ˛ D 30ı.

Figure P4.10 and P4.11
Problem 4.11

Frame ABC has a frictionless pulley at C around which a cable is wrapped. If the
resultant moment about point A produced by the cable forces is not to exceed 20 kN�m,
determine the largest weight W that may be supported and the corresponding value
of ˛.
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Problem 4.12

The load carrying capacity of the frame of Prob. 4.11 can be increased by placing a
counterweight Q at point D as shown. The resultant moment about point A due to the
cable forces and Q is not to exceed 20 kN�m.

(a) Determine the largest value of counterweight Q. Hint: Let W D 0 and determine
Q so that MA D 20 kN�m.

(b) With the value of Q determined in Part (a), determine the largest weight W that
may be supported and the corresponding value of ˛.

Figure P4.12
Problem 4.13

A flat rectangular plate is subjected to the forces shown, where all forces are parallel to
the x or y axis. If F D 200N and P D 300N, determine the resultant moment of all
forces about the

(a) ´ axis.

(b) a axis, which is parallel to the ´ axis.

Figure P4.13–P4.15

Problem 4.14

A flat rectangular plate is subjected to the forces shown, where all forces are parallel
to the x or y axis. If P D 300N, determine F when the resultant moment of all forces
about the ´ axis is M´ D �100N�m.

Problem 4.15

Repeat Prob. 4.14 if the resultant moment of all forces about the a axis is Ma D
�100N�m.

Problem 4.16

Structure OBCD is built in at point O and supports a 50 lb cable force at point C and
100 and 200 lb vertical forces at points B andD, respectively. Using a vector approach,
determine the moment of these forces about

(a) point B .

(b) point O .

Figure P4.16 and P4.17

Problem 4.17

Repeat Prob. 4.16, using a scalar approach.
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Problem 4.18

Structure OAB is built in at point O and supports forces from two cables. Cable CAD
passes through a frictionless ring at point A, and cable DBE passes through a friction-
less ring at point B . If the force in cable CAD is 250 N and the force in cable DBE is
100 N, use a vector approach to determine

(a) the moment of all cable forces about point A.

(b) the moment of all cable forces about point O .

Figure P4.18 and P4.19

Problem 4.19

Repeat Prob. 4.18, using a scalar approach.

Problem 4.20

Structure OABC is built in at point O and supports forces from two cables. Cable
EAD passes through a frictionless ring at point A, and cable OCG passes through a
frictionless ring at point C . If the force in cable EAD is 800 lb and the force in cable
OCG is 400 lb, determine

(a) the moment of forces from cable OCG about point B .

(b) the moment of all cable forces about point A.

(c) the moment of all cable forces about point O .

Figure P4.20 and P4.21

Problem 4.21

Repeat Prob. 4.20, using a scalar approach.

Problem 4.22

Structure OAB is built in at point O and supports two forces of magnitude F parallel
to the y and ´ axes. If the magnitude of the moment about point O cannot exceed
1:0 kN�m, determine the largest value F may have.

Figure P4.22 and P4.23

Problem 4.23

Repeat Prob. 4.22 if the x component of the moment (torsional component) at point
O may not exceed 0:5 kN �m and the resultant of the y and ´ components (bending

components) may not exceed 0:8 kN�m (i.e.,
q
M 2
y CM

2
´ � 0:8 kN�m).
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Problem 4.24

Forces of 3 kN and 200 N are exerted at pointsB andC of the main rotor of a helicopter,
and force F is exerted at point D on the tail rotor. The 3 kN forces are parallel to the
´ axis, the 200 N forces are perpendicular to the main rotor and are parallel to the xy
plane, F is parallel to the y axis, and ˛ D 45ı.

(a) Determine the value of F so that the ´ component of the moment about point O
of all rotor forces is zero.

(b) Using the value of F found in Part (a), determine the resultant moment of all rotor
forces about point O .

(c) If ˛ is different than 45ı, do your answers to Parts (a) and (b) change? Explain.
Figure P4.24

Problem 4.25

The moment of force EF about point A can be computed using EMA;1 D ErAB � EF or

using EMA;2 D ErAC � EF , where B and C are points on the line of action of EF . Noting

that ErAC D ErAB C ErBC , show that EMA;1 D EMA;2.

Figure P4.25
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4.2 Moment of a Force About a Line

We begin this section by summarizing the main result of the previous section:
the moment of a force about a point (usually called simply the moment) is the
tendency of the force to cause twisting of the point about which the moment
is evaluated. As such, the moment of a force about a point is a vector quantity.
In contrast to this, very often it is useful or necessary to determine the moment
of a force about a line or about a specific direction . The moment of a force
about a line is the tendency of the force to cause twisting about the line. To
illustrate, we reconsider the steering wheel from the Ferrari sports car, shown
again in Fig. 4.11, except that now the direction of the force EF applied by the
driver’s hand is arbitrary. Clearly, the effectiveness of EF to turn the steering

Figure 4.11
The steering wheel in the Ferrari 250 GTO (see
the discussion beginning on p. 181), where the
driver applies a force EF at point C to turn the
steering wheel.

wheel depends greatly on the orientation of EF . In fact, if the driver pushes on
the steering wheel so that EF is in the same direction as the steering column
AB (i.e., EF D F ErAB=jErAB j where ErAB is the position vector from point A to
B), the steering wheel will have no tendency to turn! Problem 4.26 explores
this steering wheel further.

The moment of a force about a line is defined to be the component of the
moment that is in the direction of the line. If the line happens to be parallel to
a coordinate axis, then the answer is easily obtained, as described below. If the
line has a more general direction, then obtaining the answer is more involved,
and both vector and scalar approaches can be used as follows.

Figure 4.12
Hinged door supported by a rope.

Figure 4.13. Vector approach to determine the moment of a force about a line a.
(a) The moment of force EF about some convenient point on line a (point O is se-
lected here) is evaluated. (b) The dot product is then used to determine the component
of the moment vector in the a direction Ma.

Vector approach

Consider the example shown in Fig. 4.12, where a door with rectangular shape
is hinged along an axis with direction a lying in the x´ plane. The door is
supported by a cable between points C and D, where the tensile force in the
cable has magnitude F . It will often be necessary to determine the moment
of F about a direction such as the line passing through the hinges. To use
a vector approach, first we find the moment at some convenient point along
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line a: points O , A, and B are likely choices, but any point P on line a, as
shown in Fig. 4.13(a), could be used (this statement is proved in Prob. 4.33).
If we use point O , we then evaluate EMO D ErOC � EF . Then, to determine the
component of EMO acting in the direction of line a, we use the dot product to
evaluate Ma D EMO � Ou, where Ou is a unit vector in the direction of line a,
as shown in Fig. 4.13(b). To express the moment about line a as a vector, we
simply write EMa DMa Ou. If you prefer, you may use the scalar triple product
so that the cross product and dot product are evaluated simultaneously to yield
Ma.

Scalar approach

To use a scalar approach, we first resolve F into perpendicular and parallel
components F? and Fk, respectively, to a plane containing line a, as shown in
Fig. 4.14. Next we evaluate the moment about line a produced by the perpen-

Figure 4.14
Scalar approach to determine the moment of a
force about line a.

dicular component (the parallel component produces no moment about line a),
namely, Ma D F?d , where the moment arm d is the perpendicular (shortest)
distance from line a to the line of action of F?. For problems with complex
geometry, determining F? and/or d may be tedious.

Remarks

� If line a is parallel to the x axis and the positive a and x directions are
the same, then the moment about line a is simply the x component of
the moment at any point on line a. If line a is parallel to the x axis and
the positive a and x directions are opposite, then the moment about line
a is the negative of the x component of the moment at any point on line
a. Similar remarks apply if a is parallel to the y or ´ axis.

� The moment about line a in the example of Fig. 4.12 can be obtained
by evaluating Ma D EMP � Ou where the moment EMP at any point P
along line a is used. While the same value Ma results for any point P ,
the moment EMP is usually different for different points along line a.
Thus, for Fig. 4.13(a), EMO ¤ EMA ¤ EMB ¤ EMP , however EMO � Ou D
EMA � Ou D EMB � Ou D EMP � Ou.

� When you evaluate the moment of a force about a line using the scalar
approach, values for the perpendicular component of the force and the
moment arm are not unique, and these will depend on the particular
plane you select. The only requirement is the plane you use must con-
tain the line about which you want to determine the moment. For exam-
ple, to determine the moment of force F about line a in Fig. 4.15, two
possible planes are shown. Clearly the perpendicular components of F
are different for the two planes (F?;1 ¤ F?;2), and the moment arms
are also different (d1 ¤ d2). Nonetheless, the moment of F about line
a is the same, so that Ma D F?;1 d1 D F?;2 d2.

Figure 4.15
Two different planes, among an infinite number
of possibilities, that may be used to determine
the moment of force F about line a. Observe
that quantities such as the moment arm and the
perpendicular component of F depend on the
particular plane that is chosen. However, regard-
less of what plane is chosen, the moment of F
about line a is the same.
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End of Sect ion Summary

In this section, the moment of a force about a line is defined to be the compo-
nent of the moment that is in the direction of the line. The moment of a force
about a line can be evaluated using vector and scalar approaches, as follows.

To determine the moment Ma of a force F about a line (or direction) a as
shown in Fig. 4.16:

Vector approach:

1. Select a point P at a convenient location on line a. Determine the mo-
ment of EF about P , using EMP D Er � EF , where Er is a position vector
from P to any point on the line of action of EF .�

2. Ma D EMP � Ou, where Ou is a unit vector in the direction of a. To express
this moment as a vector quantity, evaluate EMa DMa Ou.

Note: Steps 1 and 2 may be combined to yield Ma directly using the scalar
triple product.

Scalar approach:

1. Resolve F into components F? and Fk that are perpendicular and par-
allel, respectively, to a plane containing line a.

2. Ma D F?d where d is the moment arm (shortest distance) between
line a and the line of action of F . Note: Fk produces no moment about
a, so you may skip its evaluation altogether.

Figure 4.16
Vector and scalar approaches for determining
the moment of a force about a line.

�As an alternative to using the cross product to determine EMP , especially for problems with

simple geometry, you could use a scalar approach to determine the vector expression for EMP ,
to be followed by taking the dot product as described in Step 2.
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E X A M P L E 4.5 Moment of a Force About a Line – Vector & Scalar Solutions

Figure 1

A door with rectangular shape is hinged along an axis having direction a lying in the xz
plane. The door is supported by a cable that has a tensile force F D 100N. Determine
the moment of F about line a.

S O L U T I O N

Road Map Determining the moment of a force about a line is inherently a three-
dimensional problem, and while both vector and scalar approaches can always be used,
the vector approach will usually be more straightforward and methodical. Nonetheless,
both solution approaches are carried out.

Vector solution

Governing Equations & Computation We first select pointO as a convenient loca-
tion on line a to compute the moment of F . Needed vectors are

EF D .100N/
�2 O{ C O| C 2 Ok

3
; (1)

ErOC D .0:8m/.cos 15ı/ O{ C .0:4m/ O| � .0:8m/.sin 15ı/ Ok

D .0:7727 O{ C 0:4 O| � 0:2071 Ok/m: (2)

The moment of EF about point O is

EMO D ErOC � EF D .33:57 O{ � 37:71 O| C 52:42
Ok/N�m: (3)

Finally, we take the dot product of EMO in Eq. (3) with a unit vector in the a direction,
Oua D cos 15ı O{ � sin 15ı Ok, to obtain

Ma D EMO � Oua D 18:9N�m: (4)

Thus, the portion of EMO that acts in the a direction, and hence the moment of F about
the a axis, is 18:9N�m. The fact that this result is positive means the twisting action of
F about line a is in the positive a direction, as governed by the right-hand rule.

Scalar solution

Governing Equations & Computation The geometry of this problem is complex
enough that a scalar evaluation of the perpendicular component of EF using trigonom-
etry is tedious. Rather we will start with a vector approach to obtain the perpendic-
ular component of EF (the magnitude of this vector is F? shown in Fig. 2) by tak-
ing the dot product of EF in Eq. (1) with a unit vector Oun normal to the door, where
Oun D sin 15ı O{ C cos 15ı Ok. This provides

Figure 2
Resolution of EF into perpendicular and parallel
components F? and Fk, respectively.

F? D EF � Oun D 47:14N: (5)

To calculate the moment of F? about line a, the moment arm needed is the perpendic-
ular distance from line a to the line of action of F?, namely, d D 0:4m. Thus

Ma D F?d D .47:14N/.0:4m/ D 18:9N�m: (6)

In the scalar approach, the sign for Ma must be assigned manually. Examination of
Fig. 2 shows that F? produces twisting action about line a, according to the right-hand
rule, that is in the positive a direction. Thus, we conclude that Ma D C18:9N�m.

Discussion & Verification As expected, both solutions produce the same result.
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E X A M P L E 4.6 Moment of a Force About a Line – Vector & Scalar Solutions

Figure 1

A piece of cardboard is bent along the edge of a table. The a axis lies in the xy plane
and force F lies in the y´ plane. Determine the moment of F about the a axis.

S O L U T I O N

Road Map Both vector and scalar solutions are possible, and both are illustrated.

Vector solution

Governing Equations & Computation With point O selected as a convenient loca-
tion, the necessary vectors, as shown in Fig. 2, are

ErOB D 2 O| ft; (1)

EF D .5 lb/.� cos 45ı O| � sin 45ı Ok/: (2)

The moment of EF about point O is

Figure 2
Force and position vectors to be used in a vector
solution.

EMO D ErOB � EF D .�7:071/ O{ ft�lb: (3)

Finally, using the unit vector Ou D sin 30ı O{ C cos 30ı O| to describe the a direction, the
moment about line a is

Ma D EMO � Ou D �3:54 ft�lb: (4)

The negative sign for Ma means the twisting direction of F about line a, according to
the right-hand rule, is the negative a direction.

If desired, the moment of F about line a can be stated as a vector by evaluating

EMa DMa Ou

D .�3:54 ft�lb/.sin 30ı O{ C cos 30ı O|/

D .�1:77 O{ � 3:06 O|/ ft�lb: (5)

Scalar solution

Governing Equations & Computation We resolve F into perpendicular and paral-
lel components, as shown in Fig. 3, and determine the moment arm d as the perpendic-
ular distance from the a axis to the line of action of F?. Then

Ma D F?d D .5 lb/.sin 45ı/.2 ft/.sin 30ı/

D 3:54 ft�lb: (6)

In the scalar approach, we must manually provide the sign for our result. Examining
Fig. 3, we observe the twisting action of F? about line a is in the negative a direction
according to the right-hand rule. Hence, we conclude Ma D �3:54 ft�lb.

Figure 3
Components of force and moment arms to be
used in a scalar solution.

Discussion & Verification As expected, both solutions produce the same result.
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E X A M P L E 4.7 Moment of a force about a line – vector solution

Figure 1

The axle and steering linkage for the front wheel of an off-road vehicle is shown. Force
F causes the assembly to rotate about line a so that the vehicle can be steered. Point A
is located at .160;�20; 100/mm. Determine the force F needed to produce a moment
about line a of 10N�m if

(a) line a lies in the y´ plane and has direction angle �´ D 10
ı.

(b) line a coincides with the ´ axis.

S O L U T I O N

Road Map A vector solution is straightforward and will be used here. To determine
the moment of F about line a, we will first determine the moment of F about a conve-
nient point on line a (we will select point O , and the result of this is a vector). We will
then use the dot product to determine the portion of this moment vector that acts in the
a direction, and according to the problem statement, this must be 10N �m. From this
the value of F may be determined.

Part (a)

Governing Equations & Computation To find the moment of F about line a, a
position vector from some point along a to some point along the line of action of F is
needed, and ErOA, as shown in Fig. 2, is an obvious choice. The necessary vectors are

ErOA D .160 O{ � 20 O| C 100
Ok/mm; EF D F

�8 O{ � 12 O| C 9 Ok

17
: (1)

The moment of EF about point O is then

Figure 2
Force and position vectors EF and ErOA, respec-
tively, used to determine the moment of EF
about point O and the moment of EF about line
a.

EMO D ErOA � EF D F.60:00 O{ � 131:8 O| � 122:4
Ok/mm: (2)

The component of EMO in the direction a is given by the dot product between EMO and
a unit vector in the direction a, Oua D sin 10ı O| C cos 10ı Ok:

Ma D EMO � Oua D �F.143:4mm/: (3)

The negative sign in the above result indicates a positive force F produces a moment
about line a that is in the negative a direction. To finish this problem, the moment about
line a is required to have magnitude 10N�m D 10; 000N�mm. Thus, using the absolute
value of Eq. (3), we obtain

F.143:4mm/ D 10; 000N�mm ) F D 69:7N: (4)

Part (b)

Governing Equations & Computation Assuming the orientation of F and the loca-
tion of point A are unchanged when line a coincides with the ´ axis, the moment of F
about point O is unchanged and is given by Eq. (2). The unit vector Ou used in Eq. (3)
becomes Ou D Ok, and reevaluation of Eq. (3) simply provides the ´ component of EM0,
which is

Ma DMO´ D �F.122:4mm/: (5)

Requiring the absolute value of the above result to be equal to 10,000 N�mm provides

F D 81:7N: (6)

Discussion & Verification The main difference between the two parts of this exam-
ple is the orientation of line a. In Part (b), where line a is parallel to the ´ axis, the dot
product is a trivial operation that produces the ´ component of the moment vector. The
first remark on p. 199 gives additional comments.
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P R O B L E M S

General instructions. Unless otherwise stated, in the following problems you
may use a scalar approach, a vector approach, or a combination of these.

Problem 4.26

The steering wheel of a Ferrari sports car has circular shape with 190mm radius, and
it lies in a plane that is perpendicular to the steering column AB . Point C , where the
driver’s hand applies force EF to the steering wheel, lies on the y axis with y coordinate
yC D �190mm. Point A is at the origin of the coordinate system, and point B has the
coordinates B .�120; 0;�50/mm. Determine the moment of EF about line AB of the
steering column if

(a) EF has 10N magnitude and lies in the plane of the steering wheel and has orienta-
tion such that its moment arm to line AB is 190mm. Also determine the vector
expression for this force.

(b) EF D .10N/
18 O{ � 3 O| C 14 Ok

23
.

(c) EF D .10N/
�12 O{ � 5 Ok

13
.Figure P4.26

Problem 4.27

A rectangular piece of sheet metal is clamped along edge AB in a machine called a
brake. The sheet is to be bent along line AB by applying a y direction force F . Deter-
mine the moment about line AB if F D 200 lb. Use both vector and scalar approaches.

Figure P4.27 and P4.28

Problem 4.28

In Prob. 4.27 determine F if the moment about line AB is to be 2000 in.�lb.

Problem 4.29

In the pipe assembly shown, points B and C lie in the xy plane, and force F is parallel
to the ´ axis. If F D 150N, determine the moment of F about lines OA and AB . Use
both vector and scalar approaches.

Figure P4.29 and P4.30

Problem 4.30

In the pipe assembly shown, points B and C lie in the xy plane and force F is parallel
to the ´ axis. If a twisting moment (torque) of 50N�m will cause a pipe to begin twist-
ing in the flange fitting at O or at either end of the elbow fitting at A, determine the
first fitting that twists and the value of F that causes it.
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Problems 4.31 and 4.32

Determine the moment of force F about line AB as follows.

(a) Determine the moment ofF about pointA, EMA, and then determine the component
of this moment in the direction of line AB .

(b) Determine the moment of F about point B , EMB , and then determine the compo-
nent of this moment in the direction of line AB .

(c) Comment on differences and/or agreement between EMA, EMB , and the moment
about line AB found in Parts (a) and (b). Also comment on the meaning of the
sign (positive or negative) found for the moment about line AB .

Figure P4.31 Figure P4.32

Problem 4.33

The moment of force EF about lineAB can be computed usingMAB;1 orMAB;2 where

MAB;1 D .ErAC � EF / �
ErAB
jErAB j

; MAB;2 D .ErBC � EF / �
ErAB
jErAB j

;

where C is a point on the line of action of EF . Noting that ErAC D ErAB C ErBC , show
that MAB;1 DMAB;2. Figure P4.33

Problem 4.34

An automobile windshield wiper is actuated by a force EF D .120 O{ � 50 O|/N. Deter-
mine the moment of this force about shaft OB .

Figure P4.34 and P4.35

Problem 4.35

In the windshield wiper of Prob. 4.34, if EF has 130N magnitude, determine the direc-
tion in which it should be applied so that its moment about shaft OB is as large as
possible, and determine the value of this moment.
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Problem 4.36

Wrench AB is used to twist a nut on a threaded shaft. Point A is located 120mm from
point O , and line a has x, y, and ´ direction angles of 36ı, 60ı, and 72ı, respectively.
Point B is located at .0; 300; 100/mm, and the force is EF D .�80 O| C 20 Ok/N.

(a) Determine the moment of EF about point A, EMA, and then find the component of
this moment about line a, Ma.

(b) Determine the moment of EF about point O , EMO , and then find the component of
this moment about line a, Ma.

Figure P4.36

Problem 4.37

A trailer has a rectangular door DEGH hinged about edge GH . If EF D

.�2 O{ C 5 O| C 14 Ok/ lb, determine the moment of F about edge GH .

Figure P4.37–P4.40

Problem 4.38

In the trailer of Prob. 4.37, if F D 15 lb, determine the direction in which it should
be applied so that its moment about edge GH of the rectangular door is as large as
possible, and determine the value of this moment.

Problem 4.39

A trailer has a triangular door ABC hinged about edge BC . If EQ D . O{C 4 O| C 8 Ok/ lb,
determine the moment of Q about edge BC .

Problem 4.40

In the trailer of Prob. 4.39, if Q D 9 lb, determine the direction in which it should be
applied so that its moment about edge BC of the triangular door is as large as possible,
and determine the value of this moment.

Problem 4.41

A poorly leveled crane rotates about line a, which lies in the xy plane and has a y
direction angle of 5ı. Line AB lies in the x´ plane. If the crane supports a weight
W D 5000lb and ˛ D 45ı, determine the moment of W about line a.

Figure P4.41 and P4.42

Problem 4.42

If the poorly leveled crane of Prob. 4.41 can have any position ˛, where 0 � ˛ � 135ı,
determine the largest moment of the weightW D 5000 lb about line a and the position
˛ that produces this moment. Assume h D 40 ft for any position ˛ (this requires the
operator to slightly change the boom’s height and/or length as the crane rotates about
line a).



Section 4.2 Moment of a Force About a Line 207

Problem 4.43

Three-wheel and four-wheel all-terrain vehicles (ATVs) are shown. For both ATVs, the
combined weight of the driver and vehicle is W D 2600N. During a hard turn, the
tendency for the ATV to tip is modeled� by the force F , which acts in the negative
y direction. Determine the value of F such that the resultant moment of F and the
weight about line AB is zero. Comment on which ATV is more prone to tip during hard
turns. Note: One of these models of ATV is no longer manufactured because of its poor
safety record.

Figure P4.43

�When an ATV moves on a curved path, it is a dynamics problem. We can model this system as
a statics problem by treating inertial effects as external forces, as we do in this problem. While
this is a crude approximation, it is nevertheless a common modeling approach. You will see in
dynamics how to correctly formulate these problems.
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4.3 Moment of a Couple

A couple is defined to be a system of two forces of equal magnitude and oppo-
site direction and whose lines of action are separated by a distance. To under-
stand better what a couple is, reconsider the steering wheel from the Ferrari
sports car, shown again in Fig. 4.17, except that now the driver uses two hands
to apply forces to turn the steering wheel. Of course, the driver could apply
forces of different magnitudes and in any two different directions that he or
she pleases. However, if the driver applies forces of equal magnitude and with
opposite direction, as shown in Fig. 4.17, then the system of two forces is
called a couple.

A B

C

E

Figure 4.17
The steering wheel in the Ferrari 250 GTO (see
the discussion beginning on p. 181), where the
driver uses two hands to apply two forces of
equal magnitude and opposite direction to the
steering wheel. Such a force system is defined
to be a couple.

Helpful Information

Vector notation. Notice in Fig. 4.17 that
two types of vector notation are shown
(these were described in Chapter 2 on
p. 30). When forces are labeled using a
scalar such as F , then the direction of the
arrow in the figure provides the direction of
the force. When forces are labeled using
a vector such as EF , then the symbol EF
embodies both the magnitude and direction
for the force. Hence, in this figure if the
force at point C is labeled as EF and if the
force system is a couple, then the force at
E must be labeled as � EF .

The moment of a couple (sometimes also called a couple moment) is the
moment produced by the couple, that is, the moment produced by two forces
of equal magnitude and opposite direction. The moment of a couple can al-
ways be evaluated using the procedures of Section 4.1. However, the mo-
ment of a couple has some special features, and in addition to the methods
of Section 4.1, this section discusses other approaches that may be used for
evaluation.

A couple that is applied to a body produces a moment, but does not ap-
ply any net force to the body. To help illustrate some of the implications of
this, consider the air hockey table shown in Fig. 4.18(a), and imagine that a
rectangular plate is resting motionless on the surface of the table.� If the two
forces shown in Fig. 4.18(b) are applied to the plate, because the two forces
have equal magnitude and opposite direction, there is no net force applied
in the x direction and hence there is no net motion of the plate in the x di-
rection. However, the two forces produce a moment, and due to this moment
the plate will begin to spin. Thus, the essential feature of a couple is that it
produces only a moment. Furthermore, when the moment has the proper mag-
nitude and direction (as described below), then the two force systems shown in
Fig. 4.18(b) and (c) are said to be equivalent, and if the plate can be idealized
as being rigid, then the motion of the plate in Fig. 4.18(b) and (c) is identical.
Section 4.4 discusses equivalent force systems in detail.

Figure 4.18. (a) An air hockey table. (b) A rectangular plate resting on the surface of
the air hockey table is subjected to a couple, that is, two forces with equal magnitude
and opposite direction, separated by a distance d . (c) The moment produced by the
couple. The two force systems shown in (b) and (c) are equivalent when M has the
proper value and direction, as described in this section.

The moment of a couple can be evaluated using both vector and scalar
approaches as follows.

� If you are unfamiliar with an air hockey table, you can instead imagine the rectangular plate
resting on any horizontal frictionless surface, such as a sheet of ice.
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Vector approach

Referring to Fig. 4.19, consider a couple consisting of two parallel forces EF
and � EF . The moment EM of this couple is

EM D ErAB � EF

D ErBA � .� EF /
(4.11)

where

Figure 4.19
Moment of a couple: vector description.

Figure 4.20
Moment of a couple: scalar description.

ErAB and ErBA are position vectors,
A is any point on the line of action of � EF ,
B is any point on the line of action of EF .

To see that the two expressions in Eq. (4.11) are equal, note that ErBA D �ErAB
and thus, EM D ErBA � .� EF / D �ErAB � .� EF / D ErAB � EF .

When evaluating the moment of a couple using the vector approach, you
will select one of the forces of the couple to be called EF . Then the position
vector Er must start somewhere on the line of action of the other force and
terminate somewhere on the line of action of EF . It does not matter which of
the two forces of the couple you choose to call EF ; using the proper position
vector as described here will result in the same moment EM .

Scalar approach

Referring to Fig. 4.20, consider a couple consisting of two parallel forces hav-
ing the same magnitude F . The magnitude of the moment of this couple is

M D Fd (4.12)

where

d is the perpendicular (shortest) distance between the forces’ lines
of action,

the direction of the moment is perpendicular to the plane contain-
ing the forces.

Comments on the moment of a couple

To see that the vector and scalar descriptions of the moment of a couple are
valid and to understand some subtle features of a couple and the moment it
produces, consider the forces shown in Fig. 4.21. The moment produced by
these forces about point C having arbitrary location is

Figure 4.21
Vectors for computing the moment of forces EF
and � EF about point C . Because EF and � EF are
a couple, the moment they produce is seen to be
the same regardless of where point C is located.

EMC D ErCA � .� EF /C ErCB � EF: (4.13)

Noting that ErCB D ErCA C ErAB , we see Eq. (4.13) becomes

EMC D ErCA � .� EF /C .ErCA C ErAB/ � EF

D ErCA � .� EF /C ErCA � EF C ErAB � EF

D ErAB � EF: (4.14)
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Notice from Eq. (4.14) that the moment about point C depends only on the
position vector between the two forces’ lines of action and does not depend
on the location of C . Thus, regardless of where C is located, the moment pro-
duced by the couple is the same. In other words, a couple produces a moment
vector that has a specific magnitude and orientation, but the vector’s position
in space (i.e., the location of its line of action) is arbitrary, because you can let
point C be located anywhere. Thus we may consider the point at which a cou-
ple moment acts as being anywhere we choose. For the examples in Figs. 4.19
and 4.20 point C is shown as being positioned between the two forces, al-
though any other location for point C is equally valid.

For the foregoing reasons, the moment of a couple is often called a free
vector, and this is an important difference compared to all other vectors we
have encountered in this book. A free vector is a vector that has a specific
magnitude and direction, but its position in space is arbitrary. For example,
a force vector has a specific magnitude and direction and a specific location
in space for its line of action. The moment of a force about a point also has
the same characteristics. In contrast, the moment of a couple has the first two
characteristics, namely, a specific magnitude and direction, but its position, or
where its line of action is located in space, is arbitrary.

Equivalent couples

Two couples are said to be equivalent if the moment vectors they produce
are identical. Thus, the couples shown in the examples of Fig. 4.22(a)–(c) are
all equivalent since they produce moments having the same magnitude and
direction.

Figure 4.22. Equivalent couples and the moments they produce.
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Equivalent force systems

A couple and the moment it produces are examples of equivalent force sys-
tems. This important concept is explored in greater detail in the next section,
but for the present we will simply state that equivalent force systems applied
to a body or structure produce the same effects for many purposes. For exam-
ple, consider the identical prisms of material shown in Fig. 4.22. The couple
shown in Fig. 4.22(a) produces a moment with magnitude M D Fa that acts
in the ´ direction. Since this moment is a free vector, it can be positioned
anywhere on, or even off, of the prism of material, and three examples are
shown in Fig. 4.22(d)–(f). Since the couples shown in Fig. 4.22(b) and (c) are
equivalent to that in Fig. 4.22(a), the moments they produce can also be posi-
tioned as shown in Fig. 4.22(d)–(f). In summary, all six force systems shown
in Fig. 4.22 are equivalent. If we imagine these prisms rest on a smooth fric-
tionless horizontal surface such as the air hockey table discussed earlier, and
if these prisms are initially motionless, then all six prisms of material shown
in Fig. 4.22 will undergo the same motion, namely, spin about an axis parallel
to the ´ direction and no net translation.

Resultant couple moment

Because the moment produced by a couple is a free vector, if an object has
more than one couple applied to it, the moment vector produced by each cou-
ple can simply be added to yield a resultant couple moment, which is also a
free vector. This process is illustrated in Fig. 4.23.

Figure 4.23. Addition of moments of couples to form a resultant couple moment.
(a) Object with two couples. (b) Moments EM1 and EM2 are produced by the couples
where Er1 is a position vector from somewhere on the line of action of � EF1 to some-
where on the line of action of EF1, and similarly for Er2. (c) Since EM1 and EM2 are free
vectors, they may be positioned tail to tail at any location. (d) Addition of EM1 and EM2
to form the resultant couple moment EM .

Moments as free vectors

Consider the moment applied to a structure shown in Fig. 4.24(a). Because
a moment can always be thought of as being produced by a couple, even if
the actual agency that produced it is different, all moments are free vectors.
For many purposes, moments can be thought of as being positioned anywhere
on the structure, or even off of it. Thus the moment M in Fig. 4.24 can be
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positioned at any of the locations shown with “equivalent” effects, where the
exact meaning of the word equivalent is discussed in Section 4.4.

Figure 4.24
Moments are free vectors and can be positioned
anywhere on a rigid structure with “equivalent”
results, where the full meaning of this is dis-
cussed in Section 4.4.

End of Sect ion Summary

In this section, the moment of a couple is described. Some of the key points
are as follows:

� A couple is defined to be a system of two forces of equal magnitude and
opposite direction and whose lines of action are separated by a distance.

� The moment of a couple, or couple moment, is a vector and can be eval-
uated using a vector or scalar approach.

� The moment of a couple is a free vector, meaning the line of action of
the couple can be positioned anywhere on (or even off) an object.

� A resultant couple moment is the sum of all couple moments applied to
an object.
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E X A M P L E 4.8 Moment of a Couple for a Two-dimensional Problem

Figure 1

A cantilever beam is subjected to a couple. Determine the moment of the couple.

S O L U T I O N

Road Map The two forces have equal magnitude and opposite direction, so indeed
they are a couple. Both scalar and vector approaches can be used to determine the
moment of the couple, as follows.

Solution 1

Governing Equations & Computation The moment of the couple can be deter-
mined using the scalar approach in Eq. (4.12) on p. 209 as M D �.10N/ d , where
d is the perpendicular distance between the lines of action of the forces as shown in
Fig. 2, and the negative sign is included because the couple shown in Fig. 1 produces
a clockwise moment. However, for this particular problem finding d is tedious, so we
will select a different solution approach.

Figure 2
Forces and moment arm used to determine the
moment of a couple.

Solution 2

Governing Equations & Computation The 10N forces are resolved into the x and
y components as shown in Fig. 3 to yield two couples. With Fx D .10N/.3=5/ D 6N
and Fy D .10N/.4=5/ D 8N, we then use Eq. (4.12) to sum the moment from each
couple, taking counterclockwise to be positive as usual, to obtain

M D �.8N/.100mm/C .6N/.60mm/ D �440N�mm: (1)

Figure 3
Resolution of the 10N forces into components
so that the resultant moment of two couples can
be determined.

Solution 3

Governing Equations & Computation Although use of Eq. (4.12) as demonstrated
in the preceding solutions will usually be convenient for two-dimensional problems,
we may also evaluate the moment of the couple by summing moments about any con-
venient point we choose. Using, for example, point O shown in Fig. 3 with counter-
clockwise being positive, we obtain

MO D .6N/.30mm/C .8N/.100mm/C .6N/.30mm/ � .8N/.200mm/

D �440N�mm: (2)

Since we know MO is the resultant moment from two couples, we know that the same
moment would be obtained if any other summation point had been used. On the other
hand, if this approach is used for forces that are not couples, then the resultant moment
will usually differ from point to point.

Solution 4

Governing Equations & Computation A vector solution can also be employed. Us-
ing Eq. (4.11) on p. 209 with ErAB D .100 O{ � 60 O|/mm and EF D .6 O{ � 8 O|/N, we
obtain

EM D ErAB � EF D �440
Ok N�mm: (3)

The negative sign in the above result indicates the moment acts in the negative ´ direc-
tion according to the right-hand rule, which corresponds to clockwise in Figs. 1–3. You
may wish to verify that the same result for EM is obtained if expressions for the other
force of the couple and the associated position vector are used.

Discussion & Verification As expected, all solutions agree. For this problem, solu-
tions 2 and 3 were the quickest, and solution 4 was only slightly longer.
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E X A M P L E 4.9 Moment of a Couple for a Three-dimensional Problem

Figure 1

A cube with edge length h is subjected to a couple whose forces have magnitude F .
Edges of the cube are parallel to their respective coordinate directions, and the forces
are parallel to the y axis. Determine the moment of the couple. Express your answers
in terms of parameters such as h and F .

S O L U T I O N

Road Map The two forces have equal magnitude and opposite direction, so indeed
they are a couple. Although a vector solution will usually be the most straightforward
for three-dimensional problems, the geometry here is simple enough that a scalar solu-
tion can be used.

Solution 1

Governing Equations & Computation The perpendicular distance between the lines
of action of the forces is the distance between points B and C , which is d D h

p
2.

Hence, Eq. (4.12) on p. 209 provides

M D F.h
p
2/ (1)

where the direction of the moment is perpendicular to the plane containing the two
forces, as shown in Fig. 2.

Solution 2

Governing Equations & Computation To use a vector solution we will use the
force at point C and choose a position vector from points A to C . Equation (4.11) on
p. 209 then provides

EM D ErAC � EFC D h.�O{ C O| �
Ok/ � .�F O|/ D Fh.�O{ C Ok/: (2)

This moment vector is sketched in its proper orientation in Fig. 2.

Figure 2
Moment produced by the couple shown in
Fig. 1.

Solution 3

Governing Equations & Computation In this alternative solution we use the force
at point A, where EFA D � EFC , and choose a position vector from points C to B , where
we note that B is on the line of action of the force at A. Thus

EM D ErCB � EFA D h.O{ C
Ok/ � .F O|/ D Fh.�O{ C Ok/: (3)

As expected, the result is the same as that obtained in Eq. (2).

Solution 4

Governing Equations & Computation In this solution we sum moments about a
point that is not on either force’s line of action. Using point D, we write

EM D ErDC � EFC C ErDA � EFA

D .�h O{/ � .�F O|/C h.� O| C Ok/ � .F O|/

D Fh.�O{ C Ok/; (4)

which again is the same result as those obtained earlier. You may wish to repeat this
solution, summing moments about point E, or any other point, to find the same result.

Solution 5

Governing Equations & Computation In this solution we add two new forces at
point D, as shown in Fig. 3(a). The argument for why we may do this is that the two
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Figure 3. (a) Two forces of equal magnitude and opposite direction, and sharing the
same line of action are introduced at pointD, so that the object is now subjected to two
couples. (b) The moment for each couple may be written by inspection.

forces added at D will have no net effect on the object if they have equal magnitude
and opposite direction and they have the same line of action. Examining Fig. 3(a)
shows that the object is now subjected to two couples, where the forces EF and � EF at
points A and D, respectively, are one couple and the forces � EF and EF at points C
and D, respectively, are the other couple. The merit of this solution strategy is that the
moment for each of these couples may easily be evaluated by inspection, yielding the
results shown in Fig. 3(b). Summing the two moments in Fig. 3(b) yields

EM D �Fh O{ C Fh Ok

D Fh.�O{ C Ok/: (5)

Discussion & Verification As expected, all solutions agree, except that Eq. (1) gives
only the magnitude of the moment, whereas the other solutions are vectors and hence
also provide the direction of the moment. Solution 4 does not require that the two forces
involved be a couple. If you did not recognize that the two forces were a couple, then
you would expect Eq. (4) to be the moment at point D only. Because the two forces
are a couple, the result in Eq. (4) is obtained for any other moment point that might be
used.
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E X A M P L E 4.10 Resultant Couple Moment

Figure 1

A gasoline-powered machine for smoothing the surface of wet concrete slabs is shown
(the guard for the paddles is removed). If the concrete applies forces F D 8 lb to
each paddle, where all forces F lie in the xy plane (the ´ direction forces applied
by the concrete to the paddles, and the weight of the machine, are not shown and are
not needed for this problem), determine the force P and orientation ˛ needed so the
resultant couple moment of the forces shown is zero. Forces P are parallel to the y´
plane.

S O L U T I O N

Road Map Because this problem is three-dimensional, a vector solution will proba-
bly be the most straightforward. However, with some forethought, a scalar solution can
also be used effectively.

Scalar solution

Governing Equations & Computation If the resultant couple moment is to be zero,
then by inspection of Fig. 1 we see that we must have ˛ D 0 so that the moment of
couple forces P has the same direction as the moments due to the paddle force couples.
With this observation, a scalar solution can be used to sum the magnitudes of the couple
moments in the ´ direction as

M D .8 lb/.24 in./C .8 lb/.24 in./ � P.20 in./ D 0 ) P D 19:2 lb; (1)

where moment is taken to be positive in the positive ´ direction and the distance be-
tween points A and B is 20 in. from the coordinate information provided. Warning:
Equation (1) can be used to sum moment magnitudes only if we know that all mo-
ments share the same direction.

Vector solution

Governing Equations & Computation If you did not recognize that ˛ D 0, then a
vector solution is better. The resultant couple moment is

EM D 2
�
ErGD � EFD

�
C ErAB � EPB

D 2
�
.24 in. O|/ � .�8 lb O{/

�
C .�20 in. O{/ � P.cos˛ O| C sin˛ Ok/

D P.20 in./ sin˛ O| C
�
384 in.�lb � P.20 in./ cos˛

�
Ok: (2)

In the above expression, we have simply doubled the moment of the couple forces at
points D and G, since by inspection, the moment from the couple forces at points C
and E has the same magnitude and direction. To have EM D E0, each component of
Eq. (2) must be zero. Thus

y component: P.20 in./ sin˛ D 0; (3)

´ component: 384 in.�lb � P.20 in./ cos˛ D 0: (4)

Since P ¤ 0, Eq. (3) is satisfied only if ˛ D 0. Equation (4) can then be solved for
P D 19:2 lb.

Discussion & Verification Both solutions provide the same results. If we did not
recognize by inspection that ˛ D 0, then solution 1 would have been a little more
tedious, but could still be carried out.
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P R O B L E M S

Problem 4.44

An open-end wrench applies the forces F to the head of a bolt to produce the moment
M , where each force F is normal to the surface on which it acts. Determine M if
F D 400 lb.

Figure P4.44 Figure P4.45

Problem 4.45

A box-end wrench applies the forces F to the head of a bolt to produce the moment
M , where each force F is normal to the surface on which it acts. Determine F if
M D 20 ft�lb.

Problem 4.46

The top view of a workpiece that fits loosely in a fixture for drilling is shown. The drill
bit has two edges that apply in-plane cutting forces F to the workpiece.

(a) If F D 600N, determine the forces Q between the workpiece and fixture so that
the resultant couple moment is zero when ˛ D 30ı.

(b) Does your answer for Q from Part (a) change if ˛ has different value? If yes, then
repeat Part (a) with ˛ D 60ı. Figure P4.46

Problem 4.47

Three tugboats are used to turn a barge in a narrow channel. To avoid producing any
net translation of the barge, the forces applied should be couples. The tugboat at point
A applies a 400 lb force.

(a) Determine FB and FC so that only couples are applied.

(b) Using your answers to Part (a), determine the resultant couple moment that is
produced.

(c) Resolve the forces at A and B into x and y components, and identify the pairs of
forces that constitute couples.

Figure P4.47
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Problem 4.48

A bracket with pulleys for positioning magnetic tape in an electronic data storage de-
vice is shown. The pulleys are frictionless, the tape supports a force T D 2N, and the
thickness of the tape can be neglected.

(a) Use the two tape forces in Fig. P4.48(a) to compute the resultant couple moment.

(b) Replace the forces on the two pulleys with point forces on the pinions as shown
in Fig. P4.48(b), and compute the resultant couple moment (replacement of pulley
forces by bearing forces is discussed in Chapter 3 in connection with Fig. 3.9).

Figure P4.48

Problem 4.49

Consider an object with forces EFA and EFB applied. The first column of the following
table lists resultant moments at various points due to both of these forces. For each
statement select True or False.

Figure P4.49

If EFA and EFB If EFA and EFB
are not a couple are a couple

EMC D ErCA � EFA C ErCB � EFB T or F? T or F?
EMC D ErAB � EFB T or F? T or F?
EMC D ErBA � EFA T or F? T or F?
EMA D ErAB � EFB T or F? T or F?

EMD D ErCA � EFA C ErCB � EFB T or F? T or F?

Note: Concept problems are about explanations, not computations.

Problem 4.50

A structure built in at pointO supports 300 and 400N couples. Determine the resultant
couple moment vector, using both scalar and vector approaches.

Figure P4.50
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Problem 4.51

A structure built in at point O supports 70 and 85N couples and a tip moment. Deter-
mine the resultant couple moment, using both scalar and vector approaches.

Figure P4.51–P4.53

Problem 4.52

Determine the distance between the lines of action of the 70N forces. Hint: Use the
vector approach to determine the moment of this couple. Then note that the magnitude
of this result is equal to .70N/d; where d is the distance between the lines of action
for the two forces.

Problem 4.53

Determine the distance between the lines of action of the 85N forces. See the hint in
Prob. 4.52.

Problem 4.54

The input shaft of a speed reducer supports a 200N �m moment, and the output shafts
support 300 and 500N�m moments.

(a) Determine the resultant moment applied by the shafts to the speed reducer.

(b) If the speed reducer is bolted to a surface that lies in the xy plane, speculate on
the characteristics of the forces these bolts apply to the speed reducer. In other
words, do you expect these forces to constitute couples only, or may they be more
general? Remark: Problems such as this are discussed in detail in Chapter 5.

Figure P4.54
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Problem 4.55

Satellites and other spacecraft perform attitude positioning using thrusters that are fired
in pairs so as to produce couples. If thrusters at points A, B , C , and D each produce
3N forces, determine the resultant moment and hence the axis through the center of
mass about which an initially nonrotating satellite will begin to rotate.

Figure P4.55

Problem 4.56

Forces F and T exerted by air on a rotating airplane propeller are shown. Forces F lie
in the xy plane and are normal to the axis of each propeller blade, and thrust forces T
act in the ´ direction. Show that the forces F can be represented as a couple or system
of couples.Figure P4.56

Problem 4.57

If the structure shown is subjected to couple forces applied at points A and B and the
force applied at A is EF D .8 O{ C 10 O| � 40 Ok/ lb, determine the moment of the couple
about line a. Line a has direction angles �x D 72

ı, �y D 36
ı, and �´ D 60

ı.

Figure P4.57 and P4.58

Problem 4.58

The structure shown has two forces of magnitude F applied. If F D 42 lb and the
forces are to be a couple, determine the orientation they should have so that the moment
of the couple about line a is as large as possible. Line a has direction angles �x D 72

ı,
�y D 36

ı, and �´ D 60
ı.
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4.4 Equivalent Force Systems

Equivalent force systems are extremely important in mechanics and are used
by engineers daily. Consider, for example, the pliers shown in Fig. 4.25(a), and
imagine we wish to determine the force developed at the jaws as we squeeze
the handles. Each finger and the palm of our hand apply a complex pressure
distribution to the handles, as shown in Fig. 4.25(b). It would be very unfor-
tunate if the complexities of these distributions needed to be included in all
analyses. For many purposes, such as for determining the force developed at
the jaws, these pressure distributions may be replaced by equivalent forces as
shown in Fig. 4.25(c) and (d) with no loss of accuracy.

This section defines conditions under which two force systems are equiva-
lent and describes techniques for replacing one force system by another. Con-
cepts are first presented as definitions for rigid bodies, using physical argu-
ments as justification. Implications of these concepts for deformable bodies
are discussed. The section closes with a short discussion of Newton’s laws,
which provides a theoretical justification and interpretation of concepts.

Figure 4.25
(a) A person uses a hand to grip a pair of pliers.
(b)–(d) Examples of equivalent force systems.

Transmissibility of a force

Before discussing the principle of transmissibility of a force, we first define
the terms external effects of a force applied to an object and internal effects of
a force applied to an object. External effects refer to the response of the object
as a whole. For example, if the object’s position is fixed in space by supports,
external effects include the support reactions. If the object is unsupported so
that it can move in space, external effects refer to the object’s displacement,
velocity, and acceleration. Internal effects refer to the internal forces supported
by a body, and if the body is deformable, the deformations that the body
experiences.

The principle of transmissibility states that the external effects of a force
applied to a rigid body are the same, regardless of the point of application of
the force along its line of action. This principle is developed in Fig. 4.26 as
follows. In Fig. 4.26(a), a force vector EF is applied at point A on an object or

Figure 4.26. Transmissibility of force.

structure. In Fig. 4.26(b), two additional forces EF and � EF are applied at point
B where B lies on the line of action of the force at A; since the forces at B
have equal magnitude and opposite direction and are applied at the same point,
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they have no effect on the object. In Fig. 4.26(c) the forces EF at A and � EF at
B have been canceled, leaving only the force EF at B . We now conjecture that
if the body is rigid, the external effects of EF on the body are the same whether
EF is applied to point A or to point B .

Using definitions to follow, we will see that the principle of transmissi-
bility of a force states conditions that give special cases of equivalent force
systems, and that all of the force systems shown in Fig. 4.26 are equivalent.
Furthermore, at the end of this section, the reason why equivalent force sys-
tems are called equivalent is discussed, and this provides justification for why
the principle of transmissibility of a force is valid.

Rigid versus deformable objects. To be precise, the principle of transmis-
sibility only holds for forces applied to rigid bodies. If an object is rigid, the
distance between any two points, such as points A and B in Fig. 4.26, is con-
stant regardless of where forces are applied to the object. Because the geome-
try of the object does not change, the position of lines of action of forces does
not change, and hence the external effects on the rigid body, which are deter-
mined by summing forces and moments, are the same. Note that the principle
of transmissibility makes no claims about internal forces. In fact, the internal
forces depend very much on exactly where a particular force is applied along
its line of action. But if the body is rigid, then regardless of the internal forces,
the body does not change shape and hence the external effects of the force are
unchanged.

If a body is deformable, which is always the situation in nature, then the
body will generally change shape when forces are applied. Furthermore, the
deformed shape of the body depends on the distribution of internal forces
within the body. The body’s change of shape causes lines of action of forces
to be repositioned, and hence the external effects of forces are different. Even
though all bodies in nature are deformable, for many purposes objects and
structures may be idealized as being rigid and the principle of transmissibility
may be applied.

To illustrate further, consider a block of material resting under its own
weight on a rough surface as shown in Fig. 4.27. If the material is stiff, then
there is very little change of geometry for the loadings shown in Fig. 4.27(a)
and (b), and for many practical purposes the object may be idealized as being
rigid. The principle of transmissibility may be applied, and the response of the
object, such as the force F that will cause the block to slip, is the same regard-
less of where F is applied along its line of action. If the material is flexible,
the object may undergo significant changes of shape when subjected to the
forces shown in Fig. 4.27(c) and (d). Such objects often cannot be idealized as
being rigid since the deformation that occurs may have a strong effect on its
response.

Figure 4.27
A block of material resting on a rough sur-
face and subjected to a force. (a) and (b)
The material is stiff and the difference in the
block’s shape for the two loadings is very small.
(c) and (d) The material is flexible, and the
block’s shape is significantly different for the
two loadings.

Equivalent force systems

The concept of an equivalent force system is developed in Fig. 4.28. In
Fig. 4.28(a), a rigid object or structure has a force vector EF applied at point A.
In Fig. 4.28(b), two additional forces EF and � EF are applied at point B; since
the forces at B have equal magnitude and opposite direction and are applied
at the same point, they have no effect on the object. Forces EF at A and � EF
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at B are a couple and can be replaced by moment EMB D Er � EF , where Er
is a position vector from anywhere on the line of action of the force at B to
anywhere on the line of action of the force at A (Fig. 4.28(b) shows a vector
Er from points B to A in particular). Thus, in Fig. 4.28(c) a new force system
at point B has been developed that is equivalent to the original force system
shown in Fig. 4.28(a). Further, since the moment of a couple is a free vector,
EMB may be applied at any point, such as point C shown in Fig. 4.28(d).

Figure 4.28. Construction of an equivalent force system at point B .

To generalize, if an object or structure has an arbitrary number of forces
and/or moments applied as shown in Fig. 4.29, an equivalent force system at a
point A consists of a resultant force EFR and a resultant moment EMR where

EFR D

nX
iD1

EFi ;

EMR D

nX
iD1

Eri � EFi C

mX
iD1

EMi ;

(4.15)

where n is the number of forces that are applied, m is the number of moments
that are applied, and Eri is a position vector from point A to anywhere on the
line of action of EFi . As discussed above, EMR is a free vector and may be
positioned anywhere.

Figure 4.29
Construction of an equivalent force system at
point A.

Equation (4.15) can be used as a test to determine if two force systems are
equivalent. That is, two force systems are equivalent if�

EFR
�

system 1 D
�
EFR
�

system 2 and�
EMR

�
system 1 D

�
EMR

�
system 2;

(4.16)

where the moment summation point used for determining . EMR/system 1 and

. EMR/system 2 must be the same. Using Eq. (4.15), we may state Eq. (4.16) more
explicitly as two force systems are equivalent if

� n1X
iD1

EFi

�
system 1

D
� n2X
iD1

EFi

�
system 2

and

� n1X
iD1

Eri � EFi C

m1X
iD1

EMi

�
system 1

D
� n2X
iD1

Eri � EFi C

m2X
iD1

EMi

�
system 2

(4.17)
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where n1 and m1 are the number of forces and moments in system 1, respec-
tively, n2 and m2 are the number of forces and moments in system 2, respec-
tively, and the moment summation points used for both force systems must be
the same.

Some special force systems

Various special force systems, categorized as concurrent, coplanar, and paral-
lel, are shown in Figs. 4.30–4.32. Observe that for each of these force systems,
there exists a point (i.e., point B in Figs. 4.30–4.32) where an equivalent force
system exists that consists of a single force only.

Remarks

� Concurrent force system. In these force systems, such as shown in
Fig. 4.30, no resultant moment is produced by the forces about the point
where the lines of action of the forces intersect. When an object is sub-
jected to a concurrent force system, it may be idealized as a particle
for purposes of equilibrium analysis, and this was studied extensively in
Chapter 3.

� Coplanar force system. In these force systems, such as shown in
Fig. 4.31, all forces lie in the same plane, and all moments are perpen-
dicular to that plane. Use of Eq. (4.15) allows determination of an equiv-
alent force system at point A, as shown in Fig. 4.31(b), consisting of EFR
and EMR. At point B , as shown in Fig. 4.31(c), the equivalent force sys-
tem consists of EFR only; the location of B relative to A is determined
so that EFR produces the proper moment (i.e., MR D FRd ) d D

MR=FR).

� Parallel force system. In these force systems, such as shown in
Fig. 4.32, all forces are parallel, and all moments are perpendicular
to the direction of the forces. Use of Eq. (4.15) allows determination
of an equivalent force system at point A, as shown in Fig. 4.32(b),
consisting of EFR and EMR. At point B , as shown in Fig. 4.32(c), the
equivalent force system consists of EFR only; the location of B rela-
tive to A is determined so that EFR produces the proper moment (i.e.,
MR D FRd ) d DMR=FR).
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Figure 4.30. Concurrent force system: the lines of action of all forces intersect at a
common point.

Figure 4.31. Coplanar force system: all forces lie in the same plane, and all moments
are perpendicular to that plane.

Figure 4.32. Parallel force system: all forces are parallel, and all moments are per-
pendicular to the direction of the forces.

Helpful Information

Positioning a force system to eliminate
a moment. As discussed in connection
with coplanar and parallel force systems, by
suitable repositioning of the line of action
of the resultant force EFR, it is possible to
construct an equivalent force system that
has no moment, as shown in Figs. 4.31(c)
and 4.32(c). However, on occasion you
may find the distanced referred to in these
figures to be large enough that the force
is repositioned off the object or structure.
While this is theoretically acceptable, it
presents a practical problem on how such
a force can be applied to the object or
structure. Similar comments apply to the
construction of a wrench force system, as
shown in Fig. 4.34.

Wrench equivalent force systems

A feature of concurrent, coplanar, and parallel force systems is that for these
systems you can always find an equivalent force system consisting of a sin-
gle force only. More general force systems usually cannot be simplified to
this extent, but it is useful for us to address the following question: What is
the simplest force system to which any general force system can always be
reduced? The answer is a force system called a wrench, which consists of a
resultant force EFR and a resultant moment EMR that is parallel to EFR, as shown
in Fig. 4.33.

Figure 4.33
Wrench force systems. A positive wrench has
EFR and EMR positive in the same direction. A

negative wrench has EFR and EMR positive in op-
posite directions.
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A wrench force system is constructed as follows. Starting with force EFR
and moment EMR at point A as shown in Fig. 4.34(a), we resolve EMR into
components parallel and perpendicular to EFR as shown in Fig. 4.34(b). Noting
that EFR and EMR? constitute a parallel force system, EMR? may be eliminated
by relocating EFR to point B where its location relative to A is determined so
that EFR produces the proper moment (i.e.,MR? D FRd ) d DMR?=FR).
Note that because EMRk is a free vector, it can also be relocated from A to B .
Example 4.15 illustrates further details of determining a wrench equivalent
force system.

Helpful Information

Replacing a general force system by
a wrench. Example 4.15 gives a two-
step process for determining a wrench
equivalent force system.

Figure 4.34. Construction of a wrench force system.

Why are equivalent force systems called equivalent?

If you like, you may consider the concept of an equivalent force system as
being simply a definition. However, there is good reason behind the definition
and why it is meaningful, and this is seen from Newton’s law of motion. In
Chapter 5, we will see that the conditions for static equilibrium of a rigid body
are

P
EF D E0 and

P
EM D E0. If the first of these equations is not satisfied, the

body will have a translational acceleration; and if the second equation is not
satisfied, the body will have a rotational acceleration. Regardless of whether
the body is in static equilibrium or is undergoing accelerations, the response in
terms of external effects (e.g., reaction forces, accelerations, etc.) is the same
for all systems of external forces for which

P
EF and

P
EM are the same, and

the definition of equivalent force systems given in Eq. (4.15) is a statement of
these conditions. Since the principle of transmissibility of a force is a special
case of equivalent force systems, this explanation also shows why it is valid.

End of Sect ion Summary

In this section, the concepts of equivalent force systems were described. Some
of the key points are as follows:

� The principle of transmissibility states that the effects of a force applied
to a rigid body are the same regardless of the point of application of the
force along its line of action.



Section 4.4 Equivalent Force Systems 227

� Two force systems are said to be equivalent if the sum of forces for the
two systems is the same and if the sum of moments (about any common
point) for the two force systems is the same. If two force systems are
equivalent, their external effects on a rigid body or structure, such as
support reactions, are the same.

� Some special force systems that frequently occur were defined, includ-
ing concurrent, coplanar, and parallel force systems. Coplanar and par-
allel force systems have the common feature that they have an equivalent
force system that consists of a single force only (no moment).

� A wrench force system consists of a force and moment, where these
have the same line of action. Any force system can be represented by an
equivalent force system that is a wrench.
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E X A M P L E 4.11 Determination of an Equivalent Force System

Figure 1

Determine an equivalent force system

(a) at point A,

(b) at point B ,

(c) consisting of a single force only, and specify the x coordinate of the point where
the force’s line of action intersects the x axis.

S O L U T I O N

Road Map For all three parts of this problem, an equivalent system of external forces
will be developed using Eq. (4.15) on p. 223.

Helpful Information

Reaction forces applied to the beam.
The structure shown in Fig. 1 is supported
at point O , and this support applies reac-
tion forces and moments to the structure
so that it is in equilibrium. However, our
focus throughout this section has been
on determining equivalent systems of
external forces. Thus, whether an object is
supported or unsupported is irrelevant to
the task of determining equivalent systems
of external forces.

Part (a)

Governing Equations & Computation We apply Eq. (4.15) with a scalar approach
to obtain

FRx D
X

Fx D 0; (1)

FRy D
X

Fy D �4NC 3N � 2N D �3N; (2)

MRA D
X

MA D .4N/.4mm/ � .3N/.2mm/ D 10N�mm: (3)

This force system is illustrated in Fig. 2.

Figure 2
This force system is equivalent to that shown in
Fig. 1.

Part (b)

Governing Equations & Computation For an equivalent force system at point B ,
the resultant forces FRx and FRy are unchanged from Eqs. (1) and (2), and referring
to the forces shown in Fig. 1, the resultant moment about B is

MRB D
X

MB D .3N/.2mm/ � .2N/.4mm/ D �2N�mm: (4)

This force system is illustrated in Fig. 3, where MRB is shown as 2N �mm clockwise
rather than �2N �mm counterclockwise. As an alternative to using the force system
shown in Fig. 1 to write Eq. (4), we could have used the force system shown in Fig. 2
to writeMRB D

P
MB D 10N�mm� .3N/.4mm/ D �2N�mm which, as expected,

agrees with Eq. (4).

Figure 3
This force system is equivalent to those shown
in Figs. 1 and 2.

Part (c)

Governing Equations & Computation A force system that consists of a single force
only is shown in Fig. 4. The distance d is determined, so this force system is equivalent
to the force systems shown in Figs. 1 through 3. Thus, selecting pointO as a convenient
location to sum moments for the force systems shown in Figs. 2 and 4 provides

Figure 4
With the appropriate value of d , this force sys-
tem is equivalent to those shown in Figs. 1–3.

�X
MRO

�
Fig. 2 D

�X
MRO

�
Fig. 4

�.3N/.6mm/C 10N�mm D �.3N/d (5)

) d D 2:67mm: (6)

Discussion & Verification The force systems shown in Figs. 1 through 3 are all
equivalent, and the force system shown in Fig. 4 is also equivalent to these provided
d D 2:67mm. When developing an equivalent force system that consists of a single
force only, as in Part (c), sometimes you may find that the line of action of the force
does not intersect the structure.
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E X A M P L E 4.12 Determining if Force Systems Are Equivalent

Figure 1

Determine which of the force systems shown are equivalent.

S O L U T I O N

Road Map For two force systems to be equivalent, both the resultant force and the
resultant moment, taken about any convenient point, must be the same. Thus for each of
the force systems shown, we will evaluate the resultant forces in the x and y directions
and the resultant moment, and those force systems for which all of these are the same
are equivalent.

Governing Equations & Computation Using point B as a convenient location for
moment summation, we use Eq. (4.15) on p. 223 to find

Force system (a)

FRx D
X

Fx D �10 lb; (1)

FRy D
X

Fy D 10 lb � 10 lb D 0; (2)

MRB D
X

MB D �.10 lb/.6 in./ D �60 in.�lb: (3)

Force system (b)

FRx D
X

Fx D �40 lbC 30 lb D �10 lb; (4)

FRy D
X

Fy D �10 lbC 10 lb D 0; (5)

MRB D
X

MB D �.30 lb/.3 in./C .10 lb/.6 in./ D �30 in.�lb: (6)

Force system (c)

FRx D
X

Fx D 10 lb � 20 lb D �10 lb; (7)

FRy D
X

Fy D 0; (8)

MRB D
X

MB D 20 in.�lb � 20 in.�lb � .10 lb/.3 in./

D �30 in.�lb: (9)

Force system (d)

FRx D
X

Fx D �10 lb; (10)

FRy D
X

Fy D 10 lbC 10 lb � 20 lb D 0; (11)

MRB D
X

MB D 30 in.�lbC .10 lb/.3 in./ � .20 lb/.6 in./

D �60 in.�lb: (12)

Discussion & Verification Force systems (a) and (d) have the same resultant force
and moment about point B , and hence they are equivalent to one another. Also force
systems (b) and (c) have the same resultant force and moment about pointB , and hence
they are equivalent to one another. In summary:

Force systems (a) and (d) are equivalent, and

force systems (b) and (c) are equivalent.
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E X A M P L E 4.13 Determination of an Equivalent Force System

Figure 1

A table supports the vertical forces shown.

(a) Determine an equivalent force system at the center of the table, point O .

(b) Determine an equivalent force system consisting of a single force, and specify the
x and y coordinates of the point where the force’s line of action intersects the
table.

S O L U T I O N

Road Map Both scalar and vector approaches are effective for Part (a) of this prob-
lem, and we will use a vector approach. For Part (b), a straightforward scalar evaluation
will provide the necessary location of an equivalent force system that consists of a sin-
gle force only.

Part (a)

Governing Equations & Computation With the following force and position vec-
tors

EFA D �260
OkN; ErOA D .0:5 O{ C 0:2 O|/m; (1)

EFB D �120
OkN; ErOB D 0:4 O| m; (2)

EFC D �100
OkN; ErOC D .�0:4 O{ � 0:3 O|/m; (3)

we use Eq. (4.15) on p. 223 to evaluate the resultant force and moment at point O as

EFR D EFA C EFB C EFC

D �480 Ok N; (4)

EMRO D ErOA � EFA C ErOB � EFB C ErOC � EFC

D .�70 O{ C 90 O|/N�m; (5)

MRO D

q
.�70/2 C .90/2 N�m D 114N�m: (6)

This force system is illustrated in Fig. 2.

Figure 2
This force system is equivalent to that shown in
Fig. 1.

Part (b)

Governing Equations & Computation As shown in Fig. 4.32 on p. 225, an equiv-
alent force system consisting of a single force is obtained by moving EFR to a new
position, point D, where D is located a distance d perpendicular to the plane contain-
ing EFR and EMRO

d D
MRO
FR

D
114N�m

480N
D 0:238m: (7)

This force system is shown in Fig. 3. To determine the coordinates of D, similar trian-
gles with the geometry shown in Fig. 4 may be used to write

Figure 3
This force system is equivalent to those shown
in Figs. 1 and 2.

x D .0:238m/
90

114
D 0:188m; (8)

y D .0:238m/
70

114
D 0:146m: (9)

Figure 4
Use of similar triangles to locate point D.

Discussion & Verification The force systems shown in Figs. 1 through 3 are all
equivalent. When developing an equivalent force system that consists of a single force
only, as in Part (b), sometimes you may find that the line of action of the force does not
intersect the structure.
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E X A M P L E 4.14 Determination of an Equivalent Force System

Figure 1

A casting supports the forces and moment shown where the 100N forces are parallel
to the xy plane and the moment at C has direction angles �x D 60ı, �y D 60ı, and
�´ D 135

ı. Determine the equivalent force system acting at point O .

S O L U T I O N

Road Map Because of the complexity of the geometry, a vector solution is preferable
to a scalar solution. Note that the two 100N forces have equal magnitude and opposite
direction, hence they are a couple.

Governing Equations & Computation We first write expressions for force, posi-
tion, and moment vectors:

EFB D .100N/.cos 60ı O{ C sin 60ı O|/; ErAB D �60
Okmm; (1)

EFD D �400 O| N; ErOD D .50 O{ C 70
Ok/mm; (2)

EMC D .10N�m/.cos 60ı O{ C cos 60ı O| C cos 135ı Ok/: (3)

Taking care to convert millimeter dimensions to meter dimensions, we use Eq. (4.15)
on p. 223 to obtain the resultant force and moment at point O as

EFR D EFD D �400 O| N; (4)

EMRO D ErAB � EFB C ErOD � EFD C EMC

D .38:2 O{ C 2 O| � 27:1 Ok/N�m; (5)

MRO D

q
.38:2/2 C .2/2 C .�27:1/2 N�m D 46:9N�m: (6)

In writing Eqs. (4) and (5), we have noted that the two forces at A and B are a couple.
Hence they produce no net force and are not included in the expression for EFR in
Eq. (4). The equivalent force system at point O is illustrated in Fig. 2.

Figure 2
This force system is equivalent to that shown in
Fig. 1.

Discussion & Verification The force systems shown in Figs. 1 and 2 are equivalent.
As discussed above, we took advantage of the properties of a couple when writing
the expressions for EFR and EMRO in Eqs. (4) and (5). If you did not recognize that
these forces are a couple, then you would need to include the two 100N forces in the
expression for EFR, and in the expression for EMRO you would replace ErAB � EFB by
ErOA � EFA C ErOB � EFB . Nonetheless, you would have obtained the same results for
EFR and EMRO in Eqs. (4) and (5).
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E X A M P L E 4.15 Determination of a wrench equivalent force system

Figure 1

Replace the three forces by a wrench force system, specifying the force and moment of
the wrench and the x and y coordinates of point D where the wrench’s line of action
intersects the xy plane.

S O L U T I O N

Road Map The construction of a wrench equivalent force system can be accom-
plished using a two-step procedure, as illustrated here.

Helpful Information

Determining a wrench equivalent force
system. This example presents a two-
step process that can always be used
to determine a wrench equivalent force
system.

Governing Equations & Computation

Step 1: Determine an equivalent force system at point D. By using the following
force and position vectors

EFA D �200
Ok lb; ErDA D �x O{ C .8 in. � y/ O|; (1)

EFB D 50 O| lb; ErDB D .12 in. � x/ O{ C .8 in. � y/ O|; (2)

EFC D 100 O{ lb; ErDC D .7 in. � x/ O{ � y O| C 3 Ok in.; (3)

the resultant force and moment at point D are

EFR D EFA C EFB C EFC

D .100 O{ C 50 O| � 200 Ok/ lb; (4)

FR D

q
.100/2 C .50/2 C .�200/2 lb D 229 lb; (5)

EMRD D ErDA � EFA C ErDB � EFB C ErDC � EFC

D Œ�1600 in.�lbC .200 lb/y� O{ C Œ300 in.�lb � .200 lb/x� O|

C Œ600 in.�lb � .50 lb/x C .100 lb/y� Ok: (6)

If we specify values for x and y, Eqs. (4) and (6) provide the resultant force and
moment at that location. However, these are not likely to have the same direction and
hence will not be a wrench force system. In the next step of this solution, we determine
the coordinates of point D so that EMRD is parallel to EFR.

Step 2: Make the equivalent force system a wrench. The requirement that EFR and
EMRD be parallel is stated by EFR=FR D EMRD=MRD . Each of the x, y, and ´ com-

ponents of this equation can be written separately.

x component:
100 lb

229 lb
D
�1600 in.�lbC .200 lb/y

MRD
; (7)

y component:
50 lb

229 lb
D
300 in.�lb � .200 lb/x

MRD
; (8)

´ component:
�200 lb

229 lb
D
600 in.�lb � .50 lb/x C .100 lb/y

MRD
: (9)

Solving Eqs. (7)–(9) for unknowns x, y, and MRD provides

x D 2:76 in.; y D 5:48 in.; MRD D �1160 in.�lb: (10)

and, from Eq. (5), the magnitude of the force in the wrench force system is

FR D 229 lb: (11)

The negative value forMRD indicates EMRD is in the direction opposite EFR, and hence
this is a negative wrench as defined in Fig. 4.33 on p. 225. This wrench force system is
shown in Fig. 2.

Figure 2
A wrench equivalent force system.
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Discussion & Verification The force systems shown in Figs. 1 and 2 are equivalent.
When determining a wrench force system, we generally identify the location of the
wrench by finding one point on its line of action (point D in this example). Often, we
will find where the wrench’s line of action intersects a plane, such as the xy, y´, or
´x plane. This way one of the coordinates of a point on the wrench’s line of action is
known (in this example the ´ coordinate of point D is known to be zero). A common
mistake is to let all three coordinates of a point on the wrench’s line of action be
unknowns; then there are four unknowns but still only three equations available to
determine them and hence a unique solution is not possible.
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P R O B L E M S

Problems 4.59 and 4.60

Determine which of the force systems shown, if any, are equivalent.

Figure P4.59

Figure P4.60

Problem 4.61

Determine values for forces F and P and momentM , if possible, so that the force sys-
tems shown in Fig. P4.61(b)–(d) are equivalent to the force system shown in Fig. P4.61(a).

Figure P4.61
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Problem 4.62

Determine values for forces F and P , if possible, so that the force systems shown in
Fig. P4.62(b)–(d) are equivalent to the force system shown in Fig. P4.62(a).

Figure P4.62

Problem 4.63

The floor of an airplane cargo bay is shown in a horizontal position.

(a) Determine an equivalent force system at point O .

(b) Determine an equivalent force system consisting of a single force, and specify the
x and ´ coordinates of the point where the force’s line of action intersects the floor.

(c) Keeping points A–D at the locations shown, suggest a repositioning of the forces
so that the location of the force system described in Part (b) is closer to point O . Figure P4.63

Problem 4.64

In a vehicle collision reconstruction analysis, an engineer estimates the tire forces
shown. Determine an equivalent force system at point O .

Figure P4.64 and P4.65

Problem 4.65

For Prob. 4.64, determine an equivalent force system consisting of a single force, spec-
ifying the x coordinate of where the force’s line of action intersects the x axis.

Problem 4.66

If ˛ D 30ı,W D 1 kN, andQ D 2 kN in Fig. P4.12 on p. 195, determine an equivalent
force system consisting of a single force and specify the distance from point C where
the force’s line of action intersects member CBD.

Problem 4.67

If F D 200N and P D 300N in Fig. P4.13 on p. 195, determine an equivalent force
system consisting of a single force and specify the x coordinate of the point where the
force’s line of action intersects the x axis.
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Problem 4.68

A thick circular plate is used in a machine called a gyratory compactor to determine
the mechanical properties of hot asphalt concrete. The plate is instrumented with load
cells at points A, B , and C where each load cell is located at the same 80mm radial
distance from pointO . If the load cells measure forces FA D 500N, FB D 600N, and
FC D 700N, determine

(a) an equivalent force system at point O ,

(b) an equivalent force system consisting of a single force, specifying the x and y
coordinates of the point where the force’s line of action intersects the xy plane.

Figure P4.68
Problem 4.69

A boat trailer is subjected to the forces shown where the forces at points A–E are
vertical and the forces at points F and G lie in the y´ plane. Determine

(a) an equivalent force system at point O ,

(b) an equivalent force system consisting of a single force, specifying the x and y
coordinates of the point where the force’s line of action intersects the xy plane.

Figure P4.69

Problem 4.70

The tip of an atomic force microscope (AFM) is subjected to the forces shown. Use a
vector approach to determine

(a) an equivalent force system at point B ,

(b) an equivalent force system at point O .

Figure P4.70 and P4.71

Problem 4.71

Repeat Prob. 4.70, using a scalar approach.

Problem 4.72

Determine an equivalent force system at point A, using

(a) a vector approach,

(b) a scalar approach.Figure P4.72 and P4.73
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Problem 4.73

Repeat Prob. 4.72 to find an equivalent force system at point B .

Problems 4.74 and 4.75

Using inspection, if possible, determine a wrench equivalent force system and specify
the x and y coordinates of the point where the wrench’s line of action intersects the xy
plane. Express your answers in terms of parameters such as F , P , and r .

Figure P4.74 Figure P4.75

Problem 4.76

The object shown is subjected to a wrench having EFR D .2 O{ C 3 O| � 4 Ok/N and
EMR D .4 O{ C 6 O| � 8 Ok/N �m and whose line of action intersects the xy plane at
x D 2m and y D 1m. Determine an equivalent force system at point A, stating this in
vector form. Figure P4.76

Problem 4.77

Determine a wrench equivalent force system and specify the x and y coordinates of
the point where the wrench’s line of action intersects the xy plane.

Figure P4.77

Problem 4.78

Determine a wrench equivalent force system and specify the x and y coordinates of the
point where the wrench’s line of action intersects the xy plane. Express your answers
in terms of parameters such as F , a, and b. Figure P4.78
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4.5 Chapter Review

Important definitions, concepts, and equations of this chapter are summarized.
For equations and/or concepts that are not clear, you should refer to the section
numbers cited for additional details.

Moment of a force — scalar approach. As shown in Fig. 4.35, the moment
of a force EF about a point O is a vector (represented by the twisting action
shown), and the magnitude of this moment is MO , which is given by

MO D Fd

Eq. (4.1), p. 182

where
Figure 4.35
Scalar definition of the moment of a force.

F is the magnitude of the force;
d is the perpendicular distance from point O to the line of action

of EF and is called the moment arm; and
MO has units of force times length.

The direction of the moment is not provided by Eq. (4.1), but is understood to
be as follows. The line of action of the moment is parallel to the axis through
point O that is perpendicular to the plane containing EF and the moment arm.
The direction of the moment along the line of action is given by the direction
of the thumb of your right hand when your fingers curl in the twisting direction
of the moment.

Moment of a force — vector approach. As shown in Fig. 4.36, the moment
of a force EF about a point O is denoted by EMO and is defined as

EMO D Er � EF

Eq. (4.2), p. 183

where
Figure 4.36
Vector definition of the moment of a force.

EF is the force vector;
Er is a position vector from point O to any point on the line of

action of EF .

Varignon’s theorem. Varignon’s theorem , also known as the principle of
moments, is a restatement of the distributive property of the cross product. The
principle states that the moment of a force is equal to the sum of the moments
of the vector components of the force. Thus, if EF has vector components EF1,
EF2, and so on, then the moment of EF about a point A is given by

EMA D Er � EF

D Er � . EF1 C EF2 C � � � /

D Er � EF1 C Er � EF2 C � � � :

Eq. (4.10), p. 185
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The principle of moments is most commonly used for scalar evaluations of the
moment of a force. Often, the vector components will be orthogonal, but the
principle is also valid for nonorthogonal vector components.

Moment of a force about a line. The moment of a force about a line is
defined to be the component of the moment that is in the direction of the line.
The moment of a force about a line is discussed in Section 4.2 and can be
evaluated by using vector and scalar approaches, as follows.

To determine the moment Ma of a force F about a line (or direction) a as
shown in Fig. 4.37:

Vector approach:

1. Select a point P at a convenient location on line a. Determine the mo-
ment of EF about P , using EMP D Er � EF , where Er is a position vector
from P to any point on the line of action of EF .�

2. Ma D EMP � Ou, where Ou is a unit vector in the direction of a. To express
this moment as a vector quantity, evaluate EMa DMa Ou.

Note: Steps 1 and 2 may be combined to yieldMa directly by using the scalar
triple product, Ma D .Er � EF / � Ou.

Scalar approach:

1. Resolve F into components F? and Fk that are perpendicular and par-
allel, respectively, to a plane containing line a.

2. Ma D F?d , where d is the moment arm (shortest distance) between
line a and the line of action of F . (Note: Fk produces no moment about
a, so you may skip its evaluation altogether.)

Figure 4.37
Vector and scalar approaches for determining
the moment of a force about a line.

Couple. A couple is defined to be a system of two forces of equal magnitude
and opposite direction and whose lines of action are separated by a distance.
The moment of a couple (sometimes also called a couple moment) is the mo-
ment produced by the couple. A couple that is applied to a body produces a
moment, but does not apply any net force to the body. The moment of a couple
can be evaluated using both vector and scalar approaches as follows.

Moment of a couple — vector approach. Consider a couple consisting of
two parallel forces EF and � EF as shown in Fig. 4.38. The moment EM of this
couple is

Figure 4.38
Moment of a couple: vector description.

EM D ErAB � EF

D ErBA � .� EF /

Eq. (4.11), p. 209

where

�This procedure suggests using the cross product to determine EMP . As an alternative, especially
for problems with simple geometry, you could use a scalar approach to determine the vector

expression for EMP , to be followed by taking the dot product as described in Step 2.
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ErAB and ErBA are position vectors,
A is any point on the line of action of � EF ,
B is any point on the line of action of EF .

Moment of a couple — scalar approach. Consider a couple consisting of
two parallel forces having the same magnitude F as shown in Fig. 4.39. The
magnitude of the moment of this couple is

Figure 4.39
Moment of a couple: scalar description.

M D Fd

Eq. (4.12), p. 209

where

d is the perpendicular (shortest) distance between the forces’ lines
of action,

the direction of the moment is perpendicular to the plane contain-
ing the forces.

Two couples are said to be equivalent if the moment vectors they produce are
identical (both the magnitude and direction of the moments must be the same).
If an object or structure has multiple couples applied, a resultant couple mo-
ment may be determined by summing the individual couple moment vectors.
The moment of a couple is a free vector, meaning the moment may be posi-
tioned anywhere on an object or structure. Further explanation of this subtle
feature is given throughout Section 4.3.

Transmissibility of a force. The principle of transmissibility of a force, de-
scribed in Section 4.4, states that the external effects of a force applied to a
rigid body are the same, regardless of the point of application of the force
along its line of action.

Equivalent force systems. If an object or structure has an arbitrary number
of forces and/or moments applied as shown in Fig. 4.40, an equivalent force
system at a point A consists of a resultant force EFR and a resultant moment
EMR where

EFR D

nX
iD1

EFi ;

EMR D

nX
iD1

Eri � EFi C

mX
iD1

EMi ;

Eq. (4.15), p. 223

where n is the number of forces that are applied, m is the number of moments
that are applied, and Eri is a position vector from point A to anywhere on the
line of action of EFi . Because EMR is a free vector, it may be positioned any-
where on the object or structure.

Figure 4.40
Construction of an equivalent force system at
point A.

Two force systems are equivalent if they have the same resultant force
and produce the same resultant moment about any common point. Thus, force
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system 1 and force system 2 are equivalent if

�
EFR
�

system 1 D
�
EFR
�

system 2 and�
EMR

�
system 1 D

�
EMR

�
system 2;

Eq. (4.16), p. 223

where the moment summation points used for determining . EMR/system 1 and

. EMR/system 2 must be the same. Equation (4.16) may be stated more explicitly
as two force systems are equivalent if

� n1X
iD1

EFi

�
system 1

D
� n2X
iD1

EFi

�
system 2

and

� n1X
iD1

Eri � EFi C

m1X
iD1

EMi

�
system 1

D
� n2X
iD1

Eri � EFi C

m2X
iD1

EMi

�
system 2

Eq. (4.17), p. 223

where n1 and m1 are the number of forces and moments in system 1, respec-
tively, n2 and m2 are the number of forces and moments in system 2, respec-
tively, and the moment summation point used for both force systems must be
the same.

Some special force systems. Several categories of force systems, includ-
ing concurrent, coplanar, parallel, and wrench force systems, are defined and
studied in Section 4.4. If a particular force system is coplanar or parallel, then
an equivalent force system that consists of a single resultant force with ap-
propriate position can always be found. For more general force systems, an
equivalent force system called a wrench can always be found.
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R E V I E W P R O B L E M S

Problem 4.79

In orthodontics, teeth are repositioned by applying forces to them for prolonged periods
of time. If point A has coordinates .2; 7; 8/mm, EF1 D .0:8 O{ � 0:3 O| � 0:1 Ok/N, EF2 D
.�0:7 O{ � 0:1 O| C 0:05 Ok/N, and EM D .0:1 O{ C 1:4 O| � 0:3 Ok/N �mm, determine an
equivalent force system at point O .

Figure P4.79

Problem 4.80

The 60N forces lie in planes parallel to the y´ plane. Determine the resultant couple
moment vector for the force system shown using a

(a) vector approach,

(b) scalar approach.

Figure P4.80

Problem 4.81

Two force systems are applied to a right circular cylinder. Points A to D lie on the x´
plane, and points E and F lie on the y´ plane. Determine if these force systems are
equivalent.

Figure P4.81

Problem 4.82

The landing gear for a fighter jet rotates about line a so that it retracts into the fuselage.
Point A has the coordinates given, line a lies in the y´ plane, and EF D

.300 O{ C 400 O| � 200 Ok/N.

(a) Determine the moment of EF about line a.

(b) Determine a new direction for line a so that the moment of EF about this line is as
large as possible.

Figure P4.82

Problem 4.83

The device shown is a pointer that mounts on the front of a tractor to help its operator
position the tractor relative to other rows of seeds that have been planted. Bracket E is
bolted to the front of the tractor, which drives in the ´ direction. The bracket supports
the bent boom ABC , the end C of which has a weightW and a pointer CD. The boom
is allowed to rotate about line a, which lies in the y´ plane, so that if the boom strikes
an obstruction, the boom will rotate backward and upward to help avoid damage to it.
If W D 50 lb, determine the force F , which acts in the �´ direction, that will cause
the boom to begin rotating about line a.

Figure P4.83
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Problem 4.84

A jack stand for supporting an automobile or truck during servicing is shown. The
stand has three legs with equal radial positioning. The height h of the stand can be
adjusted between 9 and 15 in. If the stand supports a 1500 lb vertical force, determine
the smallest horizontal force F that will cause the moment about line AB to be zero
and hence cause the stand to tip.

Figure P4.84

Problem 4.85

Rather than the traditional horizontal and vertical stabilizers, some aircraft such as
the Bonanza 35 single-engine airplane (pictured) and the F-117 Stealth fighter feature
a V tail. Points A and B are located at A.112; 7; 0/mm and B.62;�93; 0/mm, and
direction a has direction angles �x D 150

ı, �y D 60
ı, and �´ D 90

ı. If the forces are
EF1 D .40 O{ � 100 O| C 280 Ok/N and EF2 D .50 O| C 120 Ok/N, determine the resultant

moment of EF1 and EF2 about line a.

Figure P4.85

Problem 4.86

Determine values for P , Q, R, S , and MD so that the two force systems shown are
equivalent.

Figure P4.86

Problem 4.87

A beam is subjected to the three forces shown.

(a) Determine an equivalent force system at the midspan of the beam x D 3m.

(b) Determine an equivalent force system consisting of a single force, and specify the
x coordinate of the point where its line of action intersects the x axis.

Figure P4.87

Problem 4.88

A speed control mechanism for a small gasoline engine is shown.

(a) Determine an equivalent force system at point O .

(b) Determine an equivalent force system consisting of a single force, and specify the
y coordinate of the point where its line of action intersects the y axis.

Figure P4.88
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Problem 4.89

A weldment is a structure or component built by welding an assembly of pieces together.
The weldment shown is subjected to three cable forces. Determine an equivalent force
system consisting of a single force, and specify the x coordinate of the point where its
line of action intersects the x axis.

Figure P4.89

Problem 4.90

The wing of a jet supports a 900 lb force due to weight of an engine and 300 lb and
600 lb forces due to weight of fuel.

(a) Determine an equivalent force system at point A.

(b) Determine an equivalent force system consisting of a single force, and specify the
x and ´ coordinates of the point where its line of action intersects the x´ plane.

Figure P4.90

Problem 4.91

A thin rectangular flat plate is loaded by the forces shown.

(a) Determine an equivalent force system at point O .

(b) Determine a wrench equivalent force system, and specify the y and ´ coordinates
of the point where the wrench’s line of action intersects the y´ plane.

Figure P4.91

Problem 4.92

A seat of a roller coaster is subjected to the forces shown during a turn. The force at A
is vertical, the forces at B and C are parallel to the x and ´ directions, respectively, and
the forces at D and E lie in planes parallel to the y´ plane. Determine an equivalent
force system at point O , where the seat is attached to the car.

Figure P4.92 and P4.93

Problem 4.93

For the roller coaster seat described in Prob. 4.92, determine a wrench equivalent force
system and specify the x and ´ coordinates of the point where the wrench’s line of
action intersects the x´ plane.



5 Equilibrium of Bodies

This chapter discusses equilibrium of a single
rigid body. The rigid body may be a single ob-
ject, or may be an assemblage of numerous
members whose arrangement is such that the
assemblage as a whole can be treated as a
single rigid body. Because all materials are de-
formable, there are no true rigid bodies in na-
ture. Nonetheless, it is rather remarkable how
often a rigid body idealization can be used.

5.1 Equations of Equilibrium

We begin this chapter with a general discussion of the equations of equilibrium
for bodies in three dimensions. Subsequent sections consider applications to
both two-and three-dimensional problems.

Shown in Fig. 5.1 are objects whose equilibrium we will analyze. The ob-

Figure 5.1
Examples of objects that may be idealized as
rigid bodies.

ject may be a single body of solid material as shown in Fig. 5.1(a) or may
consist of an arrangement of numerous members as shown in Fig. 5.1(b). In
either case, we idealize the object to be a rigid body so that the distance be-
tween any two points within the object remains constant under all circum-
stances of loading and/or motion. The object will have forces and/or moments
applied to it, and will often also have supports that fix its position in space.
Note that there are many objects whose equilibrium we are interested in that
are unsupported or are only partially supported against motion. Examples in-
clude aerospace vehicles, ships, automobiles rolling on a highway, moving
components in machines, and so on. Our objective in this chapter is to deter-
mine conditions under which equilibrium of a single rigid body is obtained. In
the case of objects that consist of an assemblage of numerous members, we
may also be interested in the forces supported by the individual members, and
this topic is taken up in Chapter 6. Similarly, for objects that consist of solid

245
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material only, we may also be interested in the internal forces that develop
within the material, and this topic is taken up in Chapter 8.

The equations governing the static equilibrium of a body are

X
EF D E0 and

X
EMP D E0 (5.1)

where the summations include all forces and moments that are applied to the
body, and the moments are evaluated about any convenient point P that we
may select. In scalar form, Eq. (5.1) is

X
Fx D 0

X
MPx D 0X

Fy D 0 and
X

MPy D 0X
F´ D 0

X
MP´ D 0:

(5.2)

The force equilibrium equations
P
EF D E0 are identical to those used for equi-

librium of particles. The moment equilibrium equations
P
EMP D E0 are new,

and the rationale for these is that if they are not satisfied, the body will undergo
angular accelerations due to the twisting action of moments. Both equations
are postulates, and no fundamental proof of their validity exists. Rather, we
must accept these as laws that nature follows.

5.2 Equilibrium of Rigid Bodies in Two
Dimensions

The object shown in Fig. 5.2 can be modeled using two dimensions if all forces,
including the forces applied by the supports to the object, lie in the same plane
and all moments have direction perpendicular to this plane. In two dimensions,
with x and y being the in-plane coordinates as shown in Fig. 5.2, the equationsP
F´ D 0,

P
MPx D 0, and

P
MPy D 0 in Eq. (5.2) are always satisfied,

leaving

X
Fx D 0;

X
Fy D 0; and

X
MP´ D 0: (5.3)

For brevity, in the remainder of this section, as well as for two-dimensional
Figure 5.2
An object in two dimensions in equilibrium.

problems in general, we will drop the ´ subscript in the moment equilibrium
equation. As stated above, the summations in Eq. (5.3) include all forces and
moments applied to the body, including the reaction forces.

Reactions

A reaction is a force or moment exerted by a support on a structure. Supports
and the reactions they produce take many forms as shown in Fig. 5.3. In all
cases, the reactions for a particular support may be determined by considering
the motion the support prevents. That is, if a support prevents translation (or
rotation) in a certain direction, it can do so only by producing a reaction force
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Figure 5.3. Common supports for bodies in two dimensions and their associated reac-
tion forces. Cable, link, and bar support members are assumed weightless except where
otherwise noted.
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(or moment) in that direction. For example, in the case of a pin support, the
pin prevents translation of the bar in both the x and y directions and thus must
produce reaction forces in each of these directions. The pin does not prevent
rotation of the bar, and hence there is no moment reaction. It is not necessary
to memorize the reactions shown in Fig. 5.3. Rather, you should reconstruct
these as needed.

Free body diagram (FBD)

A free body diagram (FBD) is a sketch of a body or structure that includes all
forces and moments that are applied to the body or structure. The FBD is an
essential aid for accurate application of the equations of equilibrium, and all
of the remarks made on FBDs in Chapter 3 are applicable here.

Procedure for Drawing FBDs

1. Decide on the body (or portion of a body) whose equilibrium is to be
analyzed.

2. Imagine this body is “cut” completely free (separated) from its envi-
ronment. That is:

� In 2D, think of a closed line that completely encircles the body.

� In 3D, think of a closed surface that completely surrounds the
body.

3. Sketch the body.

4. Sketch the forces:

(a) Sketch the forces that are applied to the body by the environment
(e.g., weight).

(b) Wherever the cut passes through a structural member, sketch the
forces that occur at that location.

(c) Wherever the cut passes through a support (i.e., where a support
is removed from the body), sketch the reaction forces and mo-
ments that occur at that location.

5. Sketch the coordinate system to be used. Add pertinent dimensions
and angles to the FBD to fully define the locations and orientations of
all forces.

The order in which the forces are sketched in Step 4 is irrelevant. For com-
plicated FBDs, it may be difficult to include all of the dimensions and/or angles
in Step 5. When this is the case, some of this information may be obtained
from a different sketch.

In this chapter we consider equilibrium of an entire body or structure only.
Hence, when we construct the FBD, the cut taken in Step 2 of the above pro-
cedure will encompass the entire object. Thus, in this chapter the forces cited
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in Step 4(b) do not arise. Occasionally, objects are supported by cables and/or
bars, and when cutting through these supports to draw a FBD, we categorize
their forces as reactions.

Once the FBD is drawn, equilibrium equations may be written and solved
to obtain the solution to the problem. In this process, drawing the FBD is the
most important step, since once a proper FBD is available, writing the equilib-
rium equations and solving these are routine. The solution of a typical problem
is outlined in the following example.

� Mini-Example. Determine the support reactions for the structure shown
in Fig. 5.4.

Figure 5.4
A structure with supports at points A and B .

Figure 5.5
Free body diagram showing all forces applied
to the object.

Solution. The completed FBD is shown in Fig. 5.5 and it is constructed as fol-
lows. We first sketch the structure and then choose an xy coordinate system.
At each support that is cut through (or removed from the structure) we intro-
duce the appropriate reactions. Thus, for the pin support at A we introduce
reactions Ax and Ay , and at the roller support at B we introduce reaction By .

Next, we use Eq. (5.3) to write the equilibrium equations

X
Fx D 0 W Ax C 60 N D 0; (5.4)X
Fy D 0 W Ay C By � 80 N D 0; (5.5)X
MA D 0 W By.500 mm/ � .80 N/.200 mm/

C .60 N/.50 mm/ D 0: (5.6)

Solving Eqs. (5.4)–(5.6) provides

Helpful Information

Direction for moment summation. When
writing moment equilibrium equations in
two-dimensional problems, such as
Eq. (5.6), we will always take counter-
clockwise to be the positive direction for
moments.

Figure 5.6

This choice is consistent with the right-hand
rule for the xy coordinate system shown.

Ax D �60 N; Ay D 54 N; and By D 26 N: (5.7)

�

Remarks. The following remarks pertain to the foregoing example.

� Coordinate system. While we will most often use a coordinate system
whose directions are horizontal and vertical, occasionally other choices
may be more convenient and will be used.

� Direction of reactions in FBD. When putting reaction forces and mo-
ments in the FBD, we often do not know the actual directions these
forces will have until after the equilibrium equations are solved. In
Fig. 5.5 we have elected to take Ax , Ay , and By to be positive in their
positive coordinate directions. After solving the equilibrium equations,
we may find some of these are negative (such as Ax above), meaning
they actually act in the directions opposite those shown in Fig. 5.5.
When you encounter such a situation, you should resist the temptation
to revise the direction of those reactions in the FBD, as this is likely to
lead to errors since all equilibrium equations also need to be revised.
Rather, simply allow those reactions to have negative values.

� Number of unknowns. After we draw the FBD, it is a good idea to
count the number of unknowns. In Fig. 5.5, there are three unknowns,
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namely,Ax ,Ay , andBy ; and since there are three equilibrium equations,
we expect to have a determinate system of algebraic equations that can
be solved to obtain a unique solution for the unknowns. If more or fewer
than three unknowns are present in the FBD and you rule out any errors
in your FBD, then the object you are modeling is partially fixed or is
statically indeterminate, as discussed in the next section.

� Selection of moment summation point. In Eq. (5.6) moments were
evaluated about point A. While any point can be used, the merit of point
A is that the unknown reactions at A produce no moment about point A
and hence do not enter the moment equilibrium equation, leaving By as
the only unknown in that expression, which is easily solved for. When
you sum moments, it is helpful to use a moment summation point that
omits as many unknowns as possible.

� Alternative equilibrium equations. Rather than using
P
Fy D 0,

Eq. (5.5), we could use in its place the moment equilibrium equationX
MC D 0 W �Ay.500 mm/C .80 N/.300 mm/

C .60 N/.50 mm/ D 0 (5.8)

where point C is located at the intersection of the lines of action of
Ax and By , as shown in Fig. 5.5. Observe that the moment summation
point does not need to lie on the object. The merit of using point C
for moment summation is that it will provide an equation that contains
Ay as the only unknown. Solving Eqs. (5.4), (5.6), and (5.8) provides
the same results given in Eq. (5.7). Additional comments on the use of
alternative equilibrium equations follow.

Alternative equilibrium equations

As demonstrated in the foregoing example, it is possible to replace either or
both of the

P
Fx D 0 and

P
Fy D 0 equations with moment equilibrium

equations where moment summation is taken about different points. The merit
of doing this is that, with appropriate selection of moment summation points,
an equation system that is easier to solve can often be obtained.

While it might seem as if “trading” a
P
Fx D 0 and/or

P
Fy D 0 equa-

tion for a moment equilibrium equation violates the fundamental principle of
equilibrium stated in Eq. (5.3), in reality, writing multiple moment equilibrium
equations, if properly done, still ensures

P
Fx D 0 and

P
Fy D 0. To explain

further, consider the three equilibrium equations
P
Fx D 0,

P
Fy D 0, andP

MP D 0. Each of these equations may be multiplied by any nonzero num-
ber, and the resulting equations may be added or subtracted. None of these
manipulations change the basic fact that there are still three independent equa-
tions whose solutions are the same as those of the original equations. Replac-
ing the

P
Fx D 0 (or

P
Fy D 0) equation with the moment equilibrium

equation
P
MA D 0, subject to the minor restrictions discussed below on

where point A may be located, is identical to multiplying the
P
Fx D 0 (orP

Fy D 0) equation by a suitable nonzero number and adding the result to theP
MP D 0 equation. To illustrate, in the foregoing example, the

P
MC D 0

expression, Eq. (5.8), is identical to Eq. (5.6) after the product of Eq. (5.5) and
500 mm is subtracted from it.
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The various alternative equilibrium equations that may be used in place of
Eq. (5.3) are

X
Fx D 0;

X
MA D 0; and

X
MP D 0: (5.9)

Points A and P must have different x coordinates.

X
MA D 0;

X
Fy D 0; and

X
MP D 0: (5.10)

Points A and P must have different y coordinates.

X
MA D 0;

X
MB D 0; and

X
MP D 0: (5.11)

Points A, B , and P may not lie on the same line.

The restrictions on locations of moment summation points given in Eqs. (5.9)
through (5.11) ensure that the three equilibrium equations that are written are
independent and hence have a unique solution. In practice, however, these
rules usually do not need to be explicitly consulted, as the strategy you are
likely to use to write your equations to find your unknowns is almost always
sufficient to ensure that the rules cited above are adhered to.

Gears

Gears are manufactured in an enormous variety of shapes and forms, and meth-
ods of analysis and design of gears are a specialized topic. In this book we con-
sider the simplest and most common type of gears, called spur gears, as shown
in Fig. 5.7(a). Radii rA and rB are the effective radii of the gears and are called

Figure 5.7
(a) Meshing spur gears with pitch radii rA and
rB . (b) Multiple teeth on each gear are usually
in contact at the same time, and this example
shows two teeth on each gear in simultaneous
contact. The force on a particular tooth is not
perpendicular to the gear’s radius (˛ ¤ 90ı).
(c) Regardless of the number of teeth in contact,
all tooth forces on a gear may be represented by
a single tangential force G and a normal force
N , positioned on the line connecting the gears’
centers and at the pitch radius of each gear. For
many applications, N is neglected.

the pitch radii. In general, two meshing gears have multiple teeth in contact
at the same time. If, for example, gear A shown in Fig. 5.7(a) rotates counter-
clockwise and applies power to gear B , then the forces between the contacting
teeth are as shown in Fig. 5.7(b). The shape of gear teeth is such that the force
supported by an individual tooth is not perpendicular to the gear’s radius at
the point of contact (i.e., angle ˛ shown in Fig. 5.7(b) is not 90ı). All of the
forces acting on the teeth of a particular gear can be vectorially summed to
obtain an equivalent force system that represents all the tooth forces as shown
in Fig. 5.7(c). This force system is positioned on the line connecting the gears’
centers and is at the pitch radius of each gear. Note that in addition to the tan-
gential force G, there is a normal force N that tends to push the gears apart.
While N is smaller than G, it is not insignificant and its size as a fraction of
G depends on the shape of the gears.� When dealing with gears in this book,
we will usually neglect N . While not perfect, this is a common simplification
that is useful and adequate for many purposes. Example problems at the end
of this section elaborate further on this issue.

Interesting Fact

Standards for gears. The American Gear
Manufacturers Association (AGMA) is an
organization of gear manufacturers from
around the world that develops standards
for the manufacture, performance, and use
of gears. When possible, an engineer will
select gears from the standard shapes
and sizes that are commercially avail-
able. Sometimes special purpose gears
are needed, and these must be custom
designed and manufactured.

�One of the primary measures of gear shape is the pressure angle. The pressure angle is selected
by a gear designer (among several industry-standard values) so that the gear has acceptable
force transmission ability, noise, life, and so on. The pressure angle also determines how large
N is as a fraction ofG.
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Examples of correct FBDs

Figure 5.8 shows several examples of properly constructed FBDs. Comments
on the construction of these FBDs follow.

Bulletin board. After sketching the bulletin board, we apply the 40N weight
through its center of gravity at pointC . At pointA, the support does not permit
horizontal and vertical motion, and therefore there are two reactions Ax and
Ay . At point B , the board cannot move perpendicular to the interface between
the screw and wire hanger, and therefore there is a reaction B in the direction
shown.

Lifting machine. After sketching the frame of the lifting machine, we apply
the 200 lb force and the 40 lb weight through its center of gravity at point C .
At point A, the gear applies a tangential force Ay to the frame and the normal
force between the gear and frame is neglected. At pointB the support does not
permit horizontal translation and rotation, and therefore there are two reactions
consisting of force Bx and moment MB .

Folding desk. We are instructed to neglect the weights of members. Mem-
ber AB prevents motion of point A in the direction along line AB , and hence
there must be a reaction force FAB whose line of action is line AB . Similarly,
member CD produces a reaction FCD whose line of action is line CD. At
point E we assume the contact is smooth, in which case there is one reaction
force E that is perpendicular to the interface between the desk and the seat in
front of it. While we are instructed that a person can apply a 75 lb force, no
information is given on the position or orientation of this force. Thus, we have
chosen to give this force a position and orientation so that it maximizes the
severity of the loading on the desk (i.e., it is placed at the edge of the desk,
perpendicular to the desktop).

Examples of incorrect and/or incomplete FBDs

Figure 5.9 shows several examples of incorrect and/or incomplete FBDs. Com-
ments on how these FBDs must be revised follow, but before reading these,
you should study Fig. 5.9 to find as many of the needed corrections and/or
additions on your own as possible.

Pickup truck

1. The 15 kN weight should be vertical.

2. The rear wheels should have a reaction force Ax in the x direction.

Hand truck

1. The reaction force at B should be directed from point B through the
bearing of the wheel. We also note that if the bearing of the wheel is
frictionless, then there will be no friction force at B .

2. The force F applied by the operator’s hand is properly shown, but it
should be noted that both its magnitude and direction are unknown.
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Figure 5.8. Examples of properly constructed FBDs.
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Figure 5.9. Examples of incorrect and/or incomplete FBDs.
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Machine control

1. Although not really a deficiency with the FBD, a coordinate system
should be selected and shown.

2. The reaction force atB should be perpendicular to the slot (i.e., vertical).

3. The pin at D should also have a horizontal force Dx .

End of Sect ion Summary

In Sections 5.1 and 5.2, the equations governing static equilibrium of a rigid
body were reviewed, and analysis procedures for bodies in two dimensions
were discussed. Some of the key points are as follows:

� Both vector and scalar approaches can be used for problems in two
dimensions. However, most often a scalar approach will be the most
straightforward.

� The equilibrium equations for a body in two dimensions, with x and y
being the in-plane directions, are

P
Fx D 0,

P
Fy D 0, and

P
MP D 0

where P is the moment summation point you select.

� Alternative sets of equilibrium equations are available where the
P
Fx D

0 and/or
P
Fy D 0 equations are replaced by additional moment equi-

librium equations, subject to certain restrictions on where the moment
summation points may be located. In some problems, use of these alter-
native equilibrium equations will reduce the amount of algebra required
to solve for the unknowns. It is important to remember that a body in
two dimensions has only three independent equilibrium equations avail-
able.

� A free body diagram (FBD) is a sketch of a body and all of the forces
and moments applied to it. The FBD is an essential tool to help ensure
that all forces are accounted for when writing the equilibrium equations.

� Gears are common, and are often used in connection with shafts. Typ-
ically, when two gears mesh, multiple teeth from each gear are in si-
multaneous contact. However, for many purposes these forces may be
replaced with an equivalent force system consisting of a tangential force,
and possibly a normal force, as shown in Fig. 5.7.
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E X A M P L E 5.1 Curved Link Support

Figure 1

A device for clamping a flat workpiece in a machine tool is shown. If a 200 N clamping
force is to be generated at C , and if the contact at C is smooth (no friction), determine
the force F required and the reaction at B .

S O L U T I O N

Road Map Determining the force F required to produce a 200N clamping force will
be accomplished by analyzing the equilibrium of the clamp ABC . Member BD is
viewed as a support for the clamp (as shown in Fig. 5.3), and thus it is not necessary to
explicitly address its equilibrium.

Modeling The completed FBD for the clamp is shown in Fig. 2 and it is constructed
as follows. We first sketch clamp ABC and then choose an xy coordinate system. The
roller support at A prevents translation of the clamp in the y direction, and thus there
must be a y direction reaction Ay that enforces this constraint. Similarly, at the smooth
support at C the only reaction is Cy , which we desire to be 200 N.

The curved link supports the clamp at point B , and the reaction forces and/or mo-
ments at point B are determined by consulting Fig. 5.3 on p. 247, or better yet by
the discussion given in Fig. 3. Hence, the reaction force due to the link is FBD with
direction from points B to D.

Figure 2
Free body diagram.

Figure 3
The curved link prevents translation of point B
in the x0 direction, and therefore the link must
apply a reaction force to the clamp in this direc-
tion. Translation of point B in the y0 direction
is possible, therefore there is no reaction force
in this direction. Further, rotation of the clamp
about point B is possible, therefore there is no
moment reaction.

Governing Equations & Computation Prior to writing equilibrium equations, we
resolve the reaction at B into horizontal and vertical components so that moment arms
are more easily obtained. The revised FBD is shown in Fig. 4.

Figure 4
Revised FBD with FBD resolved into hor-
izontal and vertical components

�
wherep

.45/2 C .24/2 D 51
�

so that moment arms
are more easily obtained.

When writing equilibrium equations, we usually try to write them so that each
equation contains only one unknown, which may then be found immediately. When
this is possible, simultaneous algebraic equations do not need to be solved. In Fig. 4,
we observe that both the

P
Fx D 0 and

P
Fy D 0 equations involve two unknowns

each, and thus these equations are not especially convenient to start with, although no
harm is done if you do this. We next consider

P
M D 0 and we look for a point where

the lines of action of two (or more) unknown forces intersect; in Fig. 4 point A is such
a point.� Thus, writing

P
MA D 0, with positive moments taken counterclockwise,

we immediately find FBD as follows:

X
MA D 0 W � FBD

 
45

51

!
.8mm/ � FBD

 
24

51

!
.80mm/

C .200N/.130mm/ D 0 ) FBD D 581:6 N: (1)

Now that FBD is known, the equations
P
Fx D 0 and

P
Fy D 0 may be written in

any order to obtain the remaining unknowns

X
Fx D 0 W F � FBD

 
45

51

!
D 0 ) F D 513:2 N; (2)

X
Fy D 0 W Ay � FBD

 
24

51

!
C 200 N D 0 ) Ay D 73:7 N: (3)

�The intersection of the lines of action ofAy and FBD shown in Fig. 2 is another such point, as
is the intersection of the lines of action of F and FBD . However, determining the locations of
these intersection points requires some work, and for this reason, point A is a better choice.
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Discussion & Verification

� Intuitively, we expect the solution of our equilibrium equations to show that
F > 0, and indeed this is obtained. If we had obtained a negative value for F ,
we would immediately suspect an error and would correct this before continuing
with our solution.

� Once we verify that our solution passes the preceding casual but essential check,
we should then verify that all unknowns (F , FBD and Ay ) satisfy all of the
equilibrium equations. If any of the equilibrium equations is not satisfied, then
a math error has been made. However, this check does not guarantee that the
equilibrium equations have been accurately written. Thus, it is essential that the
FBD be accurately drawn and that the equilibrium equations accurately include
all forces and moments from the FBD.

� An additional check on our solution that is usually easy to carry out is to use
the FBD of Fig. 2 or 4 to evaluate the moment of all forces about additional
points to verify that moment equilibrium is satisfied. For example, if we evaluate
moments about point C in Fig. 4, a correct solution must show that

P
MC D 0.
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E X A M P L E 5.2 Two-dimensional Idealization of a Three-dimensional Problem

Figure 1

A large number of identical uniform cantilever beams, each with 40 in. length and
10 lb=ft weight, are used to support 4 ft sections of pipes B and C . A typical beam
ABCD is shown. If pipes B and C plus their contents weigh 25 lb=ft and 35 lb=ft,
respectively, determine the reactions at the built-in end of the cantilever beams.

S O L U T I O N

Road Map We will idealize this problem to be two-dimensional and will draw an
FBD of one cantilever beam, assuming it supports the weights of a 4 ft length of each
pipe plus its own weight. Our goal is to determine the reactions at the built-in support.

Modeling The FBD is shown in Fig. 2 and is constructed as follows. Beam ABCD

is sketched first, and an xy coordinate system is chosen. The reactions at the built-
in support at point A may be determined by consulting Fig. 5.3, but it easier to simply
construct these by considering the motion that the support prevents. That is, the support
atA prevents horizontal translation of the beam, and hence there must be a reactionAx .
The support also prevents vertical translation of the beam, and hence there must be a
reaction Ay . Finally, the support prevents rotation of the beam, and hence there must
be a moment reaction MA. The beam’s total weight is

WE D
�
10

lb

ft

�
.40 in./

� 1 ft

12 in.

�
D 33:33 lb; (1)

and since the beam is uniform, meaning its cross-sectional dimensions and material are

Figure 2
Free body diagram.

the same over its entire length, this weight is placed at the center of gravity of the beam,
which is its midpoint E. The weights of 4 ft lengths of pipes B and C are

WB D
�
25

lb

ft

�
.4 ft/ D 100 lb; WC D

�
35

lb

ft

�
.4 ft/ D 140 lb: (2)

Governing Equations & Computation Writing equilibrium equations provides the
reactions at A asX

Fx D 0 W Ax D 0 (3)

) Ax D 0; (4)X
Fy D 0 W Ay � 140 lb � 33:33 lb � 100 lb D 0 (5)

) Ay D 273 lb; (6)X
MA D 0 W MA C .140 lb/.30 in./C .33:33 lb/.20 in./

C .100 lb/.14 in./ D 0 (7)

) MA D �6270 in.�lb D �522 ft�lb: (8)

Discussion & Verification

� Because of the loading and geometry, we expect Ay > 0 and MA < 0, which
are obtained. We should also verify that Ax , Ay , and MA satisfy all of the
equilibrium equations.

� The biggest assumption made is that an individual beam is responsible for sup-
porting the weight of a 4 ft length of each pipe only. Whether or not this as-
sumption is valid cannot be verified with the limited data given here. However,
the intent of using multiple beams to support the pipes is that each beam shares
equally in supporting the weight. This assumption is reasonable if the two pipes
are sufficiently flexible and/or all of the support beams are accurately aligned.
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E X A M P L E 5.3 Two-dimensional Idealization of a Three-dimensional Problem

Figure 1

The rear door of a minivan is hinged at point A and is supported by two struts; one
strut is between points B and C , and the second strut is immediately behind this on the
opposite side of the door. If the door weighs 350 N with center of gravity at point D
and it is desired that a 40 N vertical force applied by a person’s hand at point E will
begin closing the door, determine the force that each of the two struts must support and
the reactions at the hinge.

S O L U T I O N

Road Map Although the problem is really three-dimensional, a two-dimensional ide-
alization is sufficient and will be used here. We will neglect the weights of the two
struts since they are probably very small compared to the weight of the door.

Modeling The FBD is shown in Fig. 2 and is constructed as follows. The door is
sketched first and an xy coordinate system is chosen. The person’s hand at E applies a
40N downward vertical force, and the 350 N weight of the door is a vertical force that
acts through point D. The hinge (or pin) at A has horizontal and vertical reactions Ax
and Ay . The force in one strut is FBC , with a positive value corresponding to compres-
sion. Thus, the total force applied by the two struts is 2FBC . In Fig. 2, the horizontal
and vertical components of the strut force are determined using similar triangles with
the geometry shown.

Figure 2
Free body diagram.

Governing Equations & Computation Summing moments about point A is conve-
nient because it will produce an equilibrium equation where FBC is the only unknown:X

MA D 0 W .40 N/.1:150 m/C .350 N/.0:800 m/

� 2FBC

� 450

726:2

�
.0:650 m/C 2FBC

� 570

726:2

�
.0:250 m/ D 0 (1)

) FBC D 789:1 N: (2)

Thus, the force supported by each of the two struts is FBC D 789:1 N.
The reactions at point A are found by writing the remaining two equilibrium equa-

tions X
Fx D 0 W � 2FBC

� 570

726:2

�
C Ax D 0 (3)

) Ax D 1239N; (4)X
Fy D 0 W � 40N � 350NC 2FBC

� 450

726:2

�
C Ay D 0 (5)

) Ay D �588:0N: (6)

Discussion & Verification

� Because of the geometry and loading for this problem, we intuitively expect the
struts to be in compression. Since the strut force FBC was defined to be positive
in compression, we expect the solution to Eq. (1) to give FBC > 0, which it
does.

� You should verify that the solutions are mathematically correct by substituting
FBC , Ax , and Ay into all equilibrium equations to check that each of them is
satisfied. However, this check does not verify the accuracy of the equilibrium
equations themselves, so it is essential that you draw accurate FBDs and check
that your solution is reasonable.
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E X A M P L E 5.4 Numerous Roller Supports

Figure 1

A trolley rolls on the flange of a fixed I beam to move a 500 lb vertical force. The
trolley has a total of eight rollers; four of these are shown in Fig. 1 at points A, B ,
C , and D, and the remaining four are located immediately behind these points on the
opposite side of the trolley. Thus, there is one pair of rollers located at A, another pair
at B , and so on. The rollers at A and B are a loose fit so that only one pair will make
contact with the flange of the I beam, and similarly for the rollers at C and D, as well
as for those on the opposite side of the trolley. Determine the cable force T and the
reactions at each of the four pairs of rollers.

S O L U T I O N

Road Map At the outset of this problem it is not known whether the pair of rollers at
A or the pair of rollers at B will make contact. Similarly, it is not known whether the
pair of rollers at C or the pair of rollers at D will make contact. To proceed, we will
assume the rollers at B and D make contact (the rollers at A and C could just as well
have been chosen), and after the analysis is complete, we will interpret our results to
determine which rollers are actually in contact.

Modeling The FBD is shown in Fig. 2. Because the geometry is given with respect
to the I beam’s axis of orientation, use of an xy coordinate system with this same
orientation will allow for easy determination of moment arms. In drawing the FBD, we
have assumed that the upper pairs of rollers at B and D make contact, and we label
their reactions as R1 and R2 in the FBD. After analysis is complete, we must examine
the signs of R1 and R2; a positive value indicates the assumption was correct, while a
negative value means the assumption was incorrect and that the adjacent pair of rollers
actually makes contact.

Figure 2
Free body diagram assuming contact is made at
roller pairs at B and D.

Governing Equations & Computation The following sequence of equilibrium equa-
tions provides for easy determination of the unknowns:X

Fx D 0 W �T cos 15ı C .500 lb/ sin 40ı D 0 (1)

) T D 332:7 lb; (2)X
MA D 0 W �.500 lb/ cos 40ı.6 in./C .500 lb/ sin 40ı.9 in./

CR2.12 in./ D 0 (3)

) R2 D �49:53 lb; (4)X
Fy D 0 W R1 CR2 � T sin 15ı � .500 lb/ cos 40ı D 0 (5)

) R1 D 518:7 lb: (6)

Discussion & Verification Since R1 is positive, the assumption of contact at the
pair of rollers at B was correct and thus we write Ay D 0 and By D R1 D 518:7 lb
where positive By is measured in the positive y direction. Since R2 is negative, it is
the pair of rollers at C rather than the pair at D that actually makes contact; hence
we write Cy D R2 D �49:53 lb and Dy D 0 where positive Cy is measured in the
positive y direction. Thus, our solutions for the cable tension and the reactions at each
pair of rollers may be summarized as

Ay D 0; By D518:7 lb; Cy D �49:53 lb;

Dy D 0; and T D 332:7 lb:
(7)
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E X A M P L E 5.5 Loose-fitting Gears

Figure 1

A drum for mixing material rotates clockwise under the power of a geared motor at
A. The drum weighs 320 lb and is supported by a bearing at point B , and the material
being mixed weighs 140 lb with center of gravity at point D. If gear A is a loose fit
with the gear on the drum, determine the reactions at point B and the gear tooth force
required to operate the machine. Assume the machine operates at steady speed and the
material being mixed maintains the same shape and position as the drum rotates.

Figure 2
Free body diagram.

S O L U T I O N

Road Map Because the drum rotates at constant speed and the material being mixed
maintains the same shape and position, this is a problem of static equilibrium. To deter-
mine the support reactions at bearing B and the gear tooth force, we will analyze the
equilibrium of the drum and the material being mixed.

Modeling The FBD is shown in Fig. 2, where we simplify the gear tooth force (as
discussed in Fig. 5.7) to be a single force G tangent to the gear and positioned at the
pitch radius of the gear, which is 19 in. from point B . The 320 lb weight of the drum is
positioned at the drum’s center, point B , and the weight of the material being mixed is
placed at its center of gravity, point D.

Governing Equations & Computation Using the FBD in Fig. 2, the equilibrium
equations and solutions are as follows:X

MB D 0 W �G.19 in./C .140 lb/.8 in./ D 0 (1)

) G D 58:95 lb; (2)X
Fx D 0 W Bx �G cos 30ı D 0 (3)

) Bx D 51:05 lb; (4)X
Fy D 0 W By � 320 lb � 140 lbCG sin 30ı D 0 (5)

) By D 430:5 lb: (6)

Discussion & Verification

� If the drum does not rotate at uniform speed, then accelerations are not zero and
concepts of dynamics must be used to determine the gear tooth force and the
reactions at B . If the material being mixed does not maintain the same shape
and position as the drum rotates, then at a minimum the moment arm in Eq. (1)
changes with time, and depending on how the shape and/or position changes
with time, the problem may also be dynamic.

� The idealization of the gear tooth force consisting of only a tangential force
is appropriate, provided the gears are a loose fit, because both gears rotate on
bearings (or axes) that are fixed in space. You should contrast this situation with
that in Example 5.6.
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E X A M P L E 5.6 Gears Actively Pressed Together

Figure 1

The mixing machine described in Example 5.5 is modified so that the drum is supported
by a motor-powered gear at point A and a frictionless roller at point C . Determine the
reactions at C and the gear tooth force required to operate the machine.

Figure 2
Free body diagram.

S O L U T I O N

Road Map Because the drum rotates at constant speed and the material being mixed
maintains the same shape and position, this is a problem of static equilibrium. To de-
termine the support reactions at the roller C and the gear tooth forces, we will analyze
the equilibrium of the drum and the material being mixed. In contrast to Example 5.5,
here the gears are actively pressed together, and thus the gear tooth forces consist of
both tangential and normal forces.

Modeling The FBD is shown in Fig. 2 where the gear tooth forces consist of a tan-
gential force G and a normal force N . The 320 lb weight of the drum is positioned at
its center, point B , and the weight of the material being mixed is placed at its center of
gravity, point D.

Governing Equations & Computation Using the FBD in Fig. 2, the equilibrium
equations areX

MB D 0 W �G.19 in./C .140 lb/.8 in./ D 0 (1)

) G D 58:95 lb; (2)X
Fx D 0 W N sin 30ı �G cos 30ı � C sin 30ı D 0; (3)X
Fy D 0 W N cos 30ı CG sin 30ı C C cos 30ı � 320 lb � 140 lb D 0: (4)

Equation (1) was solved immediately for G, and the result is the same as that obtained
in Example 5.5. With the solution for G known, Eqs. (3) and (4) can be solved simul-
taneously to obtain

) N D 299:6 lb and C D 197:5 lb: (5)

Discussion & Verification The main difference between this example problem and
Example 5.5 is the method by which the drum is supported, and this is reflected in
the way the gear tooth forces are idealized. In Example 5.5 both gears rotated on fixed
bearings and it was therefore possible to model the gear tooth force as consisting of
a single tangential force only. In this example, only the gear at A rotates on a fixed
bearing, and the gear on the drum is actively pressed into the other gear under the
action of the 320 and 140 lb forces. Thus, the normal component of the gear tooth
force N plays an important role in supporting the drum, and it cannot be neglected.
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P R O B L E M S

Problem 5.1

A freezer rests on a pair of supports at A and a pair of supports at B . Weights for
various parts of the freezer are shown. Neglecting friction, determine the reactions at
each pair of supports.

Figure P5.1

Problem 5.2

Weights of various parts of a computer are shown. Neglecting friction, determine the
reactions at the supports at points A and B .

Figure P5.2

Problem 5.3

The tool shown is used in a gluing operation to press a thin laminate to a thicker sub-
strate. If the wheels at points A and B both have 2 in. diameter and have frictionless
bearings, and a 20 lb vertical force is applied to the handle of the tool, determine the
forces applied to the top of the laminate and the bottom of the substrate. Figure P5.3

Problem 5.4

An escalator is driven by a chain connected to point A that supports a force F . The
rollers at points A and B have frictionless bearings and ride in a loose-fitting track. If
a person weighing 200 lb is being lifted at a steady speed and other weights may be
neglected, determine the required chain force F and the reactions at the wheels at A
and B . If the person is being lifted at a variable speed, will the force F be different
than that calculated earlier? Explain.

Figure P5.4Problem 5.5

BarABCD is supported by a pin at pointC and a cable from pointsD toE. Determine
the reactions at C and the force supported by the cable.

Figure P5.5
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Problem 5.6

A foldable tray for the paper supply of a photocopy machine is shown. The tray is
supported by a single hinge at A and two slotted links (one on each side of the tray).
If the stack of paper weighs 20 N and other weights may be neglected, determine the
reactions at the hinge and at point B for one of the links.

Figure P5.6
Problem 5.7

The boat, motor, and trailer have weights Wb D 600 lb, Wm D 125 lb, and Wt D
300 lb, respectively. If the distance from the front of the boat to the hitch is d D 4 ft,
determine the vertical reaction at point A and the reaction on each of the wheels.

Figure P5.7 and P5.8

Problem 5.8

For the boat trailer of Prob. 5.7, determine the distance d so that the vertical reaction
at point A is 100 lb.

Problem 5.9

A hand cart weighing 800N is used for moving heavy loads in a warehouse. If each
axle (pair of wheels) can support a maximum of 10 kN, determine the largest weight
W that may be supported and the position d where it should be placed, assuming both
axles are loaded to their capacity.

Figure P5.9

Problems 5.10 and 5.11

A variety of structures with pin, roller, and built-in supports are shown. In Figs. P5.10(c)
and P5.11(c), the rollers at point D allow vertical translation and constrain horizontal
translation and rotation. Determine all reactions. Express your answers in terms of pa-
rameters such as L, F , P , and/or M .

Figure P5.10
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Figure P5.11

Problems 5.12 and 5.13

In the structures shown, all members have the same 2 m length. Determine all support
reactions.

Figure P5.12 Figure P5.13

Problem 5.14

The top chord of the truss is subjected to a uniform distributed load which gives rise to
the forces Q shown. If Q D 1 kip, determine all support reactions.

Figure P5.14
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Problem 5.15

Determine the support reactions for the short flight of stairs due to the forces shown on
the two steps.

Figure P5.15

Problem 5.16

The forklift has a vehicle weight ofWV D 15;000 lb, fuel weight ofWF D 300 lb, and
operator weight ofWO D 160 lb. If P D 2000 lb, determine the reactions on each pair
of wheels.

Figure P5.16

Problem 5.17

A fixture for positioning 40 cm by 50 cm size cardboard boxes with weightW D 150N
in a packaging company is shown. If the weight of the box and its contents acts through
the center of the box, determine the largest value of � if the magnitude of the reactions
at points A and B may not exceed 800 N, at which point the box begins to crush. The
notch at point A prevents horizontal and vertical translation of the box and assume the
contact at point B is frictionless.Figure P5.17

Problem 5.18

BarABC is supported by a roller atB and a frictionless collar atA that slides on a fixed
bar DE. Determine the support reactions at points A and B . Express your answers in
terms of parameters such as P , a, etc.

Figure P5.18
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Problem 5.19

StructureABCDE is supported by a roller atD and a frictionless collar atA that slides
on a fixed bar FG. Determine the support reactions at points A and D. Express your
answers in terms of parameters such as P , Q, a, b, c, etc.

Figure P5.19

Problems 5.20 through 5.22

A motor and mounting hardware with weight W D 65 lb are supported by rollers A,
B , C , and D. Each pair of rollers is loose-fitting so that only one roller of the pair will
make contact with the fixed rail. This problem may be idealized as two-dimensional if
the torque the motor applies to the pulleys is neglected. Determine which rollers make
contact and the reactions at these rollers if:

Figure P5.20–P5.22

Problem 5.20 P D 0 and Q D 125 lb.

Problem 5.21 P D 200 lb and Q D 0.

Problem 5.22 P D 200 lb and Q D 125 lb.

Problem 5.23

During assembly in a factory, a compressor with weight W D 120 lb rests on a bench.
A cover plate is to be attached using four bolts. To speed production, a special machine
that simultaneously tightens all four bolts is used. Determine the largest torque M that
may be simultaneously applied to each bolt before the compressor begins to tip.

Figure P5.23

Problem 5.24

A tractor is fitted with a hole-drilling attachment. The tractor has weightWV D 2000 lb,
the operator has weightWO D 180 lb, and the supplemental weights at the front of the
tractor weigh WE D 300 lb.

(a) Determine the largest thrust that may be produced by the drilling attachment at
point A.

(b) Describe some simple ways the drilling thrust determined in Part (a) can be in-
creased (e.g., addition of more weight at E, removal of weight at E, repositioning
of weight from E to D, and so on).

Figure P5.24
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Problem 5.25

A spanner wrench is used to apply torque to circular shafts and other similar shapes.
Such wrenches are routinely used in the setup of tools such as milling machines, lathes,
and so on. The wrench makes contact with the shaft at point A, which may be assumed
to be frictionless, and at B where a small pin fits into a hole in the shaft. If P D 80 N,
L D 120 mm, r D 25 mm, and ˛ D 120ı, determine the reactions at points A and B .

Figure P5.25 and P5.26
Problem 5.26

In the spanner wrench of Prob. 5.25, determine the range of values for angle ˛ so that
the pin at B will not slip out of its hole when force P is applied for

(a) L=r D 4.

(b) Any value of L=r .

Problem 5.27

An arbor press is used to apply force to the workpiece at point C . The length h of
handle DE can be adjusted by sliding it through a hole in shaft F such that 50 mm �
h � 250 mm. The press has weight W D 350 N and simply rests on the rough surface
of a table. Force P is applied perpendicular to the handle.

(a) If the handle is horizontal (˛ D 0ı), determine the smallest force P that will cause
the press to tip about point A.

(b) For any possible position of the handle, determine the smallest force P and the
corresponding value of ˛ that will cause the press to tip about point A.

Figure P5.27

Problem 5.28

Figure P5.28

A portion of a structure is supported by a frictionless V-shaped notch as shown. Which
are the proper support reactions: those shown in Fig. P5.28(b) or those in Fig. P5.28(c),
or are both of these acceptable? Explain.
Note: Concept problems are about explanations, not computations.
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Problem 5.29

An antenna used for research at a university is shown. It has the feature that it is easily
raised and lowered so that it can be outfitted with different equipment. The antenna is
pinned to a supporting frame at pointA, and it is raised and lowered using the gear atB
to which a hand crank is attached. The antenna and its attached sector gear weigh 300
and 120 lb, respectively, and the 100 lb horizontal force at point C models the effect
of wind loads during a storm. If the gear at B is locked so it does not rotate, determine
the gear tooth force and the reactions at A.

Figure P5.29

Problem 5.30

FrameABCD is rigidly attached to a gearE, which engages two parallel geared tracks
F and G that are fixed in space. The gear has 4 in. pitch radius. If the gear has weight
W D 8 lb and P D 10 lb, determine the tooth forces between gear E and each track.
Hint: A normal force is present either at F or G but not both.

Figure P5.30

Problem 5.31

Frame BCD is rigidly attached to a gear A, which engages a geared track E that is
fixed in space. The gear has 30mm pitch radius, and portionsBC and CD of the frame
are perpendicular. If the gear has weight W D 6 N and P D 4 N, determine the value
of Q needed so that angle � D 30ı, and also determine the reactions (tooth forces)
between the gear and track.

Figure P5.31 and P5.32

Problem 5.32

In the frame and gear of Prob. 5.31, ifW D 6N,P D 4N, andQ D 8N, determine the
value of � when the assembly is in static equilibrium and the reactions (tooth forces)
between the gear and track.
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5.3 Equilibrium of Bodies in Two
Dimensions—Additional Topics

We begin this section by more thoroughly examining the theoretical underpin-
nings of the equilibrium analyses performed in the previous section. We then
introduce springs and the inclusion of deformable members in equilibrium
problems. Finally, we present a very brief introduction to statically indetermi-
nate problems in an example.

Why are bodies assumed to be rigid?

Throughout statics, when analyzing the equilibrium of bodies, objects, and
structures, we almost always assume they are rigid (springs are a notable ex-
ception). This assumption is made out of necessity for the same reasons as
those discussed in Section 3.2 in connection with cables and bars being ideal-
ized as inextensible. When we write equilibrium equations such as

P
Fx D 0,P

Fy D 0 and
P
MP D 0, the geometry of the object is needed so that

forces can be resolved into components and moment arms can be determined.
If the object is deformable, as real objects are, then this geometry is usually
unknown and the equations of static equilibrium alone are too few to solve for
the unknown reactions and the new geometry. Structures or objects that are
stiff typically undergo little change of geometry when forces are applied, and
hence they can often be idealized as rigid. For structures that are flexible, we
usually have no alternative but to incorporate deformability into our analysis,
and this topic is addressed in subjects that follow statics and dynamics, such
as mechanics of materials.

Helpful Information

Cable Geometry. A cable wrapped around
two pulleys with the same radius is
common.

Figure 5.10

With r being the radius of the pulleys and
h being the distance between the pulleys’
bearings, the orientation ˛ and the length
L of the cable segment between the pulleys
are

˛ D sin�1
2r

h
;

L D h cos˛:
(5.12)

Derivation of these expressions is given as
an exercise in Prob. 5.33.

Treatment of cables and pulleys

Cables and pulleys are common components in structures, and there are sev-
eral options for how these may be treated in an analysis. Consider the example
shown in Fig. 5.11(a), where force W is specified and the support reactions
are to be determined. Since the pulleys are idealized as frictionless and the
cable is continuous, perfectly flexible, and weightless, all portions of the cable
support the same tensile force which is equal to W . Three possible FBDs are
shown in Fig. 5.11(b)–(d). In the first of these, Fig. 5.11(b), the pulleys are
left on the structure, and when we take the cut to draw the FBD, the forces
shown are exposed. In the next two FBDs, Fig. 5.11(c) and (d), the pulleys
are removed from the structure. That is, when taking the cut to produce these
FBDs, we remove the pulleys and this exposes the forces that the pulleys apply
to the structure. In Fig. 5.11(c), the pulley forces are simply “shifted” to the
bearings of the pulleys. Justification for this is seen in the FBDs of the pulleys
themselves shown on the right-hand side of Fig. 5.11(c), where the bearing
forces have been constructed so that each pulley is in equilibrium. The FBD
shown in Fig. 5.11(d) is very similar to that shown above it except the bear-
ing forces are further resolved into x and y components. For most purposes,
you will likely find the FBD approaches in Fig. 5.11(b) and (c) to be the most
useful.
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Figure 5.11. (a) Cantilever beam structure with frictionless pulleys at points B and
C . (b)–(d) Free body diagrams that may be used to determine the reactions at point
A. Because the pulleys have the same radius, angle ˛ may be easily computed using
Eq. (5.12).

Springs

Figure 5.12
An assortment of small coil springs made of
wire.

Figure 5.13
A spring produces a force Fs that is propor-
tional to its elongation ı. Such springs are some-
times called axial springs.

Springs are one of the few deformable members we consider in statics. Some
examples of springs are shown in Fig. 5.12, and a schematic representation is
shown in Fig. 5.13. All of the remarks made about springs in Section 3.2 are
applicable here, and for linear elastic behavior, the spring law is

Fs D kı

D k.L � L0/
(5.13)

where

Fs is the force supported by the spring;
ı is the elongation of the spring from its unstretched or unde-

formed length;
k is the spring stiffness (units: force/length);
L0 is the initial (unstretched) spring length;
L is the final spring length.
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The spring stiffness k is always positive. Because the force Fs and the elonga-
tion ı in Eq. (5.13) are directed along an axis, or line, these springs are some-
times called axial springs to differentiate them from torsional springs, which
are discussed next. Equation (5.13) can be written using other sign conven-
tions for the positive directions of Fs and ı, but this may require introducing
a negative sign in Eq. (5.13) as discussed in Section 3.2.

Torsional springs are also common, and a simple example of a torsional
spring in use is the clothespin shown in Fig. 5.14. Figure 5.15 shows some
small torsional springs made of wire, and you should contrast the construction
of these with the axial springs shown in Fig. 5.12. A torsional spring produces
a moment that is proportional to the relative rotation, or twist, of the spring.
A torsional spring is shown schematically in Fig. 5.16, and for linear elastic
behavior, the spring law is

Figure 5.14
Example of a torsional spring used in a clothes-
pin.

Figure 5.15
An assortment of small torsional springs made
of wire.

Mt D kt� (5.14)

where

Mt is the moment produced by the spring;
� is the rotation of the spring measured in radians from the un-

loaded geometry;
kt is the spring stiffness (units: moment/radian).�

Figure 5.16
A torsional spring produces a moment Mt that
is proportional to its rotation � .

By definition, the spring stiffness kt is always positive. Note that units for
the stiffness of a torsional spring are different than units for the stiffness of
an axial spring. Equation (5.14) assumes Mt and � are positive in the same
direction. If you choose to take Mt and � to be positive in opposite directions,
then a negative sign must be introduced in Eq. (5.14).

Superposition

Superposition is a concept that can be used to replace a problem having com-
plex loading by a sum (or superposition) of problems having simpler loading.
Often, each of the problems with the simpler loading is easier to analyze than
the original problem. Even when the problems with the simpler loading are no
easier to analyze than the original problem, superposition may still be useful.
The following example illustrates superposition.

� Mini-Example. The cantilever beam shown in Fig. 5.17 is loaded by two
1 kN forces. Use superposition to determine the moment reaction at point A.
Solution. The loading for this problem can be broken into the two simpler
loadings shown in Fig. 5.17, load case 1 and load case 2, which we will simply
call case 1 and case 2. By drawing FBDs and writing equilibrium equations,
you can verify that the moment reactions at point A for each load case are
.MA/case 1 D 2 kN�m and .MA/case 2 D 4 kN�m. The total moment reaction is
the sum of those for each load case. Thus,

.MA/total D .MA/case 1 C .MA/case 2

D 2 kN�mC 4 kN�m

D 6 kN�m: (5.15)

�The stiffness for torsional springs is sometimes given using degrees to measure rotation. How-
ever, for analytical work it is best to use radians.



Section 5.3 Equilibrium of Bodies in Two Dimensions—Additional Topics 273

The same remarks apply to all other reactions so that, for example, the vertical
force reaction at point A is also the sum of the reactions for each load case.

Figure 5.17. Example illustrating superposition.

To further demonstrate the utility of superposition, imagine we wish to de-
termine the moment reaction at A for the loading shown in Fig. 5.18. Rather
than reanalyze this problem from the beginning, we may use our previous
superposition analysis where we simply scale the results for each of the con-
stituent load cases. Thus, for Fig. 5.18, the total moment at point A is

.MA/total D 3.MA/case 1 C 5.MA/case 2

D 3.2 kN�m/C 5.4 kN�m/

D 26 kN�m: (5.16)

�

Figure 5.18
Using the results of the superposition solution
for Fig. 5.17, this example is very easy to
analyze.

Supports and fixity

The way an object is supported determines its fixity and whether it is statically
determinate or indeterminate. These concepts are defined as follows:

Complete fixity. A body with complete fixity has supports that are sufficient
in number and arrangement so that the body is completely fixed in space
and will undergo no motion (either translation or rotation) in any direc-
tion under the action of any possible set of forces.

Partial fixity. A body with partial fixity � has supports that will allow the body
to undergo motion (translation and/or rotation) in one or more direc-
tions. Whether or not such motion occurs depends on the forces and/or
moments that are applied and whether the body is initially in motion.

No fixity. A body with no fixity has no supports and is completely free to
translate and rotate in space.

All objects fall into one of the above three categories. Rather than the word
fixity , it is common to refer to a body’s ability to undergo rigid body motion. A
body in two dimensions can undergo three types of rigid body motion: trans-
lation in two orthogonal directions and rotation, or any combination of these.
Thus, equivalent nomenclature for complete fixity, partial fixity, and no fixity
is no rigid body motion capability, partial rigid body motion capability, and

�Some statics textbooks describe partial fixity as “improper supports.” However such nomencla-
ture is undesirable since it implies that all objects should be fully fixed when, of course, this is
not the case.
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full rigid body motion capability, respectively. For a body in two dimensions,
complete fixity requires supports having a total of three or more reaction forces
and/or moments with suitable arrangement. Partial fixity results when there is
only one or two reaction forces, or may also result if there are three or more
reaction forces and/or moments but they do not have sufficient arrangement to
fully prevent motion.

Static determinacy and indeterminacy

Static determinacy and indeterminacy were introduced in Example 3.6 on
p. 142. These are defined as follows:

Statically determinate body. For a statically determinate body, the equilib-
rium equations of statics are sufficient to determine all unknown forces
and/or other unknowns that appear in the equilibrium equations.

Statically indeterminate body. For a statically indeterminate body, the equi-
librium equations of statics are not sufficient to determine all unknown
forces and/or other unknowns.

All objects that are in static equilibrium fall into one of the above two cat-
egories. For a statically indeterminate body, there are more unknowns than
there are equilibrium equations with which to determine them, and in general
none of the unknowns can be found. On occasion, however, the equilibrium
equations may be sufficient so that some (but not all) of the unknowns in a
statically indeterminate problem can be found.

A simple rule of thumb to help ascertain whether an object is statically
determinate or indeterminate is to compare the number of unknowns to the
number of equilibrium equations, and we call this equation counting. With n
being the number of unknowns, the rule of thumb for a single body in two
dimensions is as follows:

If n < 3 The body is statically determinate, and it can
have partial fixity (n D 1 or 2) or no fixity
(n D 0).

If n D 3 The body is statically determinate if it has full
fixity. The body is statically indeterminate
if it has partial fixity.

If n > 3 The body is statically indeterminate, and it can
have full fixity or partial fixity.

(5.17)

Successful use of equation counting, Eq. (5.17), requires some judgment
on your part, which is why it is called a rule of thumb rather than a rule.
Nonetheless, it is quite useful and will be employed throughout this book
with enhancements as needed. Thorough understanding of equation counting
here will make these subsequent enhancements self-evident. The basis for this
rule of thumb and subtleties in its application are explored in the following
example.
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� Mini-Example. A body with a variety of support schemes is shown in
Fig. 5.19. For each support scheme, specify whether the body has partial or
full fixity and whether it is statically determinate or indeterminate.

Figure 5.19. Examples of equation counting to determine if a body is statically de-
terminate or indeterminate. For bodies that are not fully fixed, a possible displaced
position is shown by the dashed outlines.

Solution. In Fig. 5.19(a), the roller has one unknown reaction force and the
pin has two, for a total of n D 3. Inspection of the body shows it has complete
fixity. That is, the supports are sufficient so that the body cannot translate hor-
izontally, cannot translate vertically, and cannot rotate. Hence, Eq. (5.17) indi-
cates the body is statically determinate. Similar remarks apply to Fig. 5.19(b)
and (c).

The bodies shown in Fig. 5.19(d) and (e) each have two unknown reactions,
and Eq. (5.17) indicates both bodies are statically determinate with partial fix-
ity. Inspection of Fig. 5.19(d) shows this body can undergo horizontal transla-
tion while the body of Fig. 5.19(e) can undergo horizontal translation and ro-
tation. When stating that these bodies are statically determinate, we presume
the loading is such that the problems are indeed static rather than dynamic.
For example, if the body of Fig. 5.19(d) has a net horizontal force applied to it,
then it will undergo horizontal acceleration and Newton’s law F D ma must
be used.

The bodies shown in Fig. 5.19(f), (g) and (h) each have four unknown reac-
tions, and Eq. (5.17) indicates that all three bodies are statically indeterminate.



276 Equilibrium of Bodies Chapter 5

Inspection of Fig. 5.19(f) and (g) shows that both of these have complete fixity.
Inspection of Fig. 5.19(h) shows that it can undergo horizontal translation, and
hence it has only partial fixity.

The bodies shown in Fig. 5.19(i) and (j) each have three unknown reac-
tions, but examination shows that each has partial fixity. The motion capabil-
ity in Fig. 5.19(i) is obvious; it can undergo horizontal translation. The mo-
tion capability in Fig. 5.19(j) is more subtle; the body can undergo small ro-
tation about the pin before the link’s orientation changes enough to restrain
further motion. Hence, Eq. (5.17) indicates that both bodies are statically
indeterminate. �

Figure 5.20
Use of a force to determine a body’s fixity.

Remarks. The following remarks pertain to the examples shown in Fig. 5.19.

� The supports for Fig. 5.19(c) and (j) are very similar, and it is perhaps
subtle why the latter of these has only partial fixity. Another perspective
that might help show that it has partial fixity is to consider the response
of the body of Fig. 5.19(j) when it is subjected to a force P , as shown
in Fig. 5.20. After we draw the FBD and sum moments about point A, it
is very clear that the only possible value of P that satisfies

P
MA D 0

is P D 0. If a nonzero value of P were applied, the supports would be
incapable of developing reactions that could equilibrate P and dynamic
motion would occur, at least until such time that the geometry of link
CD changes. Use of a force to determine fixity is helpful, but is not
foolproof. A force with the wrong position or orientation may not reveal
that a body has partial fixity.

� Whether or not a body has rigid body motion capability has nothing to
do with the forces that are applied to it. However, if a body does have
rigid body motion capability, whether or not motion occurs depends
strongly on the forces and/or moments that are applied.

� Equation counting is easy, but successful use relies on your ability to
examine a body to determine its fixity. Essentially, equation counting
provides only a scalar characterization of a body’s supports. A more
complete characterization would need to include the vector aspect of
the supports, namely, the positions and directions of the reactions. But
such a method of analysis is considerably more complex.

Two-force and three-force members

If a body or structural member is subjected to forces at two points or three
points only, as described below, then when in equilibrium the orientation of
the forces supported by the body has special properties. These situations are
defined as follows:

Two-force member. A body subjected to forces at two points (no moment
loading and no distributed forces such as weight) is called a two-force
member. The special feature of a two-force member is that, when in
equilibrium, the two forces have the same line of action and opposite
direction. Examples are shown in Fig. 5.21.

Three-force member. A body subjected to forces at three points (no moment
loading and no distributed forces such as weight) is called a three-force
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member. The special feature of a three-force member is that, when in
equilibrium, the lines of action of all three forces intersect at a com-
mon point. If the three forces are parallel (this is called a parallel force
system), then their point of intersection can be thought of as being at
infinity. Examples are shown in Fig. 5.22.

If a body is not a two-force or three-force member, then we will refer to it as
either a zero-force member, if it is subjected to no force at all, or a general
multiforce member, if it is subjected to forces at more than three points and/or
has moment loading and/or has distributed loading. Zero-force members will
be routinely encountered in truss structures, discussed in Chapter 6, and we
will see they can play an important role in improving the strength of a truss.

Figure 5.21. Examples of two-force members. In all cases, the two forces have equal
magnitude and opposite direction and have the same line of action.

Common Pitfall

Geometry of a two-force member. A
common misconception is that a two-force
member is always straight. While two-force
members are often straight, they can be
curved or have other geometry. Chapter 8
discusses the merits of two-force members
that are straight versus two-force members
that are not straight (see Prob. 8.22 on
p. 466).

Figure 5.23
Support reactions for cable, link, and bar sup-
ports repeated from Fig. 5.3 on p. 247. Because
all of these supports are two-force members, the
reaction force R is directed between the end-
points of these members.

Remarks on two-force members

� The characteristics of a two-force member can be proved using the fol-
lowing argument. Consider the general body shown in Fig. 5.21, and
imagine the forces at A and B may not have the orientations shown.
Moment equilibrium about A is satisfied only if the line of action of
the force at B passes through A. Similarly, moment equilibrium at B is
satisfied only if the force at A passes through B . Hence the two forces
must have the same line of action, which is the line containing A and B .
Then summing forces in the direction from A to B shows that the two
forces must have equal magnitude and opposite direction.

� The support reactions for cable, link, and bar supports were shown in
Fig. 5.3 on p. 247, and these are repeated in Fig. 5.23.� In Section 5.2,
the support reactions for these members were obtained by considering
the motion that the support prevents. Alternatively, the reaction forces

�The cable with self-weight shown in Fig. 5.3 is not a two-force member, and hence it is not
shown here.
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Figure 5.22. Examples of three-force members. (a) Three-force member with a con-
current force system: all forces intersect at a common point. (b) Three-force member
with a parallel force system. (c)–(h) Examples of three-force members with concurrent
force systems. In (g) and (h), the bar’s equilibrium position has a value of � so that all
forces intersect at a common point.
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for these members can be obtained by recognizing that the cable, link,
and bar supports are all two-force members; hence the reaction force R
is directed between the endpoints of these members.

� The ability to identify two-force members is important and can help
simplify the analysis of complex problems, such as with frames and
machines, discussed in Chapter 6.

Remarks on three-force members

� The characteristics of a three-force member with a concurrent force sys-
tem can be proved using the following argument. Consider the body
shown in Fig. 5.22(a), and imagine force F3 may not have the orienta-
tion shown. Moment equilibrium about the intersection point of the lines
of action of F1 and F2 is satisfied only if the line of action of F3 passes
through this point. The same argument can be made by considering the
orientations of F1 and F2 to be different. Hence, moment equilibrium
for a three-force member with a concurrent force system requires the
lines of action of the three forces to intersect at a common point.

� Although the forces applied to a three-force member can be parallel,
such as shown in Fig. 5.22(b), there are no especially significant remarks
that can be made about this situation. Rather, analysis proceeds in the
usual fashion where we write equations such as

P
Fx D 0,

P
Fy D 0,

and
P
MP D 0.

End of Sect ion Summary

In this section, some of the finer points regarding static equilibrium of a rigid
body were reviewed. Some of the key points are as follows:

� When equilibrium equations are written, the geometry of the structure
in the equilibrium position must be used. By assuming a structure or
object is rigid, the geometry before and after forces are applied is the
same, and hence the solution to the equilibrium equations provides an
exact solution for the problem.

� When a structure or object includes pulleys and cables, there are several
options for how these may be treated when FBDs are drawn. Sometimes
it is most effective if a particular pulley is left on the structure and the
cut that is used to draw the FBD is taken through that pulley’s cables. In
other cases it may be most effective to take a cut that removes a pulley
from the structure, in which case the forces that the pulley applies to the
structure must be included in the FBD; this is often called shifting the
cable forces to the bearing of a pulley. A more detailed discussion of
these issues is given in connection with Fig. 5.11.

� Springs were described in detail in Section 3.2 and were reviewed again
in this section.

� A torsional spring is a deformable member that produces a momentMt

proportional to the amount of twist � of the spring. The spring law is
Mt D kt� where kt is called the spring stiffness, kt � 0, and kt has
units of moment/radian. In writing this equation it is assumed that Mt

and � are positive in the same direction.
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� Superposition was described. In simple terms, superposition is most of-
ten used to replace a problem having complex loading by two or more
simpler problems that are easier to analyze. The solution to the orig-
inal problem is obtained by superposing the solutions to the simpler
problems.

� An object’s fixity is determined by the type, number, and arrangement
of its supports. All objects have either full fixity , partial fixity , or no
fixity . Throughout statics and dynamics, we rely on visual inspection of
a structure and its supports to determine its fixity. Rather than the above
nomenclature, it is also common to refer to an object’s ability to undergo
rigid body motion.

� Statically determinate and statically indeterminate structures and ob-
jects were described. For a statically determinate structure or object, the
equations of equilibrium are sufficient to determine all unknowns. For
a statically indeterminate structure or object, the equations of equilib-
rium are not sufficient to determine all unknowns. Equation counting
was described as an effective way to determine whether a structure was
statically determinate or indeterminate.

� Two-force and three-force members were described. If a member is a
two-force or three-force member, then the forces it supports have spe-
cial properties. The ability to identify two-forces members is especially
important as this will allow for simplifications that make the analysis
easier.
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E X A M P L E 5.7 Springs

Figure 1

A wind tunnel is used to experimentally determine the lift force L and drag force
D on a scale model of an aircraft. The bracket supporting the aircraft is fitted with
an axial spring with stiffness k D 0:125 N=mm and a torsional spring with stiffness
kt D 50 N�m=rad. By measuring the deflections ı and � of these springs during a test,
the forces L and D may be determined. If the geometry shown in Fig. 1 occurs when
there is no airflow, and if the springs are calibrated so that ı D 0 and � D 0ı when
there is no airflow, determine L and D if ı D 2:51 mm and � D 1:06ı are measured.

S O L U T I O N

Road Map This problem involves spring elements, and these have equations that
govern their load–deformation response. Thus, the problem-solving methodology used
here will be enhanced to emphasize that in addition to the need for equilibrium equa-
tions, force laws that describe the behavior of the springs are needed.

Modeling The FBD is shown in Fig. 2 where we assume that bar AB , which supports
the aircraft, is slender enough that it does not develop any lift or drag forces.

Governing Equations

Equilibrium Equations Summing forces in the x direction and summing moments
about point A provideX

Fx D 0 W Ax �D D 0; (1)X
MA D 0 W �MA CD.400 mm/C L.600 mm/ D 0: (2)

In writing Eq. (2), we assume the deformation of the torsional spring is small so that
the geometry of the support bracket AB is essentially unchanged from its original
geometry.

Figure 2
Free body diagram.

Force Laws The force supported by the axial spring is related to its deformation ı,
and the moment supported by the torsional spring is related to its rotation � , by

Ax D kı; (3)

MA D kt�: (4)

Computation Using Eq. (3), Eq. (1) may be solved for:

D D kı D
�
0:125

N

mm

�
.2:51 mm/ D 0:314 N: (5)

Using Eq. (4) and the solution for D just obtained, Eq. (2) may be solved for:

L D
�D.400 mm/C kt�

600 mm

D
�.0:314 N/.400 mm/C .50 N � m

rad /.
103 mm

m /.� rad
180ı

/1:06ı

600 mm
D 1:33 N: (6)

Figure 3
A model of a Boeing 787 Dreamliner is pre-
pared for testing in a large wind tunnel.

Discussion & Verification If the springs are not sufficiently stiff, then ı and/or �
may be substantially larger and the original geometry cannot be used when writing
Eq. (2). An additional disadvantage of a soft torsional spring is that if � is large, then
the angle of attack of the aircraft also changes appreciably, which is undesirable. Since
ı and � are known in this problem, it is easy to verify that the difference between
the original geometry and the deformed geometry is small. You can explore this issue
greater detail in Probs. 5.53 through 5.56.
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E X A M P L E 5.8 Free Body Diagram Choices for Pulleys

Figure 1

The stationary crane is supported by a pin at point B and a bar between points A and
E. A winch at point C is used to raise and lower loads. The pulleys at points D, F ,
and G have 1 ft radius. Determine the support reactions due to the vertical force P if
P D 3 kip.

S O L U T I O N

Road Map The structure has a single cable wrapped around pulleys at D, F , and
G. Assuming these pulleys are frictionless and neglecting the weight of the cable, the
force supported by the cable has the same value P throughout its length. When treating
the cable and pulleys in FBDs, we may choose to leave these on the FBD, or to remove
them, or to use a combination of these. Our choice of approach will be determined by
the ease with which moment arms for the cable forces can be determined.

Figure 2
Free body diagram leaving all pulleys on the
structure.

Modeling In considering the FBD options as discussed in connection with Fig. 5.11
on p. 271, we first consider leaving the cable and all the pulleys on the structure. The
resulting FBD is shown in Fig. 2 where we observe that all moment arms are easily
obtained, and thus it is not necessary to consider other options for drawing the FBD.

Governing Equations & Computation Using the FBD in Fig. 2, the equilibrium
equations and solutions areX

Fx D 0 W Bx D 0 (1)

) Bx D 0; (2)X
MB D 0 W TEA.3 ft/ � .3 kip/.1 ft/ � .3 kip/.10 ft/ D 0 (3)

) TEA D 11:0 kip; (4)X
Fy D 0 W �TEA C By � 3 kip � 3 kip D 0 (5)

) By D 17:0 kip: (6)

Discussion & Verification

� In the FBD of Fig. 2, a positive value of TEA corresponds to tension in bar
AE, and a positive value of By corresponds to vertical compression in the pin
support at B . Intuitively, we expect bar AE to be in tension and the pin support
at B to be in compression, and indeed our solutions show TEA > 0 and By > 0.

� In this example, the weight of the crane was neglected, and thus, the reactions
we computed are those due to supporting the force P only. The weight of the
crane is probably not small. Problem 5.58 asks you to determine the reactions
due to only the weight of the crane and then to use superposition with the results
of this example to determine the total support reactions.
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E X A M P L E 5.9 Free Body Diagram Choices for Pulleys

Figure 1

The stationary crane is supported by a pin at point B and a bar between pointsA andE.
A winch at point C is used to raise and lower loads. The pulleys at pointsD, F , and G
have 1 ft radius. Determine the support reactions due to the force P if P D 3 kip and
� D 20ı.

S O L U T I O N

Road Map This problem is identical to that in Example 5.8, except that the cable
segment at pulley G is oriented 20ı from the vertical. The structure has a single cable
wrapped around pulleys at D, F , and G. Assuming these pulleys are frictionless and
neglecting the weight of the cable, the force supported by the cable has the same value
P throughout its length. We will begin by using an FBD where all of the pulleys are
left on the structure and will consider if the moment arms needed are easy to obtain. If
the moment arms are not easy to obtain, we will then consider if it is more convenient
to use an FBD where some or all of the pulleys are removed from the structure.

Figure 2
Free body diagram leaving all pulleys on the
structure.

Modeling In considering the FBD options as discussed in connection with Fig. 5.11
on p. 271, we first consider leaving the cable and all the pulleys on the structure, and
the resulting FBD is shown in Fig. 2. Unfortunately, determining the moment arm for
the cable force at pulley G in this FBD is tedious. Thus, we draw a new FBD, as shown
in Fig. 3, where the pulley at G is removed, and we observe that all moment arms are
now easily obtained. Note that the horizontal forces at pulley F and point G do not
have the same line of action.

Figure 3
Free body diagram where the pulley at G
has been removed. Observe that the horizontal
forces at pulley F and point G do not have the
same line of action.

Governing Equations & Computation Using the FBD in Fig. 3, the equilibrium
equations and solutions areX

Fx D 0 W Bx C 3 kip � 3 kipC .3 kip/.sin 20ı/ D 0 (1)

) Bx D �1:03 kip; (2)X
MB D 0 W TEA.3 ft/ � .3 kip/.1 ft/„ ƒ‚ …

pulleyD

� .3 kip/.10 ft/„ ƒ‚ …
pulley F

C .3 kip/.9 ft/„ ƒ‚ …
pulleyG

� .3 kip/.cos 20ı/.9 ft/„ ƒ‚ …
pulleyG

� .3 kip/.sin 20ı/.9 ft/„ ƒ‚ …
pulleyG

D 0 (3)

) TEA D 13:5 kip; (4)X
Fy D 0 W �TEA C By � 3 kip � .3 kip/.cos 20ı/ D 0 (5)

) By D 19:4 kip: (6)

Discussion & Verification

� The comments made in the Discussion & Verification in Example 5.8 also apply
here, and indeed we find that bar AE is in tension (TEA > 0) and the pin at B
is in vertical compression (By > 0).

� Comparing our answers in Eqs. (2), (4), and (6) with those in Example 5.8 shows
that the reactions in this example are slightly larger in magnitude. This can be
explained by comparing the FBD shown in Fig. 2 of Example 5.8 with the FBD

shown in Fig. 2 of this example, where it is seen that the moment arm for the
force P at pulley G is larger in this example, hence the larger reaction forces
found in this example are expected.
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E X A M P L E 5.10 Equilibrium of a Three-force Member

Figure 1

A handle for pushing a cart is shown. The handle has the feature that it may be easily
folded against the side of the cart when it is not needed. Determine the forces support-
ing handle ABC when the 50N force is applied.

S O L U T I O N

Road Map This problem is readily solvable by the methods and approaches dis-
cussed in Section 5.2. Namely, an FBD is drawn, and equilibrium equations are written
and solved to determine the support reactions. However, once the FBD is drawn, a close
examination of this shows that member ABC is a three-force member, and this offers
an alternative solution approach. Both solutions are carried out and contrasted.

Solution 1

Modeling Members AD and BE are both two-force members. Thus the force sup-

Figure 2
Free body diagram.

Figure 3
Alternate solution for a three-force member.
(a) Free body diagram. (b) A closed force tri-
angle enforces

P
EF D E0. (c) Once RA is deter-

mined, Ax and FAD may be determined.

ported by member AD acts along the line connecting points A and D, and similarly,
the force supported by member BE acts along the line connecting pointsB andE. Tak-
ing advantage of these features of two-force members gives the FBD shown in Fig. 2,
where we have assumed that the contact between the handle and cart at point A is
frictionless.

Governing Equations & Computation Using the FBD in Fig. 2, equilibrium equa-
tions can be written and immediately solved as follows:X

MB D 0 W �.50N/.cos 40ı/.15mm/C .50N/.sin 40ı/.70mm/

� FAD.90mm/ D 0 (1)

) FAD D 18:61N; (2)X
Fy D 0 W .�50N/.sin 40ı/C FBE

�120
150

�
� FAD D 0 (3)

) FBE D 63:44 N; (4)X
Fx D 0 W .50N/.cos 40ı/C FBE

� 90
150

�
� Ax D 0 (5)

) Ax D 76:37N: (6)

Solution 2

Modeling This solution begins with all of the modeling considerations from Solu-
tion 1, resulting in the FBD shown in Fig. 2. Examination of member ABC in Fig. 2
shows it is a three-force member, because it has forces applied at three points only
(points A, B , and C ). To carry out a solution that exploits the properties of a three-
force member, we combine the two forces Ax and FAD at point A in Fig. 2 into a

single force, which we will call RA and whose magnitude is RA D
q
A2x C F

2
AD

.
Both the magnitude and orientation of RA are unknown. The FBD in Fig. 2 is revised
to give the FBD shown in Fig. 3(a), where we use the fact that the lines of action of the
three forces applied to a three-force member must intersect at a common point, which
is point G in Fig. 3(a).

Governing Equations & Computation Using the FBD in Fig. 3(a), the equilibrium
equation

P
MG D 0 is automatically satisfied, and the equilibrium equation

P
EF D

E0 is satisfied using the force polygon shown in Fig. 3(b) where the three forces are
added head to tail to form a closed polygon. The calculations needed to determine the
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unknowns FBE , RA, and ˛ from Fig. 3(b) are tedious, so we will only summarize
the procedure. The 50N force and FBE both have known lines of action, and in the
FBD shown in Fig. 3(a), we must determine the location where these lines of action
intersect, point G. This calculation involves applications of the laws of sines and/or
cosines. Because member ABC is a three-force member, the line of action of RA must
also intersect point G, and this provides the orientation ˛ that this force must have. To
determine the value of RA, we construct the force polygon (for a three-force member
this will always be a triangle) as shown in Fig. 3(b) (this enforces

P
Fx D 0 andP

Fy D 0). Application of the laws of sines and/or cosines provides the value of RA.
Finally, Ax and FAD are determined by resolving RA into components as shown in
Fig. 3(c).

Discussion & Verification Occasionally, the second solution approach may provide
a clever solution for a particular three-force member problem. However, the first so-
lution approach is more methodical and is very robust (that is, it can always be used,
regardless of whether a member is a three-force member or not). Furthermore, even for
three-force member problems, the first solution approach will usually be more straight-
forward than the second.
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E X A M P L E 5.11 Introduction to a Statically Indeterminate Problem

Figure 1

An I beam with weightW acting at its center is supported by a long cable from pointsB
toC . When the beam and cable are horizontal, the cable supports zero force. Determine
the support reactions if W D 1 kN.

S O L U T I O N

Road Map There are two unknown reactions at pin A, and the force supported by
cable BC is unknown. Hence, n D 3 in Eq. (5.17) on p. 274. Examination of the
structure shows that it has only partial fixity; the beam can undergo small rigid body
rotation about pointA. If this is not clear, then drawing an FBD as suggested in Fig. 5.20
may help show that it is partially fixed. Equation (5.17) therefore indicates the beam is
statically indeterminate, and it is therefore not possible to determine all the unknowns
by using just the three equations of static equilibrium.

Figure 2
CableBC is modeled with a spring having stiff-
ness k.

While the analysis of statically indeterminate problems is normally beyond the
limits of statics, we can occasionally perform accurate analysis by using simple springs
to introduce deformability into the model for the problem.

Figure 3
Deformed position of the beam where the
spring’s length is assumed to be large enough
that the spring force is always horizontal.

Modeling The cable in Fig. 1 is probably considerably more deformable than the
I beam, and thus it is reasonable to model the beam as being rigid and the cable as a
spring with stiffness k, as shown in Fig. 2. In this model, we will take k D 100 kN=m,
although more generally it is possible to precisely specify this stiffness, given the ca-
ble’s cross-sectional area, length, and material. The FBD for the beam is shown in Fig. 3
where we have assumed the spring’s length is large enough that its force is always
horizontal.

Governing Equations

Equilibrium Equations Summing moments about point A providesX
MA D 0 W �W.1m/.cos �/C FBC .2m/.sin �/ D 0: (1)

Force Laws The spring force FBC is related to the spring’s deformation ı by

FBC D kı: (2)

Kinematic Equations Using Fig. 4, the spring’s deformation ı is related to the rota-
tion � of the I beam by

ı D .2m/.1 � cos �/: (3)

Computation Combining Eqs. (1) through (3) gives

W.1m/.cos �/ � k.2m/.1 � cos �/.2m/.sin �/ D 0; (4)

where W D 1 kN, k D 100 kN=m, and � is the unknown to be determined. Equa-
tion (4) is easily solved using computer mathematics software to obtain � D 0:171 rad,

which is equivalent to 9:77ı. Alternatively, a reasonably accurate solution can be ob-
tained by simply plotting the value of the left-hand side of Eq. (4) versus � to determine
the value of � for which this expression is approximately zero. Once the solution for
� is known, the spring force and reactions are easily determined as follows. Using
Eqs. (2) and (3), the spring force is FBC D 2:903 kN. Then writing equations forP
Fx D 0 and

P
Fy D 0 provides Ax D 2:90 kN and Ay D 1 kN.

Figure 4
Computation of the spring’s elongation ı.

Discussion & Verification Use of springs to develop models for structures in the
fashion demonstrated here is common and very powerful.
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P R O B L E M S

Problem 5.33

Derive Eq. (5.12) on p. 270.

Problems 5.34 and 5.35

Determine the reactions at point A and the force supported by the cable.

Figure P5.34 Figure P5.35

Problems 5.36 and 5.37

The crane is supported by a pin at point A and a roller at point B . A winch at point C is
used to raise and lower loads. The pulleys all have 350 mm radius, and cable segment
ED is horizontal. Determine the support reactions if P D 10 kN and

(a) � D 0ı.

(b) � D 30ı.

Figure P5.36

Figure P5.37

Problem 5.38

A walkway for loading and unloading ships at a wharf is shown. The elevation of the
walkway is controlled by cable BCD, which is attached to a drum on a geared motor
at B . If the 1 kip force is vertical and is positioned halfway between points A and C ,
determine the forces supported by cables BCD and DE, the reactions at A, and the
force supported by bar DF .

Figure P5.38

Problem 5.39

Repeat Prob. 5.38 if the 1 kip vertical force is positioned at the bearing of pulley C .
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Problems 5.40 through 5.42

In the structure shown, member ABCD is supported by a pin at C and a cable that
wraps around pulley E, which is frictionless.

(a) Specify if member ABCD has complete fixity or partial fixity and whether it is
statically determinate or statically indeterminate.

(b) Draw the FBD for member ABCD, and determine the cable tension in terms
of force F and length L. Comment on any difficulties that might arise in your
analysis.

Figure P5.40 Figure P5.41 Figure P5.42

Problem 5.43

An office chair has a compressed spring that allows the chair to tilt backward when a
sufficiently large force F is applied. When F is small, the stop at point A prevents the
chair from tilting forward. If the spring has 10 lb=in. stiffness and 15 in. unstretched
length, determine the value of F that will cause the chair to begin tilting backward.

Figure P5.43 Figure P5.44

Problem 5.44

An office chair has a prewound torsional spring that allows the chair to tilt backward
when a sufficiently large force F is applied. When F is small, the stop at point A
prevents the chair from tilting forward. If the spring has 100 in.�lb=rad stiffness and is
prewound by 3=4 of a turn, determine the value of F that will cause the chair to begin
tilting backward.

Problem 5.45

A model for a 110 V electrical wall switch is shown. You may use your discretion to
specify an appropriate value for force Q to operate the switch, and to decide if Q is
always horizontal or is always perpendicular to line BCD. Specify appropriate values
for the spring stiffness and the initial length of the spring.

Figure P5.45
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Problem 5.46

A stiff fiberglass antenna is supported by a coiled spring at point A that has torsional
stiffness kt D 50 N�m=rad. Force F at point B is always horizontal and models wind
forces on the antenna. Determine the rotation � of the antenna if

(a) F D 5N.

(b) F D 50N.

(c) Discuss why the answer for Part (b) is not 10 times greater than the answer for
Part (a).

Hint: When appropriate in this problem, you should use the original geometry when
writing equilibrium equations. When this simplification is employed, you should dis-
cuss its validity.

Figure P5.46Problems 5.47 and 5.48

Draw the FBD for the structure shown. Then write the four equilibrium equationsP
Fx D 0,

P
Fy D 0,

P
MC D 0, and

P
MD D 0. If possible, solve these equations

to determine the support reactions. Discuss the difficulties that arise.

Figure P5.47 Figure P5.48

Problem 5.49

The I beam shown is statically indeterminate. Under certain circumstances, it may be
appropriate to use a model where the I beam is rigid and the roller supports at points B
and C are replaced by vertical springs of equal stiffness so that the support reactions
may be determined. Do this and find the reactions at points A, B , and C . Figure P5.49

Problem 5.50

The I beam shown in Fig. P5.50(a) is statically indeterminate. Under certain circum-
stances, it may be appropriate to use the model in Fig. P5.50(b) where the I beam is
rigid, the built-in support at point A is replaced by a pin and torsional spring with stiff-
ness kt , and the roller support at point C is replaced by a vertical spring with stiffness
k. Use this model to determine the reactions at points A and C . Express your answers
in terms of parameters such as F , L, k, kt , etc.

Figure P5.50
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Problems 5.51 and 5.52

For each object shown, specify whether it has partial fixity or full fixity and whether it
is statically determinate or statically indeterminate.

Figure P5.51 Figure P5.52

Problem 5.53

Without solving, speculate on the difficulty of each of Probs. 5.54 through 5.56.
Note: Concept problems are about explanations, not computations.

Problem 5.54

Repeat Example 5.7 on p. 281, using the actual geometry when writing the equilibrium
equations to determine the lift and drag forces L and D. Assume L is vertical and
D is horizontal. In your opinion, are the differences between your answers here and
those in Example 5.7 acceptable? Describe some ways the design of the wind tunnel
of Example 5.7 could be changed so that these differences are reduced (e.g., change of
dimensions, spring stiffnesses, etc.).

Problem 5.55

In Example 5.7 on p. 281, if L D 2 N and D D 0:3 N, determine ı and � , using the
original geometry when writing the equilibrium equations.

Problem 5.56

In Example 5.7 on p. 281, if L D 2 N and D D 0:3 N, determine ı and � , using the
actual geometry when writing the equilibrium equations. Assume L is vertical and D
is horizontal.

Problem 5.57

Can the solution to Prob. 5.22 on p. 267 be obtained by superposing the solutions to
Probs. 5.20 and 5.21? Explain.
Note: Concept problems are about explanations, not computations.
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Problem 5.58

Consider the structure from Example 5.8 on p. 282, shown again here where W is the
weight of the structure with center of gravity at point H .

(a) If W D 2 kip, determine the support reactions due to the weight of the structure
only (i.e., P D 0).

(b) Use superposition of the results from Part (a) and Example 5.8 to determine the
total values of the support reactions when W D 2 kip and P D 3 kip.

(c) Use superposition of the results from Part (a) and Example 5.8 to determine the
total values of the support reactions when W D 1:8 kip and P D 4 kip.

Figure P5.58Problem 5.59

For each of the support schemes shown in Fig. 5.19 on p. 275, apply a vertical down-
ward force P , at location B as shown in Fig. 5.20, and specify if the object is a two-
force, three-force, or general multiforce member.

Problems 5.60 through 5.72

Identify each of the members cited below as a zero-force, two-force, three-force, or
multiforce member.

Problem 5.60 Members ABC and BD in Example 5.1 on p. 256.

Problem 5.61 Member ABCD in Example 5.2 on p. 258.

Problem 5.62 Door ABDE and strut BC in Example 5.3 on p. 259.

Problem 5.63 Plate ABCDE in Example 5.4 on p. 260.

Problem 5.64 Drum and contents in Example 5.5 on p. 261.

Problem 5.65 Drum and contents in Example 5.6 on p. 262.

Problem 5.66 Member ABC in Prob. 5.3 on p. 263.

Problem 5.67 Step AB in Prob. 5.4 on p. 263.

Problem 5.68 Members ABCD and DE in Prob. 5.5 on p. 263.

Problem 5.69 Tray AB and link BC in Prob. 5.6 on p. 264.

Problem 5.70 Member ABC in Prob. 5.18 on p. 266.

Problem 5.71 Member ABCDE in Prob. 5.19 on p. 267.

Problem 5.72 Wrench ABC in Prob. 5.25 on p. 268.
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5.4 Equilibrium of Bodies in Three
Dimensions

The equations governing static equilibrium of a body in three dimensions were
stated in Section 5.1 and are repeated here:

X
EF D E0 and

X
EMP D E0 (5.18)

where subscript P denotes the moment summation point you select. In scalar
form, Eq. (5.18) is

X
Fx D 0

X
MPx D 0X

Fy D 0 and
X

MPy D 0X
F´ D 0

X
MP´ D 0:

(5.19)

As illustrated in the examples of this section, it is possible to use different

Helpful Information

Moment directions in the scalar ap-
proach. In two-dimensional problems all
moment vectors are parallel to one another
because they are all perpendicular to the
plane of the problem. As a consequence,
the moment directions may be fully de-
scribed using words like clockwise and
counterclockwise. In three-dimensional
problems, moment vectors generally have
components in all three coordinate direc-
tions, and if a scalar approach is used,
you must decide on a sign convention for
each of these directions. Thus, words like
clockwise and counterclockwise have little
meaning, and a more robust scheme must
be used, as illustrated in the examples of
this section. points for writing the moment summation expressions in Eq. (5.19).

Fundamentally, the analysis of rigid body equilibrium in three dimensions
is the same as analysis in two dimensions. The major differences in three di-
mensions are that FBDs are usually more intricate, reactions are more complex,
and the number of unknowns to be determined and the number of equations
to be solved are greater. Comments made in Section 5.2 on alternative equilib-
rium equations also apply here.

Helpful Information

Self-aligning bearings. Moment reactions
in bearings are sometimes undesirable,
and there are some ways these may be
eliminated. A special type of bearing, called
a self-aligning bearing, is common, and an
example is shown below in Fig. 5.24.

Figure 5.24

A self-aligning bearing allows the shaft to
undergo small rotations about the y and
´ axes so that reactions My and M´ are
zero.

Reactions

Common supports and their associated reactions are shown in Fig. 5.25. In
all cases, the reaction forces and moments for a particular support may be
determined by considering the motion the support prevents. For example, in
the case of a bar supported by a pin, the pin prevents motion of the bar in the
x, y, and ´ directions, and thus the pin must produce reaction forces in each
of these directions. The pin also prevents rotation of the bar about the y and
´ axes, and hence there must also be moment reactions about these axes. The
pin does not prevent rotation about the x axis; therefore there is no moment
reaction about this axis. It is not necessary to memorize the reactions shown
in Fig. 5.25. Rather, you should reconstruct these as needed.

More on bearings

As shown in Fig. 5.25, a bearing nominally has two moment reactions. Mo-
ment reactions in bearings are sometimes undesirable, especially when two
or more bearings are used to support a rotating shaft. The two most common
ways to eliminate moment reactions in bearings are by use of a special type
of bearing called a self-aligning bearing or by use of two or more perfectly
aligned bearings. Self-aligning bearings are described in the Helpful Infor-
mation margin note on this page. Perfectly aligned bearings are conventional
bearings that are required to be perfectly aligned so that it is justified to assume
the moment reactions are zero.
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Figure 5.25. Common supports for bodies in three dimensions and the associated
reactions.



294 Equilibrium of Bodies Chapter 5

For example, consider a shaft supported by two bearings as shown in
Fig. 5.26(a). Normally, bearings will have moment reactions, and the FBD
for this is shown in Fig. 5.26(b). This FBD has eight unknown reactions and
is statically indeterminate because the six available equilibrium equations are
not sufficient to determine all of the reactions. If the bearings at A and C are
self-aligning or are perfectly aligned (subject to the warning in the margin
note), then the moment reactions are zero and the FBD is shown in Fig. 5.26(c)
which is statically determinate.

Figure 5.26. (a) A shaft supported by two bearings. (b) The FBD if the bearings
have moment reactions. (c) The FBD if the bearings are self-aligning or are perfectly
aligned—observe that the moment reactions are zero.

Common Pitfall

Warning: perfectly aligned bearings. You
must be very cautious when assuming the
moment reactions for a bearing are zero
under the premise that the bearings are
perfectly aligned. Despite your assumption,
there are many reasons for which the mo-
ment reactions may not be zero including
poor construction (i.e., the bearings are not
as well aligned as you anticipated), mis-
alignment that develops due to wear or vi-
bration, or large deflection of the shaft or
object being supported that will cause mo-
ment reactions to develop, even if the bear-
ings are perfectly aligned.

Bearings are occasionally designed to prevent axial motion of the object
they support, and such bearings are called thrust bearings. For example, if
the bearing shown in Fig. 5.25 is a thrust bearing, the bearing will not allow
translation of the shaft in the x direction, and thus the bearing will have a
reaction force Rx in addition to those shown in Fig. 5.25.

The remarks made here for perfectly aligned bearings also apply to objects
that are supported by two or more hinges. In particular, it is possible to assume
that the moment reactions for the hinge shown in Fig. 5.25 are zero if two or
more hinges are perfectly aligned.

Scalar approach or vector approach?

The scalar approach requires good visualization ability, skill is needed to cor-
rectly identify moment arms, and it is necessary to be consistent with positive
and negative directions for moments. Problems with simple geometry can of-
ten be effectively solved using a scalar approach. The vector approach can
be used for both simple and complex problems and does not require careful
visualization, and positive and negative moment directions are automatically
accounted for. While the selection of an analysis approach for a particular
problem is your choice, you should still be comfortable with both approaches.
Most of the example problems of this section use both approaches, and you
should contrast the merits of these approaches to help you learn which is more
effective for a particular problem.
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Solution of algebraic equations

If a scalar approach is used, a thoughtful strategy on the order in which equi-
librium equations are written, and the selection of moment summation points
and axes, may provide equilibrium equations whose unknowns are uncoupled
or are weakly coupled. Uncoupled or weakly coupled equations can be solved
with a minimum of algebra. If a vector approach is used and an effective mo-
ment summation point can be identified, the resulting equilibrium equations
may also be uncoupled or weakly coupled. For both scalar and vector ap-
proaches, more complex problems will usually result in equilibrium equations
that are highly coupled and are tedious to solve by hand. For such situations,
you are encouraged to use computer software or a programmable calculator to
solve the equilibrium equations.

Examples of correct FBDs

Figure 5.27 shows several examples of properly constructed FBDs. Comments
on the construction of these FBDs follow.

Cable–supported cantilever. After sketching the structure, we apply the
200 lb force at D, and the 50, 30, and 20 lb weights of portions OB , BC ,
and CD of the structure, respectively; because each of these portions is uni-
form, these weights are applied at the center of each portion. Because the cable
passes over a frictionless ring at A, and because we are neglecting the weight
of the cable, the force T supported throughout the cable is the same and is
taken to be positive in tension. The support at O prevents the structure from
translating in the x, y, and ´ directions, and hence there are reaction forces
Ox , Oy , and O´. Similarly, the support at O prevents the structure from rotat-
ing about the x, y, and ´ axes, and hence there are reaction moments MOx ,
MOy , and MO´. Observe that this FBD is statically indeterminate: there are
seven unknown forces and moments and only six equilibrium equations.

Storage chest. After sketching the lid, we apply its 15 lb weight. This weight
is vertical, and because the lid is uniform, it acts through the center of the lid,
pointE. The cord force is TCD , taken to be positive in tension. Each hinge pre-
vents translation in all three coordinate directions and prevents rotation about
the y and ´ axes; hence there are three force reactions and two moment re-
actions at each hinge. Rather than use reactions Ay , A´, MAy , and MA´, we
could have used reactions An, At , MAn, and MAt , where n and t are normal
and tangent directions, respectively, to the lid (similar remarks apply to the re-
actions at B). The FBD as shown in Fig. 5.27 is statically indeterminate: there
are 11 unknown forces and moments and only six equilibrium equations. If the
hinges are perfectly aligned, we may then assume the four moment reactions
are zero. If we further assume that Ax or Bx is zero (this assumption is not
warranted unless further information is given in the problem statement), then
the problem becomes statically determinate.

Aircraft landing gear. After sketching the landing gear, we apply the 200
and 300N weights. Member AB is a two-force member, so the force it applies
to the landing gear is directed along line AB , and we have selected FAB to
be positive in tension. The bearing at O prevents translation in all directions,
which gives rise to reaction forces Ox , Oa, and Ob , where a is the direction
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Figure 5.27. Examples of properly constructed FBDs.
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about which the landing gear pivots and b is perpendicular to the x and a
directions. The bearing also prevents rotation about the x and b directions, so
there are reaction moments in these directions. This problem has six reactions
and six equilibrium equations, so we expect it to be statically determinate.

Examples of incorrect and/or incomplete FBDs

Figure 5.28 shows several examples of incorrect and/or incomplete FBDs. Com-
ments on how these FBDs must be revised follow, but before reading these, you
should study Fig. 5.28 to find as many of the needed corrections and/or addi-
tions on your own as possible.

Beam

1. The forces shown at points B and C have the proper directions and
positions where C is midway between A and B , but their magnitudes
should be .50 kg/.9:81m=s2/ D 490:5N at B and .25 kg/.9:81m=s2/

D 245:3N at C .

2. The beam is free to translate in the x and y directions, so Ax and Ay
are not reactions and should not be shown.

3. The beam is free to rotate about the ´ axis, soMA´ is not a reaction and
should not be shown.

4. The support prevents the beam from rotating about the x and y axes, so
moment reactions MAx and MAy must be included.

In summary, the reactions at the support consist of A´, MAx , and MAy only.
The beam has partial fixity since the number of reactions is less than the num-
ber of equilibrium equations.

Shifting fork

1. The 5N force applied by the gear atG to the fork is properly shown, but
there is also a ´ direction force G´ at that location. If the fit between the
fork and the shaft at G is not loose, then additional reaction forces and
moments are possible.

2. Because of the thrust collar at H , there is a reaction Fx .

3. The shifting fork may freely rotate on shaft AB; therefore MFx is not a
reaction and should not be shown.

4. ShaftAB prevents the shifting fork from rotating about the y axis; there-
fore a moment reaction MFy must be included.

In summary, the reactions on the shifting fork consist of Fx , Fy , F´, MFy ,
MF ´, and G´ only. This problem has six reactions and six equilibrium equa-
tions, so we expect it to be statically determinate. This problem is revisited
again in Example 8.3 on p. 463, and the correct FBD is shown there in Fig. 2.
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Figure 5.28. Examples of incorrect and/or incomplete FBDs.
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Crop planting positioner

1. The support at E allows the boom to rotate about the a direction; there-
fore MBa is not a reaction and should not be shown.

2. The support at E prevents the boom from rotating about the b direction;
therefore a moment reaction MBb must be included.

In summary, the reactions at B consist of Bx , Ba, Bb , MBx , and MBb only.
This problem has five reactions and six equilibrium equations, so it has partial
fixity. Although the problem description does not provide these details, most
likely the device has a stop atE so that if F D 0, rotation about the a direction
is prevented.

End of Sect ion Summary

In this section, static equilibrium of a body in three dimensions was discussed.
Some of the key points are as follows:

� Problems in three dimensions with simple geometry can often be effec-
tively solved using a scalar approach. But very often a vector approach
will be more tractable.

� If a scalar approach is used, a sign convention for positive moments
about the three Cartesian coordinate directions must be adopted (the
right-hand rule is customary), and great care must be exercised when
summing moments.

� In general, a bearing has moment reactions, and often these play an im-
portant role in the equilibrium of a structure. In structures with multiple
bearing supports, moment reactions at the bearings may be undesirable
and may be eliminated by using special bearings called self aligning
bearings or by using conventional bearings but requiring their axes to
be perfectly aligned. If you design or analyze a structure and assume re-
action moments at bearings are zero by virtue of perfect alignment, you
must be very careful to ensure this assumption is valid.

� In general, equilibrium of a single rigid body requires the solution of a
system of six algebraic equations, which can be tedious to solve by hand.
Software for solving such systems of equations can be very helpful.
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E X A M P L E 5.12 Socket and Cable Supports

Figure 1

BoomOAB is supported by a socket at pointO and two cables. Determine the support
reactions at O and the forces supported by the two cables.

S O L U T I O N

Road Map Both vector and scalar solutions are effective, and both are used.

Vector solution

Modeling The FBD is shown in Fig. 2 where TAC and TAD are defined to be posi-
tive in tension. The reactions at the socket support may be determined by consulting
Fig. 5.25, but it is easier to simply construct these by considering the motion the sup-
port prevents. That is, the support at O prevents translation of the boom in each of
the x, y, and ´ directions, and hence there must be reaction forces Ox , Oy , and O´
in these directions. The socket allows rotation of the boom about all three coordinate
axes, and thus, there are no moment reactions.

Figure 2
Free body diagram for the vector approach.

Governing Equations & Computation The equilibrium equations to be used areP
EF D E0 and

P
EMP D E0. Careful consideration of which of these equations to write

first and where to locate point P may help reduce the algebra required to solve for the
unknowns. In this problem,

P
EMO D E0 is an effective choice: unknownsOx ,Oy , and

O´ pass through the moment summation point and hence do not enter the expression,
leaving TAC and TAD as the only unknowns.� With the following vector expressions,

ErOA D 1:6 O| m; ETAC D TAC
1:6 O{ � 1:6 O| C 0:8 Ok

2:4
; (1)

ErOB D 3:6 O| m; ETAD D TAD
�1:1 O{ � 1:6 O| C 0:8 Ok

2:1
; (2)

we obtain X
EMO D E0 W ErOA � ETAC C ErOA � ETAD C ErOB � EF D E0; (3)h

.1:28m/ O{ C .�2:56m/ Ok
i TAC
2:4
C
h
.1:28m/ O{ C .1:76m/ Ok

i TAD
2:1

C
h
.�43:2/ O{ C .�18:0/ Ok

i
kN�m D E0: (4)

Grouping all terms that multiply O{ in Eq. (4) provides the first of the following equa-
tions, and grouping all terms that multiply Ok provides the second:�1:28m

2:4

�
TAC C

�1:28m

2:1

�
TAD � 43:2 kN�m D 0; (5)��2:56m

2:4

�
TAC C

�1:76m

2:1

�
TAD � 18:0 kN�m D 0: (6)

Solving Eqs. (5) and (6) provides the solutions

) TAC D 23:0 kN and TAD D 50:75 kN: (7)

Interesting Fact

Partial fixity or full fixity? You might have
noticed there are only five unknowns in
this example, while there are six equilib-
rium equations. Generalizing the equation
counting idea described in Section 5.3 to
three dimensions, we see that the boom
has only partial fixity. Examining the FBD

in Fig. 2 reveals that none of the forces
prevent rotation of the boom about the y
axis. However, this partial fixity may be an
artifact of our modeling idealization, and
the real structure may have some minor
support details that render it fully fixed.

The reactions at point O can now be determined by writingX
EF D E0 W Ox O{ COy O| CO´

Ok C ETAC C ETAD C EF D E0; (8)

which is easily solved for

) Ox D 6:25 kN; Oy D 54:0 kN; and O´ D �15:0 kN: (9)

�
P
EMA D E0 is another effective choice: unknowns TAC , TAD , and Oy pass through the

moment summation point, leavingOx andO´ as the only unknowns.
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Remark. A clever solution for this problem is obtained by examining the FBD in
Fig. 2 and recognizing that the sum of moments about line OD, which of course must
be zero for equilibrium, involves only one unknown,� namely, TAC . To carry out this
solution, we first evaluate the moment about some point on line OD, such as point O ,
in which case Eq. (3) is written, and then we take the dot product of this with a unit
vector in the OD direction to writeX

MOD D 0 W
�
ErOA � ETAC C ErOA � ETAD C ErOB � EF

�
� OuOD D 0; (10)�

ErOA � ETAC C ErOB � EF
�
� OuOD D 0; (11)

where the latter expression can be written because we know ETAD produces no moment
about line OD (if you are uncertain about this statement, you should evaluate .ErOA �
ETAD/ � OuOD to verify that it is zero). Problem 5.79 explores this solution in greater
detail.

Scalar solution

Modeling The FBD is shown in Fig. 3 where for convenience the cable forces have
been resolved into x, y, and ´ components.

Figure 3
Free body diagram for the scalar approach.

Governing Equations & Computation In this solution we will elect to sum mo-
ments about axes passing through point A. With a scalar solution it is necessary to be
absolutely consistent with a sign convention for positive and negative moments, and
we will generally take moments to be positive in the positive coordinate directions
according to the right-hand rule. Thus, we write�X

MAx D 0 W �O´.1:6m/ � .12 kN/.2m/ D 0 ) O´ D �15:0 kN; (12)X
MA´ D 0 W Ox.1:6m/ � .5 kN/.2m/ D 0 ) Ox D 6:25 kN; (13)X

Fx D 0 W Ox C TAC

� 1:6
2:4

�
� TAD

� 1:1
2:1

�
C 5 kN D 0; (14)X

F´ D 0 W O´ C TAC

� 0:8
2:4

�
C TAD

� 0:8
2:1

�
� 12 kN D 0: (15)

The first two equations were immediately solved for O´ and Ox , and the last two
equations can be solved simultaneously to obtain

) TAC D 23:0 kN and TAD D 50:75 kN: (16)

Finally, the last unknown is obtained from

X
Fy D 0 W Oy � TAC

� 1:6
2:4

�
� TAD

� 1:6
2:1

�
D 0 ) Oy D 54:0 kN: (17)

As expected, all of these solutions agree with those obtained using a vector approach.

Helpful Information

More on C=� moment directions. If
the convention for positive and negative
moment directions in the scalar approach
is not clear, then let’s examine Eq. (13)
more closely. Consider a ´0 direction that
is parallel to the ´ axis and that passes
through point A.

If you point the thumb of your right hand in
the ´0 direction, then your fingers define the
direction for positive moment about the ´
axis through pointA. When writing Eq. (13),
observe that the moment produced by Ox
about the ´0 axis is in the same direction as
your fingers curl, hence it is positive, while
the moment produced by the 5 kN force is in
the opposite direction, hence it is negative.

Discussion & Verification We expect both cables to be in tension, and indeed our
solution shows TAC > 0 and TAD > 0. After these simple checks, we should verify
that our solutions satisfy all of the equilibrium equations.

�Similarly, the sum of moments about lineOC will involve TAD as the only unknown.
� In words,

P
MAx means “sum of moments about the x axis passing through point A.”



302 Equilibrium of Bodies Chapter 5

E X A M P L E 5.13 Pin and Cable Supports

Figure 1

Boom OAB is supported by a pin at point O and a cable. Determine the support reac-
tions at O and the force supported by the cable.

S O L U T I O N

Road Map This problem is similar to Example 5.12, with the difference being in the
details of how the boom is supported. Both vector and scalar solutions are effective and
both are illustrated.

Vector solution

Modeling The FBD is shown in Fig. 2. The support at O prevents translation of the
boom in each of the x, y, and ´ directions, hence there must be reaction forces Ox ,
Oy , and O´ in these directions. The pin prevents rotation of the boom about the y and
´ axes, hence there must be reaction moments MOy and MO´ about these axes. The
cable force TAD is taken to be positive in tension.

Figure 2
Free body diagram for the vector solution.

Governing Equations & Computation An effective choice for the first equilibrium
equation to write is

P
EMO D E0 because reaction forces Ox , Oy , and O´ do not en-

ter this equation. However, reaction moments MOy and MO´ do enter this equation,

as does TAD . Nonetheless,
P
EMO D E0 provides a system of three scalar equations

that can be solved to find the three unknowns it contains. With the following vector
expressions

ErOA D 1:6 O| m; ErOB D 3:6 O| m; ETAD D TAD
�1:1 O{ � 1:6 O| C 0:8 Ok

2:1
(1)

we obtain

Helpful Information

Directions for reactions. In most prob-
lems the actual directions of reactions
are unknown until after the equilibrium
equations are solved. Thus, when drawing
an FBD, we will routinely take reactions
(both forces and moments) to be positive
in the positive coordinate directions, such
as shown at point O in Fig. 2. Doing so
makes it easy to write a vector expression
for the reaction, which in this example
is EO D Ox O{ C Oy O| C O´

Ok. Other
conventions can be used, provided you are
careful when writing vector expressions.
For instance, if Ox is taken to be positive in
the opposite direction shown in Fig. 2, then
you write EO D �Ox O{ COy O| CO´ Ok.

X
EMO D E0 W MOy O| CMO´

Ok C ErOA � ETAD C ErOB � EF D E0 (2)

MOy O| CMO´
Ok C

h
.1:28m/ O{ C .1:76m/ Ok

i TAD
2:1

C
h
.�43:2/ O{ C .�18:0/ Ok

i
kN�m D E0: (3)

Grouping all terms that multiply O{ in Eq. (3) provides the first of the following equa-
tions, grouping terms that multiply O| provides the second, and grouping terms that
multiply Ok provides the third: �1:28m

2:1

�
TAD � 43:2 kN�m D 0; (4)

MOy D 0; (5)

MO´ C
�1:76m

2:1

�
TAD � 18:0 kN�m D 0: (6)

Equations (4)–(6) are easily solved for:

) TAD D 70:9 kN; MOy D 0; and MO´ D �41:4 kN�m: (7)

The reactions at point O can now be determined by writingX
EF D E0 W Ox O{ COy O| CO´

Ok C ETAD C EF D E0 (8)

which is easily solved for:

) Ox D 32:1 kN; Oy D 54:0 kN; and O´ D �15:0 kN: (9)
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Scalar solution

Modeling The FBD is shown in Fig. 3 where for convenience the cable force has been
resolved into x, y, and ´ components.

Figure 3
Free body diagram for the scalar solution.

Governing Equations & Computation A variety of different strategies for the order
in which the equilibrium equations are written and solved are effective for this problem.
In the following equations, we take forces and moments to be positive in the positive
coordinate directions.X

MOx D 0 W TAD

� 0:8
2:1

�
.1:6m/ � .12 kN/.3:6m/ D 0; (10)

) TAD D 70:9 kN; (11)X
MOy D 0 W MOy D 0; (12)

) MOy D 0; (13)

X
MO´ D 0 W MO´ C TAD

� 1:1
2:1

�
.1:6m/ � .5 kN/.3:6m/ D 0; (14)

) MO´ D �41:4 kN�m; (15)

X
Fx D 0 W Ox � TAD

� 1:1
2:1

�
C 5 kN D 0; ) Ox D 32:1 kN; (16)X

Fy D 0 W Oy � TAD

� 1:6
2:1

�
D 0; ) Oy D 54:0 kN; (17)

X
F´ D 0 W O´ C TAD

� 0:8
2:1

�
� 12 kN D 0; ) O´ D �15:0 kN: (18)

As expected, all of these solutions agree with those obtained using a vector solution.

Common Pitfall

Summing moments. In both the vector
and scalar approaches, a common error
when summing moments, such as about
pointO in Eqs. (2), (12), and (14) of this ex-
ample, is to neglect the moment reactions,
the misconception being they make no con-
tribution because their lines of action pass
through the moment summation point.Discussion & Verification We expect the cable to be in tension, and indeed our

solution shows TAD > 0. We should also verify that our solutions satisfy all of the
equilibrium equations.
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E X A M P L E 5.14 Bearing Supports

Figure 1

A heavy door seals a furnace used to heat-treat metal parts. The door’s weight is W D
200 lb which acts through point G located at the center of the 18 in. by 18 in. door.
Determine the force supported by cable AB and the reactions at the bearings at points
C and D.

S O L U T I O N

Road Map Our objective is to analyze equilibrium of the furnace door. The door is
supported by a cable and two bearings, and appropriate modeling idealizations regard-
ing the bearings will be needed to obtain a statically determinate problem. Both vector
and scalar solutions are effective and both are illustrated.

Vector solution

Modeling The FBD of the furnace door is shown in Fig. 2 where we have assumed
both bearings are perfectly aligned (or are self-aligning) so that the bearings have no
moment reactions. If this assumption is not valid, then moment reactions are present
at the bearings and this problem is statically indeterminate and cannot be solved using
only the equations of static equilibrium.

Figure 2
Free body diagram for the vector solution.

Governing Equations In anticipation of summing moments about point D, the re-
quired position vectors� and force vectors are

ErDG D .�6 O{ C 5 O| C 17
Ok/ in.; EW D �200 O| lb; (1)

ErDC D 10 O| in.; EC D Cx O{ C C´
Ok; (2)

ErDA D .�6 O{ C 14 O| C 26
Ok/ in.; (3)

ET D T
6 O{ C 20 O| � 26 Ok
p
1112

D T .0:1799 O{ C 0:5998 O| � 0:7797 Ok/: (4)

Summing moments� about point D givesX
EMD D E0 W ErDG � EW C ErDC � EC C ErDA � ET D E0 (5)

.3400 in.�lb/ O{ C .1200 in.�lb/ Ok C C´.10 in./ O{

� Cx.10 in./ Ok C T
�
.�26:51 in./ O{ C .�6:119 in./ Ok

�
D E0: (6)

Because there are no O| terms in Eq. (6), moment equilibrium about the y axis is auto-
matically satisfied, regardless of the values of T and the reactions. Collecting O{ and Ok
terms in Eq. (6) provides the following two equations, respectively

T .�26:51 in./C C´.10 in./C 3400 in.�lb D 0; (7)

T .�6:119 in./ � Cx.10 in./C 1200 in.�lb D 0: (8)

Equations (7) and (8) contain three unknowns, thus additional equilibrium equations
must be written before these unknowns can be determined. Equilibrium of forces re-
quires X

EF D E0 W EW C EC C ED C ET D E0: (9)

�Rather than ErDA, the vector ErDB D 34 O| in. could be used, and this would provide for easier
evaluation of the cross product in Eq. (5).

� In Eq. (5), you may find it convenient to evaluate ErDC � EC by inspection (i.e., scalar approach)
rather than by formal evaluation of the cross product.
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Substituting for the force vectors in Eq. (9), where ED D Dx O{ CD´
Ok, and collecting

terms multiplying O{, O| , and Ok provide

.0:1799/T C Cx CDx D 0; (10)

.0:5998/T � 200 lb D 0; (11)

.�0:7797/T C C´ CD´ D 0: (12)

Computation Equation (11) may immediately be solved for T . Then Eqs. (7) and
(8) may be solved for Cx and C´, followed by solution of Eqs. (10) and (12) for Dx
and D´. These solutions are

) T D 333:4 lb;

Cx D �84:03 lb; C´ D 544:0 lb;

Dx D 24:01 lb; D´ D �284:0 lb:

(13)

Scalar solution

Modeling The FBD is shown in Fig. 3 where we have assumed both bearings are
perfectly aligned (or are self-aligning) so that the bearings have no moment reactions.
For convenience, the cable force has been resolved into x, y, and ´ components.

Figure 3
Free body diagram for the scalar solution.

Governing Equations & Computation The following strategy for writing and solv-
ing equilibrium equations is one of several that will allow for determination of the
unknowns with minimal algebra:X

Fy D 0 W .0:5998/T � 200 lb D 0 ) T D 333:4 lb; (14)X
MDx D 0 W �.0:7797/T .14 in./ � .0:5998/T .26 in./

C .200 lb/.17 in./C C´.10 in./ D 0 (15)

) C´ D 544:0 lb; (16)X
MD´ D 0 W �.0:5998/T .6 in./ � .0:1799/T .14 in./

C .200 lb/.6 in./ � Cx.10 in./ D 0 (17)

) Cx D �84:03 lb; (18)X
Fx D 0 W .0:1799/T C Cx CDx D 0 ) Dx D 24:01 lb; (19)X
F´ D 0 W �.0:7797/T C C´ CD´ D 0 ) D´ D �284:0 lb: (20)

As expected, all solutions agree with those obtained using the vector approach.

Discussion & Verification We expect the cable to be in tension, and indeed our solu-
tion shows T > 0. We should also verify that our solutions satisfy all of the equilibrium
equations.
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E X A M P L E 5.15 Equilibrium Analysis Over a Range of Motion

front viewfront viewfront view

rear viewrear viewrear view

Figure 1

The dump of a heavy-duty articulated dump truck is actuated by two symmetrically
positioned hydraulic cylinders. One of the cylinders is visible in Fig. 1 between points
A and B , while the cylinder on the opposite side of the truck is not visible. The dump’s
tilt angle is denoted by � , where the dump is fully lowered when � D 0ı and is fully
raised when � D 80ı. If the dump and its contents weigh 400 kN with center of gravity
at point G, determine the largest force the hydraulic cylinders must produce to raise
the dump through its full range of motion. Coordinates of points A, B , and G are

A
�
0:3m; �0:5m; 3:2m

�
;

B
�
1:6m; .1:1m/ sin.50ı C �/; .1:1m/ cos.50ı C �/

�
;

G
�
0; .1:8m/ sin.30ı C �/; .1:8m/ cos.30ı C �/

�
:

(1)

Helpful Information

Symmetry. For a problem to be symmetric,
it must have symmetric geometry, loading,
and supports. In other words, the geometry,
loading, and supports that are present on
one side of the problem’s plane of sym-
metry must be a perfect mirror image of
those on the other side. Taking advantage
of symmetry makes a problem easier to
analyze because the number of unknowns
is reduced.

Figure 2
Free body diagram when the tilt angle is � D
0ı. The x direction is perpendicular to the fig-
ure. Forces FAB and FA0B0 have components
in the x direction that are not visible in this two-
dimensional drawing.

S O L U T I O N

Road Map We will neglect the weights of the two hydraulic cylinders, since they
are likely very small compared to the weight of the dump and its contents. Thus, the
hydraulic cylinders are two-force members. We will also assume the contents of the
dump remain fixed in shape and position within the dump as it is being raised. With this
assumption, the weight of the dump and its contents is constant, and its line of action
always passes through point G, whose position is known from Eq. (1) as a function of
tilt angle � . We also assume the truck is on level ground.

Modeling Inspection of Fig. 1 shows the dump is supported by bearings at points C
and C 0, and we assume these bearings are perfectly aligned so there are no moment
reactions. Assuming the forces produced by the two hydraulic cylinders are the same,
this problem is symmetric about the y´ plane; and when drawing the FBD shown in
Fig. 2, we may take the reactions at points C and C 0 to be the same. In Fig. 2, the
hydraulic cylinder forces are taken to be positive in compression, and points A0 and
B 0 are defined to be symmetrically positioned on the opposite side of the dump from
points A and B , respectively.

Governing Equations Using the following position vectors

ErAB D
�
1:3m

�
O{ C

�
.1:1m/ sin.50ı C �/C 0:5m

�
O|

C
�
.1:1m/ cos.50ı C �/ � 3:2m

�
Ok; (2)

rAB D
n�
1:3m

�2
C
�
.1:1m/ sin.50ı C �/C 0:5m

�2
C
�
.1:1m/ cos.50ı C �/ � 3:2m

�2o1=2
; (3)

ErA0B0 D
�
�1:3m

�
O{ C

�
.1:1m/ sin.50ı C �/C 0:5m

�
O|

C
�
.1:1m/ cos.50ı C �/ � 3:2m

�
Ok; (4)

rA0B0 D rAB ; (5)

vector expressions for the hydraulic cylinder forces and the 400 kN weight can be
written as

EFAB D FAB
ErAB
rAB

; EFA0B0 D FA0B0
ErA0B0

rA0B0
; EW D �400 kN O| : (6)
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Summation of moments about point O is given byX
EMO D E0 W ErOA � EFAB C ErOA0 � EFA0B0 C ErOG � EW D E0; (7)

where the position vectors are

ErOA D .0:3m/ O{ � .0:5m/ O| C .3:2m/ Ok; (8)

ErOA0 D .�0:3m/ O{ � .0:5m/ O| C .3:2m/ Ok; (9)

ErOG D
�
.1:8m/ sin.30ı C �/

�
O| C

�
.1:8m/ cos.30ı C �/

�
Ok: (10)

Despite the perhaps formidable appearance of the vector expressions in this prob-
lem, the cross products in Eq. (7) are easy to evaluate. Using FAB D FA0B0 and
rAB D rA0B0 , Eq. (7) results in only an O{ term whose coefficient must be zero for
equilibrium, thus

2FAB
rAB

h
.�0:55/ cos.50ı C �/� .3:52/ sin.50ı C �/

i
C .720

kN

m
/ cos.30ı C �/ D 0:

(11)

Computation Solving Eq. (11) for FAB provides

FAB D
rAB
2

.720 kN
m / cos.30ı C �/

.0:55/ cos.50ı C �/C .3:52/ sin.50ı C �/
; (12)

where rAB is given by Eq. (3). To complete this problem, we plot FAB from Eq. (12)
for values of � over the range 0ı to 80ı to obtain the results shown in Fig. 3. Thus, we
see the largest force the hydraulic cylinders must produce is about 320 kN, and this
occurs when the dump first starts to open, when � D 0ı. A more accurate value of FAB
is obtained by evaluating Eq. (12) with � D 0ı, which produces FAB D 318 kN.

Figure 3
Force in hydraulic cylinders AB and A0B 0 as a
function of tilt angle.

Discussion & Verification

� This solution assumes the contents of the dump remain fixed in shape and po-
sition within the dump as it is being raised. For purposes of determining the
largest hydraulic cylinder force needed, this assumption is useful. A more accu-
rate model would allow the weight of the dump’s contents to change with tilt
angle � . Exactly how the weight varies with � is a difficult problem, but a sim-
ple yet useful model might let this weight vary in some fashion (perhaps linear)
from full value when � D 0ı, to zero when � D 80ı. Additionally, we may also
consider allowing the center of gravity for the dump’s contents to change as a
function of � .

� If desired, the reactions at bearings C and C 0 as function of � can be determined
by writing X

EF D E0 W EFAB C EFA0B0 C EW C 2 EC D E0; (13)

where EC D Cy O| C C´ Ok.

� Although not illustrated here, a scalar solution for this problem is also effective.

� Problem 5.74 gives some additional suggestions for verifying the accuracy of
the solution to this example.
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P R O B L E M S

Problem 5.73

A handheld mixer for blending cooking ingredients is shown. To minimize operator
fatigue, it is desirable for the reaction forces on the operator’s hand to be as small
as possible. With this goal in mind, should the beaters rotate in the same direction or
opposite directions? Assume each beater produces a moment about the ´ axis, and if
needed, assume reasonable values for dimensions. Explain your reasoning.
Note: Concept problems are about explanations, not computations.

Figure P5.73

Problem 5.74

When you evaluate the solution of a problem, it is always necessary to verify the ac-
curacy of the solution, and when possible, performing simple checks can help with
verification. In Example 5.15 on p. 306, consider the specific position � D 0ı, analyze
the problem afresh to determine the hydraulic cylinder force required to begin opening
the dump, and verify that the results of Example 5.15 are in agreement. As another
check, Fig. 3 in Example 5.15 shows the hydraulic cylinder force is zero for a particu-
lar tilt angle. Explain why this occurs and, if possible, perform a simple analysis that
confirms the value of � at which this force is zero.

Problem 5.75

A machine for sanding wood floors is shown. The machine weighs 80 lb with center
of gravity along the ´ axis. At each sanding drum a moment of 60 in. �lb is applied to
the machine in the direction opposite the rotation of the drum. Assume the operator’s
hands, positioned at points C and D, can apply forces in the positive or negative x
direction. Determine the forces on the operator’s hands if

(a) Both sanding drums rotate about the positive ´ direction.

(b) The sanding drums at A and B rotate about the positive and negative ´ directions,
respectively.

Figure P5.75

Problem 5.76

Bar EF has a square cross section and is fixed in space. The structure ABC has negli-
gible weight and has a collar at C that has a square hole that slides freely on bar EF .
The structure ABC supports a uniform rectangular sign with weight 1 kN (the two
vertical edges of the sign align with points A and B). Determine the magnitude of the
tension in cable AD and all of the reaction components at C referred to the x, y, and
´ directions provided.

Figure P5.76
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Problem 5.77

Bar ABCDE is supported by cable BF , a ball and socket at A, and a self-aligning
bearing at E. Determine the tension in cable BF and the reactions at points A and E.

Figure P5.77

Problem 5.78

Vertical barED has circular cross section and is built in atE. MemberABC is a single
member that lies in a horizontal plane, with portion BC parallel to the ´ axis and with
cable CD attached to point C . The collar at A can freely slide in the y direction and
can freely rotate about the y axis.

(a) Does the structure ABC have complete fixity or partial fixity, and is it statically
determinate or statically indeterminate? Explain.

(b) When point B is subjected to a downward vertical force of 18 lb, determine the
force supported by the cable and all support reactions at A.

Figure P5.78

Problem 5.79

Follow the suggestion made in Eqs. (10) and (11) of Example 5.12 on p. 301 to find
the tension in cable AC by summing moments about line OD.

Problem 5.80

In Prob. 5.79, find the tension in cable AD by summing moments about line OC .

Problem 5.81

Member AGDB is supported by a cable DE, a self-aligning bearing at A, and a self-
aligning thrust bearing at B .

(a) Draw the FBD for AGDB , labeling all forces and moments.

(b) Rate the solution strategies listed below for ease of obtaining the magnitude of the
tension TDE in cable DE. Rate the best choice as number 1, second-best choice
number 2, and so on. If a solution strategy does not work, then label it with zero.

Rating Solution strategy

Write
X
EF D E0 and

X
EMB D E0, solve for TDE :

Write ErAG � EW C ErAD � ETDE D E0, solve for TDE :

Write
X
EF D E0 and

X
EMO D E0, solve for TDE :

Write .ErAG � EW C ErAD � ETDE / � ErOC D 0, solve for TDE :

Write
X
EF D E0 and

X
EMA D E0, solve for TDE :

Note: Concept problems are about explanations, not computations.

Figure P5.81
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Problem 5.82

A circular plate with weight EW D �200 Ok lb acting at its center, point F , is supported
by cord DE and a thrust bearing at B . Shaft AC is fixed and frictionless.

(a) Draw the FBD for the plate, labeling all forces and moments.

(b) Rate the solution strategies listed below for ease of obtaining the magnitude of the
tension TDE in cable DE. Rate the best choice as number 1, second-best choice
number 2, and so on. If a solution strategy does not work, then label it with zero.

Rating Solution strategy

Write
X
EF D E0 and

X
EMB D E0, solve for TDE :

Write ErBF � EW C ErBD � ETDE D E0, solve for TDE :

Write
X
EF D E0 and

X
EMO D E0, solve for TDE :

Write .ErBF � EW C ErBD � ETDE / � ErAC D 0, solve for TDE :

Write
X
EF D E0 and

X
EMD D E0, solve for TDE :

Note: Concept problems are about explanations, not computations.Figure P5.82

Problem 5.83

Determine the cable tension for the circular plate of Prob. 5.82.

Problem 5.84

A circular plate of radius r is welded to a post with length h that is built in at point A.
Determine the reactions at point A. Express your answers in terms of parameters such
as r , h, F , and P .

Figure P5.84 Problem 5.85

Object ABCDEF is a sliding door that is supported by a frictionless bearing at A
and a wheel at F that rests on a frictionless horizontal surface. The object has weight
W D 800 N, which acts at the midpoint of the rectangular region BCDE. Determine
all support reactions.

Figure P5.85
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Problem 5.86

The control surface of an aircraft is supported by a thrust bearing at point C and is
actuated by a bar connected to point A. The 1 kN force acts in the negative y direction,
and the line connecting points A and B is parallel to the y axis. Determine the value of
force F needed for equilibrium and all support reactions.

Figure P5.86

Problem 5.87

An L-shaped bar is supported by a bearing at A and a smooth horizontal surface at B .
Determine the reactions at A and B . Figure P5.87

Problem 5.88

Structure ABCD is supported by a collar at D that can rotate and slide along bar
EF which is fixed and is frictionless. Structure ABCD makes contact with smooth
surfaces at A and C where the normal direction En to the surface at A lies in a plane that
is parallel to the xy plane. Force P is parallel to the y axis. If P D 10 kN, determine
the reactions at A, C , and D.

Figure P5.88
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5.5 Engineering Design

Engineering design is a subject in its own right, and you will study this sub-
ject in detail as you advance in your education. The objective of engineering
design is to develop the description and specifications for how a structure,
machine, device, procedure, and so on are to be produced so that needs and
requirements that have been identified are met. The objective of engineering
design theory is to establish structured procedures for design that help you de-
velop the most effective and optimal design possible in a timely manner. Good
references are available on this subject, such as Ullman (2003), Dominick
et al. (2001), and Middendorf and Engelmann (1998).�

Design is an iterative process. Whether the design is of a simple paper
clip or a fuel pump for a Space Shuttle engine, a process is certain to be fol-
lowed. This process may vary between individual engineers and may depend
on the specific nature of what is being designed, the magnitude of the project,
and other factors; but the process shown in Fig. 5.29 is commonly employed.
While each of the elements in Fig. 5.29 is present in almost all design activ-
ities, there may be reordering of tasks and/or additional components needed.
For example, in civil construction a project will often begin with a request for
proposals (RFP) being issued by a government unit where the specifications for
a project are stated. Companies that respond to the RFP will conduct prelim-
inary design work and perform a thorough cost analysis, and only after their
proposal has been accepted will detailed design work begin. In concurrent de-
sign, the process shown in Fig. 5.29 is interjected with input from interested
parties, such as other professionals, customers, and so on, so that the final de-
sign is more certain to satisfy the needs of all affected parties. In concurrent
design, tasks such as developing the manufacturing systems needed to fabri-
cate the design may take place while the design in still being developed.

In the following paragraphs, we discuss some of the items of Fig. 5.29 in
greater detail.

� Problem identification. Most designs begin with the identification of a
need that is not met. When such a need has been identified, it is neces-
sary to thoroughly review the state of the art to confirm the need, why it
exists, why this need has not been recognized and/or addressed by oth-
ers, and so on. Very simply, you must establish that there is indeed an
opportunity for you to make a contribution before investing substantial
time and resources in design.

� Problem evaluation. Here you must identify all of the needs your de-
sign must satisfy, not just those that might be new or novel. The needs
consist of all the requirements, specifications, goals, and so on that
your design must satisfy. Some needs may be achievable only at the
expense of other needs (e.g., strength and light weight), so value de-
cisions may be required to develop needs that are realistic and achiev-
able. In the course of doing this, you must review applicable standards,
codes, patents, industry practices, and so on. Depending on what you

�D. G. Ullman, The Mechanical Design Process, 3rd ed., McGraw-Hill, New York, 2003. P. G.
Dominick, J. T. Demel, W. M. Lawbaugh, R. J. Freuler, G. L. Kinzel and E. Fromm, Tools and
Tactics of Design, John Wiley & Sons, New York, 2001.W. H. Middendorf and R. H. Engelmann,
Design of Devices and Systems, 3rd ed., Marcel Dekker, New York, 1998.
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Figure 5.29. A process for engineering design.

are designing, you may be required by law to conform to certain stan-
dards. Other standards may be voluntary, but acceptance of your design
by customers may depend on compliance with these. Additional com-
ments on standards and codes follow later in this section. Once all of
your needs and requirements have been established, you may be able to
conduct a feasibility study to determine if your ideas are possible. In a
feasibility study, you might consider if it is physically possible to satisfy
your needs and objectives, although this may be difficult to fully assess
until more careful design work is done. Other issues commonly consid-
ered in a feasibility study include a company’s manufacturing capability,
compatibility with existing product line, marketing, and economics.
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� Formulate solutions. You will likely want to develop several prelimi-
nary solutions that are capable of satisfying your needs. Based on your
preliminary analyses, you will select the most promising of these for
deeper investigation. Because of the iterative nature of design, a solution
that is initially discarded here may be revived later for further study.

� Detailed design analysis. Here you will use all of the engineering tools
you have at your disposal, including analytical, computer, and/or exper-
imental methods of analysis to thoroughly evaluate your design, includ-
ing safety for foreseeable uses and misuses. If a serious flaw in your
design is discovered, you may need to revise your design or return to
one of the earlier steps in the design process.

� Finalize design. Your design must be documented and communicated
to others. This documentation may be used by you or others for some
future design revision, may help support patent rights, or may be needed
for litigation. Follow-up refers to design enhancements that may result
from feedback from users.

Codes and standards

A code is a comprehensive set of instructions and procedures for specific appli-
cations that help you develop a successful design. It is developed by engineers
usually under the sponsorship of professional engineering societies, and it em-
bodies an enormous amount of knowledge and wisdom gained over years. A
sampling of organizations that sponsor design codes follows:

� American Institute of Steel Construction (AISC). This organization
represents the structural steel design community and the construction
industry and publishes a code for applications to framed steel structures.

� American Concrete Institute (ACI). This organization is dedicated to
improving the design, construction, and maintenance of concrete struc-
tures and publishes a code for these applications.

� American Society of Mechanical Engineers (ASME). This organiza-
tion provides comprehensive representation of a wide range of the me-
chanical engineering specialties and publishes numerous codes, one of
which governs the design of boilers, pressure vessels, and piping, in-
cluding applications to nuclear reactor components.

Use of these design codes is often voluntary (codes for nuclear components
are mandatory), but if they are suitable for your design work, then they should
be followed.

A standard is a minimum performance measure that a design should meet,
but typically it will not tell you how to develop the design. In addition to the
organizations stated earlier, the following organizations develop and publish
numerous standards:

� Society of Automotive Engineers (SAE). This organization represents
a wide range of interests pertaining to transportation and develops stan-
dards that apply to land, sea, air, and space vehicles.

� American Institute of Aeronautics and Astronautics (AIAA). This or-
ganization is the principal society representing aerospace engineers and
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scientists, and it publishes numerous standards governing performance
of aircraft and spacecraft.

� American National Standards Institute (ANSI). This organization de-
velops safety standards based on consensus of affected parties, includ-
ing manufacturers and users. Use of ANSI standards is voluntary, but if
applicable standards are available, these should be used.

� Consumer Product Safety Commission (CPSC). This is a U.S. federal
agency that sets voluntary and mandatory safety standards for consumer
products. They have the power to issue product recalls and can ban haz-
ardous products.
� Occupational Safety and Health Administration (OSHA). This is a

U.S. federal agency that encourages employers and employees to coop-
erate to reduce workplace hazards. They develop voluntary and manda-
tory workplace safety and health standards and enforce these.

The U.S. federal agencies cited above set standards for the United States only.
The other organizations cited have participation and impact throughout other
parts of North America. Most other countries, especially in other parts of the
world, have similar organizations of their own. There are efforts to develop
uniform standards that are applicable worldwide, and a notable organization
that promotes this is the International Organization for Standardization (ISO).
This organization has membership drawn from the standards organizations of
approximately 150 countries.

Sometimes the difference between codes and standards is not distinct. You
must be familiar with all codes and standards that could affect your design.
Your design must conform to mandatory standards, and if voluntary standards
are available, these should be followed if at all possible. If it is not possible
to follow voluntary standards or if standards do not exist, then suitable per-
formance and safety measures must be established. Whether or not you use a
code and/or standards to develop a design, the responsibility for the safety and
performance of your design is yours.

Design problems

For the design problems in this section and throughout this book, imagine
you are employed as an intern working under the supervision of an engineer
who asks you to conduct a design study, or to add details to a design that is
started. You will be presented with a problem that is suitable to your level
of knowledge along with some pertinent data. Sometimes, the information
provided may not be complete, and you may not be instructed on everything
that needs to be done. As shown in Fig. 5.29, this is not an attempt to be
artificially vague, but rather is a reflection of how design and modeling of
real life problems are carried out. It is in this spirit that the design problems
throughout this book are presented, and you may need to make reasonable
assumptions or seek out additional information on your own. Furthermore,
our work in this book will focus on design based on first principles. That is,
we will use the laws of physics plus good judgment to establish a design. We
generally will not survey and apply standards that may be available, because
this is not central to the theme of this book. Your work should culminate in a
short written technical report that is appropriate for an engineer to read, where
you present your design, state assumptions made, and so on. Appendix A of
this book gives a brief discussion of technical writing that may be helpful.
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E X A M P L E 5.16 Engineering Design

Figure 1

The forklift has a vehicle weight of WV D 12;500 lb, fuel weight WF , which is 300 lb
when fully fueled, and operator weight WO . The drive wheels at C are supported by a
fixed axle, and the wheels atD steer the vehicle. Determine the capacity rating for this
forklift, assuming it is operated at slow speed on a smooth, level surface. The capacity
rating is the maximum load this forklift is designed to lift.

S O L U T I O N

Road Map The following needs must be satisfied by the capacity rating we deter-
mine:

� The capacity rating should be as large as possible while still being safe.

� The forklift should not tip forward while supporting a load, regardless of whether
the operator is on or off the vehicle.

� The rear tires should support enough force so they are capable of steering the
forklift. This requirement applies when the forklift is being driven, and thus the
operator may be assumed to be seated on the forklift.

All our analyses will take the fuel weight to be zero, as the forklift is likely to
see occasional use when its fuel supply is low, and this leads to a more conservative
capacity rating. While somewhat arbitrary, but reasonable, we will assume the steering
requirement is satisfied if the forces supported by the wheels at D are at least 10%
of the forces supported by the wheels at C .� When we analyze this requirement, an
operator’s weight may be included. To obtain a conservative capacity rating, we must
use the minimum possible operator weight, and this is difficult to determine with any
precision. Obviously, this weight is small compared to the forklift’s weight, and it is
conservative to take it as zero. If this is the case, then the no tipping requirement will
automatically be satisfied if the steering requirement is met.

Modeling The FBD is shown in Fig. 2 where we have imposed the constraint Dy D
.0:1/Cy to enforce the need for steering ability, and the fuel and operator weights are
zero. Clearly, as distance d from the load to the fork face increases (d is called the
load center), the value of P that can be lifted decreases. The most conservative idea
is to place P at the worst possible position, which is at d D 48 in. However, a quick
investigation of industry practice shows that for purposes of specifying capacity rating,
manufacturers customarily position P at the midpoint of the forks, which is d D 24 in..
In the following calculation we will consider both values of d , although the “official”
capacity rating will be based on d D 24 in.

Figure 2
Free body diagram.

Governing Equations Using the FBD in Fig. 2, the equilibrium equations areX
MC D 0 W P.d C 13 in:/ � .12;500 lb/.58 in:/C .0:1/Cy.64 in:/ D 0; (1)X
Fy D 0 W Cy C .0:1/Cy � P � 12;500 lb D 0: (2)

Computation Solving Eqs. (1) and (2) for P provides

P D 12;500 lb
58 in: �

�
0:1
1:1

�
64 in:

d C 13 in:C
�
0:1
1:1

�
64 in:

: (3)

�Some research of industry practices may yield a better criterion for ensuring steerability.
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Discussion & Verification When d D 24 in:, we obtainP D 15;230 lb from Eq. (3),
which we will round down slightly to obtain the capacity rating for the forklift as

Capacity rating D 15;000 lb

(load positioned 24 in. from the fork face).
(4)

Remarks

� The capacity rating in Eq. (4) will be used for advertising and marketing the
forklift to customers. It will also be prominently displayed on the forklift, along
with other important information, so that the operator is sure to see it and under-
stand its meaning.

� If the forklift is used with d D 48 in., the load that can safely be lifted, as given
by Eq. (3), reduces to 9762 lb. This number will be rounded down and will be
displayed on the machine so that the operator knows that the maximum load that
can safely be lifted is about 9000 lb when the load is positioned at 48 in. from
the fork face.

� To complete our work, we will write a short report that details our assumptions
calculations, and conclusions.
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D E S I G N P R O B L E M S

General Instructions. In all problems, write a brief technical report following the
guidelines of Appendix A, where you summarize all pertinent information in a well-
organized fashion. It should be written using proper, simple English that is easy to
read by another engineer. Where appropriate, sketches along with critical dimensions
should be included. Discuss the objectives and constraints considered in your design,
the process used to arrive at your final design, safety issues if appropriate, and so on.
The main discussion should be typed, and figures, if needed, can be computer-drawn
or neatly hand-drawn. Include a neat copy of all supporting calculations in an appendix
that you can refer to in the main discussion of your report. A length of a few pages,
plus appendix, should be sufficient.

Design Problem 5.1

A hand cart for moving heavy loads in a warehouse is shown. If each axle (pair of
wheels) can support a maximum of 10 kN and if the wheels are not allowed to lift off
the pavement, determine the largest weight W that may be supported for any position
0 � d � 1:3 m.Figure DP5.1

Design Problem 5.2

Specify the weightW , width w, and depth d for the base of a particular model of a flu-
orescent desk lamp. For this lamp, the shade and lightbulb assembly C weighs 1:8 lb,
and the movable arm AB , including the attachments at A and B , weighs 1:5 lb with
center of gravity approximately midway between points A and B . For the weight of
the base W that you select, the dimensions d and w should be such that the lamp is as
tip-resistant as possible.

Figure DP5.2
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Design Problem 5.3

The electric fan shown has the following specifications:

� The entire unit weighs W D 15 lb with the center of gravity shown.

� The fan produces a maximum thrust of T D 6 lb.

� The height h can be adjusted by the user between 24 and 48 in.

� The fan can be rotated to any horizontal position desired by the user.

Specify the dimension b for a base having three equally spaced legs. In your work,
assume that the weight of the legs is already included in the 15 lb weight of the unit.
Your design should consider a reasonable degree of safety against overturning. Also
make at least two suggestions for how the stability of the fan can be improved without
increasing the weight W or increasing the dimension b.

Figure DP5.3

Design Problem 5.4

The chute of a concrete truck for delivering wet concrete to a construction site is shown.
The length of the chute may be changed by adding or removing segments BC and CD.
Chute segments AB , BC , and CD each weigh 50 lb, and the maximum length of the
chute is 144 in: The chute has semicircular shape with 8 in: inside radius, and the hy-
draulic cylinder GH is used to raise and lower the chute such that 0ı � � � 50ı.
Specify the force capacity of the hydraulic cylinder GH .

Figure DP5.4
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Design Problem 5.5

A telescopic boom aerial lift is shown. The lift is designed to support one worker, plus
miscellaneous tools and supplies that are likely to be used, and is to be operated on a
hard level surface. Portion BC of the boom is retractable and supports a work platform
whose floor is always horizontal. Turret D can rotate 360ı on base E. The design of
the lift is essentially complete, and weights of the various components are shown. The
masses corresponding to these weights are

Boom AB: mAB D 450 kg;

Boom BC plus platform at C : mBC D 500 kg;

Turret D: mD D 1800 kg;

Base E: mE D 1400 kg:

In addition to these are the mass of the worker, tools, and supplies mC and the mass
of a counterweight mF whose center of gravity is to be placed below point A. You are
asked to do the following:

� Specify the lifting mass rating mC .

� Specify the mass of the counterweight mF .

� Specify the force capacity of the hydraulic cylinder between points G and H .

Figure DP5.5
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5.6 Chapter Review

Important definitions, concepts, and equations of this chapter are summarized.
For equations and/or concepts that are not clear, you should refer to the origi-
nal equation and page numbers cited for additional details.

Equations of equilibrium

In three dimensions, the equations governing the static equilibrium of a body
are

X
EF D E0 and

X
EMP D E0

Eq. (5.1), p. 246

where the summations include all forces and moments that are applied to the
body. In scalar form, Eq. (5.1) is

X
Fx D 0

X
MPx D 0X

Fy D 0 and
X

MPy D 0X
F´ D 0

X
MP´ D 0:

Eq. (5.2), p. 246

In two dimensions, with x and y being the in-plane coordinates, the equa-
tions

P
F´ D 0,

P
MPx D 0, and

P
MPy D 0 in Eq. (5.2) are always sat-

isfied, and the remaining equilibrium equations are (with subscript ´ dropped
from the moment equation)

X
Fx D 0;

X
Fy D 0; and

X
MP D 0:

Eq. (5.3), p. 246

If desired, the
P
Fx D 0 (and/or

P
Fy D 0) equation in Eq. (5.3) may be

replaced by an additional moment equilibrium equation provided a suitable
moment summation point is selected, as discussed in Section 5.2. Similar re-
marks apply to alternative equilibrium equations in three dimensions.

Springs

A linear elastic spring, shown schematically in Fig. 5.30, produces an axial
force Fs that is proportional to its change of length ı according to

Figure 5.30
A spring produces a force Fs that is propor-
tional to its elongation ı. Such springs are some-
times called axial springs.

Fs D kı

D k.L � L0/

Eq. (5.13), p. 271

where k is the spring stiffness (units: force/length), ı is the elongation of the
spring from its unstretched length, L0 is the initial (unstretched) spring length,
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and L is the final spring length. Because the force Fs and the elongation
ı in Eq. (5.13) are directed along an axis, or line, these springs are some-
times called axial springs to differentiate them from torsional springs. Springs
were discussed extensively in Chapter 3, and key points were repeated in
Section 5.3.

Torsional springs

A linear elastic torsional spring, shown schematically in Fig. 5.31, produces a
moment Mt that is proportional to the relative rotation, or twist, � according
to

Mt D kt�

Eq. (5.14), p. 272

where kt is the spring stiffness (units: moment/radian).

Figure 5.31
A torsional spring produces a moment Mt that
is proportional to its rotation � .

Supports and fixity

Fixity refers to an object’s ability to move in space as a rigid body. All objects
fall into one of the following three categories:

Complete fixity. A body with complete fixity has supports that are sufficient
in number and arrangement so that the body is completely fixed in space
and will undergo no motion (either translation or rotation) in any direc-
tion under the action of any possible set of forces.

Partial fixity. A body with partial fixity has supports that will allow the body
to undergo motion (translation and/or rotation) in one or more direc-
tions. Whether or not such motion occurs depends on the forces and/or
moments that are applied and whether the body is initially in motion.

No fixity. A body with no fixity has no supports and is completely free to
move in space under the action of forces that are applied to it.

Static determinacy and indeterminacy

An object is either statically determinate or statically indeterminate, as fol-
lows:

Statically determinate body. For a statically determinate body, the equilib-
rium equations of statics are sufficient to determine all unknown forces
and/or other unknowns that appear in the equilibrium equations.

Statically indeterminate body. For a statically indeterminate body, the equi-
librium equations of statics are not sufficient to determine all unknown
forces and/or other unknowns.

A simple rule of thumb to help ascertain whether an object is statically deter-
minate or indeterminate is to compare the number of unknowns to the number
of equilibrium equations, and we call this equation counting. With n being the
number of unknowns, the rule of thumb for a single body in two dimensions
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is

If n < 3 The body is statically determinate, and it can have par-
tial fixity (n D 1 or 2) or no fixity (n D 0).

If n D 3 The body is statically determinate if it has full fixity.
The body is statically indeterminate if it has partial
fixity.

If n > 3 The body is statically indeterminate, and it can have
full fixity or partial fixity.

Eq. (5.17), p. 274

Successful use of equation counting requires good judgment on your part,
which is why it is called a rule of thumb rather than a rule.

Two-force and three-force members

If a body or structural member is subjected to forces at two points or three
points only, as described below, then when in equilibrium the orientations of
the forces supported by the body has special properties. These situations are
defined as follows:

Two-force member. A body subjected to forces at two points (no moment
loading and no distributed forces such as weight) is called a two-force
member. The special feature of a two-force member is that, when in
equilibrium, the two forces have the same line of action and opposite
directions.

Three-force member. A body subjected to forces at three points (no moment
loading and no distributed forces such as weight) is called a three-force
member. The special feature of a three-force member is that, when in
equilibrium, the lines of action of all three forces intersect at a com-
mon point. If the three forces are parallel (this is called a parallel force
system), then their point of intersection can be thought of as being at
infinity.

If a body is not a two-force or three-force member, then we refer to it as either
a zero-force member, if it is subjected to no force at all (these are often en-
countered in trusses, discussed in Chapter 6), or a general multiforce member,
if it is subjected to forces at more than three points and/or has moment loading
and/or has distributed loading.

Engineering design

Engineering design was discussed in Section 5.5, and a process for develop-
ing a design was described (see Fig. 5.29 on p. 313). Codes and standards
were described, and an overview of some professional and government orga-
nizations that sponsor codes and standards and/or have regulatory power over
performance and safety were reviewed.
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R E V I E W P R O B L E M S

Problem 5.89

The propellers of the twin engine airplane shown rotate in the same direction, and each
propeller exerts a moment M D 1:3 kN �m on the wings of the plane. To equilibrate
this moment, trim tabs on the vertical stabilizer are used to produce trim forces T .
Determine the value of T , assuming the trim forces are vertical.

Figure P5.89 and P5.90

Problem 5.90

In Prob. 5.89, in what direction do the propellers rotate? Specify clockwise or counter-
clockwise with respect to the view shown in Fig. P5.89, and explain your reasoning.
Note: Concept problems are about explanations, not computations.

Problem 5.91

A bracket is supported by a loose-fitting pair of rollers at points A and B , and another
loose-fitting pair at C and D, and a frictionless pin at F . The forces at E and G are
horizontal and vertical, respectively. Determine the reactions at the pin and each of the
four rollers.

Figure P5.91

Problem 5.92

A semicircular geared bracket is subjected to a vertical 80 N force at point C . The
bracket is supported by frictionless pins at A and B and a gear at D. The pins and gear
are fixed to plateE, and the gear atD is not allowed to rotate. Determine the tangential
force supported by the gear at D and the reactions at pins A and B .

Figure P5.92
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Problem 5.93

A frame supports three frictionless pulleys that guide a tape that runs at constant speed.
Determine the reactions at support A if ˛ D ˇ D 0ı.

Figure P5.93–P5.95

Problem 5.94

Repeat Prob. 5.93 if ˛ D 30ı and ˇ D 0ı.

Problem 5.95

Repeat Prob. 5.93 if ˛ D 30ı and ˇ D 45ı.

Problem 5.96

The trigger of a high-pressure washer gun is shown. The torsional spring at point A
has stiffness kt D 1100 N�mm=rad and is prewound by 6ı when it is installed (i.e.,
when the trigger makes contact at point G). The axial spring DE has stiffness ka D
0:1 N=mm and has 40 mm unstretched length. The trigger operates the washer on low
pressure when 0ı < � � 15ı, and when 15ı < � � 25ı, the trigger operates the
washer on high pressure. Assume force F remains horizontal with the same line of
action for all trigger positions.

(a) Determine the force F that causes the trigger to begin movement.

(b) Determine the force F that causes the trigger to first make contact with the plunger
at C (� D 15ı).

(c) Determine the force F required to fully pull the trigger (� D 25ı). Assume the
plunger at C contacts the back of the trigger at a right angle when � D 25ı.

Figure P5.96

Problem 5.97

Member ABCD has negligible weight.

(a) If member ABCD is to be a two-force member, which (if any) of FB , FD , and
MC must be zero?

(b) If member ABCD is to be a three-force member, which (if any) of FB , FD , and
MC must be zero?

(c) If FD D 0, MC D 0, and FB > 0, draw the FBD for member ABCD and sketch
the force polygon corresponding to

P
EF D E0.

Figure P5.97
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Problems 5.98 and 5.99

Draw the FBD for each object shown, and specify whether it has partial fixity or full fix-
ity and whether it is statically determinate or statically indeterminate. Assume cables,
if present, are in tension.

Figure P5.98

Figure P5.99

Problem 5.100

Boom OABC is supported by a socket at O , cable EABF that passes through small
frictionless loops at A and B , and a cable at C that supports a force T1 and whose line
of action is directed toward D. The distances between points O and A, A and B , and
B and C are equal.

(a) If T1 D 0, qualitatively describe the equilibrium position of the boom.

(b) For the static equilibrium position shown, determine the value of T1, the force T2
supported by cable EABF , and the reactions at O . Hint: A numerical solution of
the equilibrium equations is recommended.

Figure P5.100
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Problem 5.101

A machine for sawing concrete is shown. It is supported by a cutting disk at point C
and two wheels at points A and B (the wheel at B is not shown). The wheels at A
and B are separated by a 0:8 m distance along the x axis. Determine the dimension d
where the cutting disk should be located so that the force supported by wheel A is 20%
of the force supported by wheel B .

Figure P5.101

Problem 5.102

A structure consists of a thin flat plate and two short bars with bearing supports at A
and B , where the bearing at B is self-aligning. The plate is loaded at its center by a
100 lb vertical force and by a 40 lb force in the x direction at one of the corners.

(a) Does the plate have complete fixity or partial fixity, and is it statically determinate
or statically indeterminate? Explain.

(b) Determine all reactions at A and B .
Figure P5.102

Problem 5.103

Bar ABCD is supported by a cable AED, which passes over a frictionless pulley at
point E, and a collar B that slides without friction on a vertical shaft with square cross
section. If the tip A is subjected to a 5 kN vertical force, determine the tension in the
cable and all support reactions at collar B .

Figure P5.103
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6 Structural Analysis and Machines

Structures and machines often consist of an as-
semblage of numerous members. In this chap-
ter, we analyze the equilibrium of these. One
of the goals is determination of the forces sup-
ported by the individual members of a structure
or machine. Design considerations, especially
for trusses, are also discussed.

Before any detailed discussion in this chapter, it is useful to reflect on
the meaning of structure and machine. We use the word structure to describe
an arrangement of material and/or individual members that, as a whole, is in-
tended to support forces that are applied to it. The word machine describes
an arrangement of material and/or individual members where the goal is usu-
ally transmission of motion and/or force. These definitions are broad and have
considerable overlap, and frequently a particular device could appropriately
be called either a structure or a machine. Although there are frequent excep-
tions, a structure will often use a stationary arrangement of members (that is,
the individual members will have little or no motion relative to one another),
while a machine will have members with significant relative motion.

6.1 Truss Structures and the Method of Joints

A truss is a structure that consists of two-force members only, where members
are organized so that the assemblage as a whole behaves as a single object.

329
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Figure 6.1. Examples of truss structures. (a) The roof of this highway maintenance
building under construction uses 124 identical wooden roof trusses with 16 in: spacing.
(b) Mores Creek bridge over Lucky Peak Reservoir near Boise, Idaho.

Some examples of truss structures are shown in Fig. 6.1. Observe that trusses
use very little material, yet they are very strong.

Throughout this section and the next, we discuss truss structures in two di-
mensions, and these are called plane trusses. For a two-dimensional structure
to be a plane truss, it must have the following characteristics:

� All members must be connected to one another by frictionless pins, and
the locations of these pins are called joints.

� Each member may have no more than two joints.

� Forces may be applied at joints only.

� The weight of individual members must be negligible.

If all of the above characteristics are satisfied, then it is guaranteed that all
members of the structure are two-force members. The important consequence
of having only two-force members is that equilibrium analysis of the structure
reduces to equilibrium analysis of a system of particles where the number of
particles equals the number of joints in the truss. Some common types of truss
structures are shown in Fig. 6.2.

Figure 6.2. Some common types of truss structures.

Recall from Chapter 5 that a member does not need to be straight to be
a two-force member. While trusses are most often constructed using straight
members, they may contain members with curved or other complex shapes,
and Fig. 6.3 shows such an example.

Figure 6.3
While most truss structures are composed en-
tirely of straight members, this truss uses a
curved upper chord.
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When may a structure be idealized as a truss?

Relatively few real life structures fully conform to the definition of a truss,
the main reason usually being that connections between members are not pins.
Figure 6.4 shows some examples of typical connections in structures. These

Figure 6.4. Typical connections between members of a structure. (a) In this wooden
roof truss, a rectangular nail plate is used to connect members. (b) In this steel truss,
connection A is welded while connection B is pinned.

connections are capable of supporting moments, and thus the members that
emanate from such connections usually are not two-force members. For pre-
cise analysis, structures with connections such as these should be modeled
as frame structures which are discussed in Section 6.4. If a structure is suffi-
ciently stiff, then the moments at connections such as those shown in Fig. 6.4
may be small, and it may be reasonable to assume they are zero, in which
case the structure could be modeled as a truss. To summarize, if a particular
structure would qualify as a truss except for the connection details, then in
engineering practice these structures are often modeled as trusses anyway and
the methods of analysis discussed in this section and the next are used. This
idealization is far from perfect, but is widely used, and with good judgment
and generous factors of safety, it is very successful.

Another common departure from the definition of a truss is that struc-
tures often have forces applied at locations other than joints. In Section 6.2,
a method is discussed where such loads are replaced by equivalent loads posi-
tioned at joints so that truss analysis can be performed.

Method of joints

In general, the objectives in analysis of a truss are determination of the sup-
port reactions for the truss and determination of the forces supported by the
individual members of the truss. In the method of joints, a truss is analyzed by
treating each joint as a particle. If the entire truss is in equilibrium, then every
joint within the truss is also in equilibrium (indeed, all material within the truss
is in equilibrium). Analysis proceeds by drawing FBDs of the joints through-
out the truss, writing equilibrium equations for each of these, and solving the
equilibrium equations for the unknowns. Prior to this, it may be necessary or
desirable to determine the reactions for the truss as a whole, and the methods
of Chapter 5 can be used for this. Analysis by the method of joints is illustrated
in the following example.



332 Structural Analysis and Machines Chapter 6

� Mini-Example. Use the method of joints to determine the force supported
by each member of the truss shown in Fig. 6.5.

Figure 6.5
A plane truss.

Solution. We begin by obtaining the support reactions for the truss by drawing
the FBD of the structure as a whole as shown in Fig. 6.6. Writing equilibrium
equations provides

Figure 6.6
Free body diagram to determine the support re-
actions.

X
MA D 0 W �.10 kN/.6m/CEy.12m/

C .3 kN/.4m/ D 0 ) Ey D 4 kN; (6.1)X
Fy D 0 W Ay CEy � 10 kN D 0 ) Ay D 6 kN; (6.2)X
Fx D 0 W Ax � 3 kN D 0 ) Ax D 3 kN: (6.3)

Next, we draw FBDs of each joint (pin) as shown in Fig. 6.7. Since each
joint has a concurrent force system, each joint is treated as a particle in equi-
librium, and hence each joint permits two equilibrium equations to be written.
Among the many joints that the truss has, a good strategy is to always (if
possible) select a joint that has no more than two unknowns, since then the un-
knowns may be immediately solved for. Among the five possible joints shown
in Fig. 6.7, jointsA andE are the only two having only two unknowns. Noting
that ˛ D tan�1.4=3/ D 53:1ı, we select joint A and write�

Figure 6.7
Free body diagrams of joints (pins) in the truss.
All member forces are defined to be positive in
tension. For example, a positive value of FAB
means that member AB is in tension.

Joint A:X
Fy D 0 W 6 kNC FAB sin˛ D 0 ) FAB D �7:5 kN; (6.4)X
Fx D 0 W 3 kNC FAB cos˛ C FAC D 0 ) FAC D 1:5 kN: (6.5)

We may now repeat this procedure for joint E, but we will continue with joint
B instead, as now it has only two unknowns. Using the FBD for joint B gives
Joint B:X

Fy D 0 W �FAB sin˛ � FBC sin˛ D 0 ) FBC D 7:5 kN; (6.6)X
Fx D 0 W �FAB cos˛ C FBC cos˛ C FBD D 0

) FBD D �9:0 kN: (6.7)

Joints C , D, and E remain to be analyzed, and of these, joints D and E both
have two unknowns. Furthermore, examination of the FBDs for joints D and
E shows that E will entail slightly less algebra to solve for its unknowns, and
thus we elect to write equilibrium equations for it.
Joint E:X

Fy D 0 W 4 kNC FDE sin˛ D 0 ) FDE D �5 kN; (6.8)X
Fx D 0 W �FCE � FDE cos˛ D 0 ) FCE D 3 kN: (6.9)

There is now only one unknown remaining, namely, FCD , and either joint C
or D may be used to determine it. We select D because its FBD has one less
force than the FBD for joint C . Thus
Joint D:X

Fy D 0 W �FCD sin˛ � FDE sin˛ D 0 ) FCD D 5 kN: (6.10)

�
�Because of the nice geometry of this truss, we could avoid computing ˛ and use cos˛ D 3=5

and sin˛ D 4=5.
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Remarks

Helpful Information

Method of joints. The method of joints
is really nothing more than the method of
analysis discussed in Chapter 3, namely,
equilibrium of a system of particles.

Interesting Fact

Computer analysis. Although not dis-
cussed in this book, the method of joints
can be automated for solution using a
computer. With knowledge of statics,
mechanics of materials, and a basic un-
derstanding of matrices, developing such
software is surprisingly straightforward.
Computer programs for truss analysis see
widespread use.

� This solution began with finding the support reactions for the entire
structure. Depending on the geometry of the structure and how it is sup-
ported, finding the reactions at the outset may not be needed. In this
example, it was necessary because otherwise all of the FBDs shown in
Fig. 6.7 have three or more unknowns. Example 6.3 considers a struc-
ture where the support reactions are not needed prior to analysis by the
method of joints.

� In the FBD shown in Fig. 6.6, the truss is represented as a solid object
to emphasize that for the analysis of support reactions, the arrangement
of members within the structure is irrelevant provided it is sufficient to
support the forces and reactions that are applied to it. When this assump-
tion is not true, this phase of the solution must be revised, as discussed
later.

� In the FBDs of Fig. 6.7, all of the member forces are defined so that
a positive value corresponds to tension. In the solutions obtained here,
members AC , BC , CE, and CD support positive forces, hence they
are in tension; and members AB , BD, and DE support negative forces,
hence they are in compression.

� To obtain the solutions for all unknowns, only one equilibrium equation
for joint D was used, and neither of the two equilibrium equations for
joint C was used. To help check the accuracy of your solution, you
should write these three equilibrium equations and verify that they are
satisfied. If they are not, then an error has been made.

� In view of the preceding comment, you might wonder why all of the
unknowns could be determined without using all of the available equi-
librium equations. Recall from Section 5.3 that having more equilibrium
equations than unknowns usually indicates a mechanism. However, the
truss of Fig. 6.5 is clearly not a mechanism: it is fully fixed and is stat-
ically determinate. Indeed, because the support reactions were found at
the outset, the three equilibrium equations in question were exhausted
in writing Eqs. (6.1)–(6.3), and in fact the number of unknowns and the
number of available equilibrium equations are the same. For this reason,
the three “extra” equilibrium equations for joints D and E were not
needed to find the unknowns.

Zero-force members

A truss member (or any member) that supports no force is called a zero-force
member. Trusses often contain many zero-force members. While it might
seem that such members play no role in strengthening a truss, in fact they
may be very important, as discussed in Section 6.2. Here we discuss a method
to identify zero-force members by inspection. Consider the situation shown
in Fig. 6.8; joint A connects three truss members, two of the members are
collinear (AB and AD), and no external force is applied to joint A. With the
xy coordinate system shown, summing forces in the y direction provides

Figure 6.8
Geometry of members in a truss allowing
a zero-force member to be recognized by
inspection.X

Fy D 0 W FAC sin˛ D 0 (6.11)
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Unless ˛ D 0ı or 180ı, in which case member AC is collinear with the other
two members, FAC D 0 and member AC is a zero-force member. Note that if
joint A has an external force applied to it, then if that force has any component
in the y direction shown in Fig. 6.8, then FAC ¤ 0. Similarly, if joint A has
more than three members connected to it, then in general FAC ¤ 0.

Identification of zero-force members in a truss. Figure 6.8 defines a pat-
tern that allows zero-force members in a truss to be easily identified. To use
this, we examine the joints in a truss, and if a particular joint

� Has three members connected to it,

� Two of these members are collinear, and

� The joint has no external force applied to it,

then the noncollinear member is a zero-force member.
Rather than memorize this list, it is easier to simply understand the ratio-

nale behind a zero-force member; namely, Fig. 6.8 and Eq. (6.11). Further-
more, understanding these features allows you to recognize other situations in
which a zero-force member occurs. For example, if member AD in Fig. 6.8 is
not present, then summing forces in the y direction shows that member AC is
zero-force, and with this result, summing forces in the x direction shows that
member AB is also a zero-force member.

� Mini-Example. Identify the zero-force members in the truss shown
in Fig. 6.9.
Solution. By inspection of each joint, we identify the following zero-force
members:

Examination of joint C shows that member BC is zero-force.
Examination of joint D shows that member DE is zero-force.
Examination of joint I shows that member GI is zero-force.
Because member GI is zero-force, examination of joint G then

shows that member FG is zero-force.

Figure 6.9
Example of a truss containing several zero-
force members.

Remark. For a member such as DE, the presence of the 10 kN force ap-
plied to joint E is a common source of confusion, as intuition may suggest
(wrongly) that member DE must participate in supporting the 10 kN force.
Note that our conclusion that member DE is a zero-force member is based
entirely on the conditions at joint D. �

Before closing, we note that most of our discussion focused on sufficient
conditions for a member to be zero-force. That is, if an equilibrium equation
for a particular joint can be written in the form of Eq. (6.11), and ˛ ¤ 0ı or
180ı, then this is a sufficient condition to conclude that a member is zero-force,
and furthermore it is possible to easily identify such members by inspection.
However, it is not a necessary condition. That is, a truss may have other zero-
force members. For example, in the truss shown in Fig. 6.9, if other forces
were applied at joints B and/or F and they had proper magnitudes and di-
rections, then it is possible that by chance other members, in addition to the
four members already cited, could be zero-force members. However, it is typ-
ically not possible to identify such members by inspection; rather if any such
members are present, they are seen to be zero-force only after the equilibrium
equations have been solved. This situation arises in Example 6.3.
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Typical truss members

The vast majority of trusses are constructed entirely of straight, slender mem-
bers. The reason is that straight members are very efficient at supporting axial
forces. Because of this, straight members can usually be slender, meaning the
length of a member is substantially greater than the size of its cross section.
While a truss may contain members that are not straight, such as the curved
upper chord shown in Fig. 6.3, such members are considerably less efficient
at supporting forces because they also experience bending, and therefore sub-
stantially more material is required so that the member is strong enough. When
curved members are used in a truss, it is almost always for nonstructural rea-
sons such as aesthetics, ease of manufacture, and so on. Efficiency of straight
members versus curved members for supporting loads is discussed in detail
in Chapter 8 where internal forces and bending are treated (see Prob. 8.22 on
p. 466). An additional, important factor controlling strength of straight truss
members is the possibility of buckling due to compressive forces. Buckling is
briefly discussed in Section 6.2.

Helpful Information

An experiment: straight versus non-
straight truss members. Take a metal
or plastic clothes hanger and cut it at
the two locations shown. Then, use your
hands to apply forces to the non-straight
portion. Clearly it is very flexible and will
undergo significant bending. In contrast,
use your hands to apply tensile forces
to the straight portion and observe that
no visible deformation is produced, even
if you apply as much force as possible.
The straight member is very efficient at
supporting the forces applied to it, whereas
the non-straight member is not as efficient
because of bending.

End of Sect ion Summary

In this section, truss structures are defined and the method of joints is devel-
oped for determining the forces supported by individual members of a truss.
Some of the key points are as follows:

� A truss is a structure that consists of two-force members only, where
members are organized so that the assemblage as a whole behaves as a
single object. For all members of a structure to be two-force members,
the structure must have the following characteristics:

– All members must be connected to one another by frictionless pins,
and the locations of these pins are called joints.

– Each member may have no more than two joints.

– Forces may be applied at joints only.

– The weight of individual members must be negligible.

Real structures usually do not satisfy all of these requirements. Nonethe-
less, many real structures are idealized as trusses.

� In the method of joints, the force supported by each member of a truss
is determined by drawing FBDs for each joint and then requiring that
all joints be in equilibrium by writing the equations

P
Fx D 0 andP

Fy D 0 for each joint.

� A truss member (or any member) that supports no force is called a zero-
force member. Trusses often contain many zero-force members, and the
role played by these in strengthening a truss is discussed in Section 6.2.
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E X A M P L E 6.1 Truss Analysis by the Method of Joints

The structure shown consists of 13 members where the hollow circles indicate joints.
Determine the force supported by each member of the structure.

Figure 1

S O L U T I O N

Road Map In this structure, we will neglect the weights of individual members under
the assumption they are small compared to the 4 and 6 kN forces. Because forces are
applied at joints only and all members are connected to one another by frictionless pins,
all members of the structure are two-force members and hence the structure is a truss.
To analyze this truss, we begin by determining the support reactions, followed by use
of the method of joints to determine the force supported by each member.

Modeling To determine the reactions for the truss as a whole, we draw the FBD for
the entire structure as shown in Fig. 2.

Governing Equations & Computation Using the FBD shown in Fig. 2, we write
and solve the following equilibrium equations:

Figure 2
Free body diagram for determining the support
reactions.

X
MA D 0 W �.4 kN/.2m/ � .6 kN/.4m/CHy.8m/ D 0 ) Hy D 4 kN; (1)X
Fy D 0 W Ay CHy � 4 kN � 6 kN D 0 ) Ay D 6 kN; (2)X
Fx D 0 W Ax D 0 ) Ax D 0: (3)

Modeling Now that the support reactions are known, we proceed with the method
of joints. Examination of joint G shows that member FG is zero-force, and with this
knowledge, examination of joint F then shows that member EF is zero-force. Recog-
nizing zero-force members at the outset of an analysis may save you some work, but in
the following analysis we will use this knowledge as a partial check of our solution. To
use the method of joints, we draw FBDs of all joints in the truss, as shown in Fig. 3. In
these FBDs, all member forces are taken to be positive in tension. For example, if we
find that FAB is positive, then member AB is in tension, whereas if we find that FAB
is negative, then member AB is in compression.

Governing Equations & Computation We begin writing equilibrium equations at
jointA, because there are only two unknowns there (jointH is an equally good choice).
Following joint A, we proceed to joint C , as there are then only two unknowns there,
and so on.

Figure 3. Free body diagrams of joints where ˛ D 30ı.
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Joint A:X
Fy D 0 W FAB sin 30ı C 6 kN D 0 ) FAB D �12 kN; (4)X
Fx D 0 W FAC C FAB cos 30ı D 0 ) FAC D 10:39 kN: (5)

Joint C:X
Fx D 0 W �FAC C FCE D 0 ) FCE D 10:39 kN; (6)X
Fy D 0 W FBC � 4 kN D 0 ) FBC D 4 kN: (7)

Joint B:X
Fx D 0 W �FAB cos 30ı C FBD cos 30ı C FBE cos 30ı D 0; (8)X
Fy D 0 W �FAB sin 30ı C FBD sin 30ı � FBE sin 30ı � FBC D 0; (9)

) FBD D �8 kN and FBE D �4 kN: (10)

Joint D:X
Fx D 0 W �FBD cos 30ı C FDF cos 30ı D 0 ) FDF D �8 kN;

(11)X
Fy D 0 W �FBD sin 30ı � FDE � FDF sin 30ı D 0 ) FDE D 8 kN:

(12)

Joint H:X
Fy D 0 W FFH sin 30ı C 4 kN D 0 ) FFH D �8 kN; (13)X
Fx D 0 W �FFH cos 30ı � FGH D 0 ) FGH D 6:928 kN: (14)

Joint G:X
Fy D 0 W FFG D 0 ) FFG D 0; (15)X
Fx D 0 W �FEG C FGH D 0 ) FEG D 6:928 kN: (16)

Joint F:X
Fx D 0 W �FDF cos 30ı � FEF cos 30ı C FFH cos 30ı D 0 (17)

) FEF D 0: (18)

Discussion & Verification

� Notice that we were able to determine all of the member forces without using
one of the equilibrium equations for joint F and the two equations for joint E.
As a check on our solution, you should write these three equations and verify
that the member forces we determined satisfy all of them.

� In Eqs. (15) and (18), two members were found to have zero force, and these
are the same members that were identified by inspection at the outset of our
analysis as being zero-force members. This is a useful partial check of solution
accuracy.

� This solution neglected the weight of the truss. An approximate way to include
this weight is illustrated in Example 6.2.
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E X A M P L E 6.2 A Truss with Curved Members and Weights of Members

The structure shown consists of five pin-connected members (members AC and BD
do not intersect). In addition to the 4 kip force shown, the individual members of the
structure have the weights listed in Table 1. Idealize the structure to be a truss and
determine the forces supported by each memeber.

Figure 1

Table 1
Weights of individual members.

Member Weight

AB WAB D 400 lb
AC WAC D 100 lb
BC WBC D 200 lb
BD WBD D 100 lb
CD WCD D 400 lb

S O L U T I O N

Road Map Because the weights listed in Table 1 are distributed forces, the members
of this structure are not two-force members and hence this structure is not a truss.
Nonetheless, because these weights are small compared to the 4 kip force applied at
Joint C , it is possible to approximate this structure as a truss, and to do so under these
circumstances is common.

Modeling The weights (distributed forces) listed in Table 1 will be replaced with
forces that are applied to joints by using the following procedure. For each member,
that member’s weight is proportioned equally between the two joints it connects to.
Thus, for member AB , one-half of its weight will be applied to joint A and one-half
will be applied to joint B . Similarly, for member AC , one-half of its weight will be
applied to joint A and one-half will be applied to joint C . Doing this for all members
results in the following forces at joints

PA D .WAB CWAC /=2 D 250 lb; (1)

PB D .WAB CWBC CWBD/=2 D 350 lb; (2)

PC D .WAC CWBC CWCD/=2 D 350 lb; (3)

PD D .WBD CWCD/=2 D 250 lb: (4)

Treatment of distributed forces in this fashion is sometimes called load lumping be-
cause a distributed force is being replaced by concentrated forces.�

To determine the reactions for the truss as a whole, we draw the FBD shown in
Fig. 2. Then, to use the method of joints to determine the force supported by each
member, we draw the FBDs shown in Fig. 4 where member forces are taken to be
positive in tension.

Governing Equations & Computation To find the reactions for the truss as a whole,
we use the FBD shown in Fig. 2 and write the following equilibrium equations (with
the aid of Fig. 3 to determine moment arms):

Figure 2
Free body diagram for determining the support
reactions.

Figure 3
Geometry of member AC and joints A, C , and
D to determine moment arms for writing equi-
librium equations.

X
MA D 0 W �PB .2:5 ft/ � .4000 lbC PC /.7:5 ft/

C .Dy � PD/.10 ft/ D 0 ) Dy D 3600 lb; (5)X
Fy D 0 W Ay CDy � PA � PB � 4000 lb

� PC � PD D 0 ) Ay D 1600 lb; (6)X
Fx D 0 W Ax D 0 ) Ax D 0: (7)

�Problem 7.85 shows that the load lumping procedure outlined here provides an equivalent
force system for straight members with uniform weight distributions. For members that are not
straight (as in this example) or if the weight distribution is not uniform, this load lumping pro-
cedure is an approximation, although it is commonly used and provides good results provided
the shape and weight distribution of members does not deviate greatly from being straight and
uniform, and the weights of members are small compared to other forces the structure supports.
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Figure 4. Free body diagrams of joints.

To apply the method of joints, we use the FBDs of all the joints in the truss, as
shown in Fig. 4, where member forces are taken to be positive in tension. We then
write and solve the equilibrium equations for the joints as follows:

Joint A:X
Fx D 0 W FAB cos 60ı C FAC cos 30ı D 0; (8)X
Fy D 0 W FAB sin 60ı C FAC sin 30ı C 1600 lb � PA D 0; (9)

) FAB D �2338 lb and FAC D 1350 lb: (10)

Joint B:X
Fy D 0 W �FAB sin 60ı � FBD sin 30ı � PB D 0 ) FBD D 3350 lb;

(11)X
Fx D 0 W �FAB cos 60ı C FBD cos 30ı C FBC D 0 ) FBC D �4070 lb:

(12)

Joint C:X
Fy D 0 W �FAC sin 30ı � FCD sin 60ı � 4000 lb � PC D 0 (13)

) FCD D �5802 lb: (14)

Discussion & Verification We were able to determine all of the member forces with-
out using one of the equilibrium equations for joint C or the two equilibrium equations
for joint D. As a check on our solution, you should write these three equations and
verify that the member forces we determined satisfy all of them.
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E X A M P L E 6.3 A Truss with a Cable and Pulleys

In the exercise machine shown, the stack of weights atH weighs 50 lb. If cable segment
AB is vertical, determine the force supported by each member of the machine.

Figure 1

S O L U T I O N

Road Map In this structure, we will neglect the weights of individual members, in-
cluding the weight of the cable, and will compute the member forces due to the person
lifting the 50 lb weight only. In contrast to the previous examples of this section, in
this problem the geometry of the structure is such that the support reactions are not
needed before we can proceed with the method of joints. Further comments on how to
recognize such situations are given at the end of this problem.

Modeling To use the method of joints, we draw FBDs of all the joints in the truss,
as shown in Fig. 2. In these FBDs, all member forces are taken to be positive in ten-
sion. Also, we have elected to leave the pulleys on the joints. Alternatively, we could
have removed the pulleys by shifting the cable forces to the bearings, as discussed in
connection with Fig. 5.11 on p. 271. Indeed, if either cable segment AB or EH were
not vertical, this would be the preferred approach because the moment arms would be
easier to obtain. Finally, we will assume the pulleys at B andE are frictionless, and we
will neglect the weight of the cable itself so that the tensile force supported by the cable
is the same throughout its entire length and is equal to the 50 lb weight at H . Since the
pulleys at B and E have the same radius, the orientation of cable segment BE is given
by ˛ D tan�1.15 in:=56 in:/ D 15:00ı.

Figure 2. Free body diagrams of joints.
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Governing Equations & Computation We begin writing equilibrium equations at
joint B , because there are only two unknowns there. Furthermore, examination of the
FBD for joint B shows that the

P
Fy D 0 equation will contain only one unknown,

whereas the
P
Fx D 0 will contain two, thus we will write the

P
Fy D 0 expression

first. Then we will proceed to jointD, as there are only two unknowns there (once TBD
is found), and so on.

Joint B: X
Fy D 0 W �50 lb � .50 lb/ sin˛ � TBC

�15
39

�
D 0; (1)

) TBC D �163:6 lb; (2)X
Fx D 0 W .50 lb/ cos˛ C TBC

�36
39

�
C TBD D 0; (3)

) TBD D 102:8 lb: (4)

Joint D:X
Fx D 0 W �TBD C TDE

�20
25

�
D 0; ) TDE D 128:4 lb; (5)X

Fy D 0 W �TCD � TDE

�15
25

�
D 0; ) TCD D �77:06 lb: (6)

Joint C:X
Fx D 0 W �TBC

�36
39

�
C TCE D 0; ) TCE D �151:0 lb; (7)X

Fy D 0 W TBC

�15
39

�
C TCD � TCF D 0; ) TCF D �140:0 lb: (8)

Joint E:X
Fx D 0 W �TCE � TDE

�20
25

�
� .50 lb/ cos˛ � TEF sin 20ı D 0; (9)

) TEF D 0; (10)X
Fy D 0 W TDE

�15
25

�
C .50 lb/ sin˛ � 50 lb � TEF cos 20ı � TEG D 0; (11)

) TEG D 40:00 lb: (12)
Figure 3
An exercise machine similar to that shown in
Fig. 1 in use.

Discussion & Verification

� The forces supported by all members were determined without using the equi-
librium equations for joints F and G. If desired, the equilibrium equations for
these joints may also be written to obtain the support reactions, which are found
to be Fx D 0, Fy D 140:0 lb, and Gy D 40:0 lb.

� After Eq. (9) is solved, member EF is found to be a zero-force member. Be-
cause neither of joints E or F fits the pattern shown in Fig. 6.8 on p. 333, it is
not possible to use inspection to determine that this member is zero-force.

� This problem was convenient to solve without first determining the support re-
actions because joint B had only two unknowns, and thus it was possible to
begin the analysis at this location. In contrast, examination of the FBDs for Ex-
amples 6.1 and 6.2 shows that if the reactions are not obtained first, then the
FBDs for all joints in those examples contain three or more unknowns.
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P R O B L E M S

Problems 6.1 and 6.2

Determine the force supported by each member of the truss if P D 1000 lb.

Figure P6.1 Figure P6.2

Problems 6.3 and 6.4

For the truss shown in Fig. P6.1, each member can support a maximum tensile force of
4000 lb and a maximum compressive force of 2000 lb.

Problem 6.3 If P D 1000 lb, determine the factor of safety for the truss.

Problem 6.4 Determine the largest positive value of P that can be applied.

Problems 6.5 and 6.6

For the truss shown in Fig. P6.2, each member can support a maximum tensile force of
6000 lb and a maximum compressive force of 4000 lb.

Problem 6.5 If P D 1000 lb, determine the factor of safety for the truss.

Problem 6.6 Determine the largest positive value of P that can be applied.

Problem 6.7

All members of the truss have the same length. Determine the force supported by each
member if P D 1 kN, Q D 2 kN, and R D 3 kN.Figure P6.7

Problem 6.8

All members of the truss have the same length. Determine the force supported by mem-
bers CE and DF if P D 1 kN, Q D 2 kN, and R D 3 kN.

Figure P6.8

Problems 6.9 and 6.10

Determine the force supported by each member of the truss ifP D 4 kN andQ D 1 kN.

Figure P6.9 Figure P6.10
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Problems 6.11 and 6.12

For the truss shown in Fig. P6.9, each member can support a maximum tensile force of
15 kN and a maximum compressive force of 10 kN.

Problem 6.11 If P D 4 kN and Q D 1 kN, determine the factor of safety for the
truss.

Problem 6.12 If Q D P=4, determine the largest positive value of P that can be
applied.

Problems 6.13 and 6.14

For the truss shown in Fig. P6.10, each member can support a maximum tensile force
of 20 kN and a maximum compressive force of 12 kN.

Problem 6.13 If P D 4 kN and Q D 1 kN, determine the factor of safety for the
truss.

Problem 6.14 If Q D P=4, determine the largest positive value of P that can be
applied.

Problem 6.15

Determine the force supported by each member of the truss. Express your answers in
terms of P and Q.

Figure P6.15 and P6.16

Problem 6.16

Each member can support a maximum tensile force of 15 kip and a maximum compres-
sive force of 10 kip. If 0 � P � 4 kip and 0 � Q � 4 kip, determine the lowest factor
of safety for the truss. Hint: The answer is the lowest factor of safety among the three
load cases P D 4 kip and Q D 0, P D 0 and Q D 4 kip, and P D Q D 4 kip.

Problem 6.17

Determine the force supported by each member of the truss. Express your answers in
terms of P and Q.

Figure P6.17 and P6.18

Problem 6.18

Each member can support a maximum tensile force of 3 kN and a maximum compres-
sive force of 2 kN. If 0 � P � 400N and 0 � Q � 400N, determine the lowest factor
of safety for the truss. Hint: The answer is the lowest factor of safety among the three
load cases P D 400N and Q D 0, P D 0 and Q D 400N, and P D Q D 400N.
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Problems 6.19 and 6.20

The structure consists of seven pin-connected members. Determine the force supported
by all members. Express your answers in terms of parameters such as F and L.

Figure P6.19 Figure P6.20

Problems 6.21 and 6.22

The structure consists of pin-connected members. Determine the force supported by all
members.

Figure P6.21 Figure P6.22

Problem 6.23

A Bollman truss is shown. Determine the force supported by each of the five bars and
four cables.Figure P6.23

Problem 6.24

(a) By inspection, identify the zero-force members in the truss.

(b) Determine the force supported by all members of the truss.

Figure P6.24
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Problem 6.25

(a) By inspection, identify the zero-force members in the truss.

(b) Determine the force supported by member FG and all of the members to the left
of it.

(c) Determine the force supported by all of the members to the right of member FG.

Figure P6.25

Problem 6.26

(a) By inspection, identify the zero-force members in the truss.

(b) Determine the force supported by member CH and all of the members to the left
of it.

(c) Determine the force supported by all of the members to the right of member CH .

Figure P6.26

Problem 6.27

The truss has frictionless pulleys at points B , J , and K. Cable segment BL is vertical
and W D 1 kip.

(a) By inspection, identify the zero-force members in the truss.

(b) Determine the force supported by member CE.

(c) Determine the force supported by member GI .

Figure P6.27
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6.2 Truss Structures and the
Method of Sections

The method of sections is an effective and popular approach for determining
the forces supported by individual members of a truss, especially when forces
in only a portion of the members must be found. In this method, we select a
member whose force we want to determine. Then a cut is taken that passes
through this member, subdividing the truss into two parts. If the entire truss
is in equilibrium, then both parts of the truss are also in equilibrium. Analysis
proceeds by drawing an FBD for one of the parts of the truss, writing equi-
librium equations, and solving these for the unknowns. Prior to this, it may
be necessary or desirable to determine the reactions for the truss as a whole.
Analysis by the method of sections is illustrated in the following example.

� Mini-Example. Use the method of sections to determine the force sup-
ported by member BD of the truss shown in Fig. 6.10.

Figure 6.10
A plane truss.

Solution. We begin by obtaining the support reactions for the truss by drawing
the FBD of the structure as a whole, as shown in Fig. 6.11. Writing equilibrium
equations provides

Figure 6.11
Free body diagram to determine the support re-
actions.

X
MA D 0 W �.10 kN/.6m/CHy.12m/ D 0 ) Hy D 5 kN; (6.12)X
Fy D 0 W Ay CHy � 10 kN D 0 ) Ay D 5 kN; (6.13)X
Fx D 0 W Ax D 0 ) Ax D 0: (6.14)

Because the geometry and loading for this problem are symmetric, we could
have determined these reactions by inspection.

In order to find the force in member BD, it is necessary to use an FBD
where the cut passes through member BD, and Fig. 6.12(a) shows the start
of such a cut. In Fig. 6.12(b), two possible paths aa and bb (among many)
for continuing the cut are shown. Figure 6.12(c) shows completed cuts where
in each case, the cut is a closed line that fully encompasses the left-hand or
right-hand portion of the structure.

Figure 6.12
Possible cuts that will allow the force in mem-
ber BD to be determined by the method of
sections. (a) The cut starts by passing through
member BD. (b) Two possible paths (among
many) for continuing the cut started in (a).
(c) Four possible paths for completing the cut
so that an FBD can be drawn.

Once a cut has been taken and an FBD of a portion of the structure has
been drawn, there are three equilibrium equations that may be written. Thus,
a good strategy is to select a cut (when possible) so that no more than three
members are cut since then the unknown forces for these members may be
immediately solved for by using the three equilibrium equations that are avail-
able. Comparing the two cuts shown in Fig. 6.12(b), observe that cut aa passes
through three members and hence its FBD will have three unknowns, while cut
bb passes through four members and hence its FBD will have four unknowns.�

Thus, cut aa is the better choice.
Using cut aa, we draw the FBD for the left-hand and right-hand portions

of the structure as shown in Fig. 6.13, where member forces FBD , FBE , and
FCE are positive in tension. Normally, we would draw only one of these FBDs,
and we usually select the side of the truss that has fewer forces and/or more
straightforward geometry. Using the FBD for the left-hand portion of the struc-
ture, we notice that point E is a convenient location for summing moments,

� If you recognized that member DE is a zero-force member, then cut bb has only three un-
knowns and is therefore as good a choice as cut aa.
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because two of the unknown forces pass through this point, leaving only FBD .
Thus, taking positive moment counterclockwise, we writeX

ME D 0 W �.5 kN/.6m/�FBD.4m/ D 0 ) FBD D �7:5 kN: (6.15)

Although this problem does not ask for the forces in members BE and CE,
we will nonetheless determine these by writing and solving the following equi-
librium equationsX

MB D 0 W �.5 kN/.3m/C FCE .4m/ D 0 ) FCE D 3:75 kN;

(6.16)X
Fx D 0 W FCE C FBE

�3
5

�
C FBD D 0 ) FBE D 6:25 kN:

(6.17)

�

Figure 6.13. Free body diagrams.

Remarks

� Compared to the method of joints, the method of sections is often easier
to use when the forces in only a portion of a structure’s members are
desired. If the method of joints were used for this example, FBDs would
need to be drawn and equilibrium equations written for joints A, C , and
B (in that order) before FBD could be determined.

� When a cut is taken, the truss is subdivided into two (or more) parts.
Regardless of which part you choose to draw an FBD for, there are only
three equilibrium equations that may be used to determine the unknown
forces. For example, if the FBD shown in Fig. 6.13 for the right-hand
portion of the structure is used, the

P
ME D 0,

P
MB D 0, andP

Fx D 0 expressions that are written are identical to Eqs. (6.15)–
(6.17). If different moment summation points are used, then the result-
ing equilibrium equations will differ from Eqs. (6.15) and (6.16), but
nonetheless they will be a linear combination of these so that there are
only three independent equations available for determining the unknown
forces.

� To further elaborate on the consequence of the last remark, imagine that
cut bb shown in Fig. 6.12 was used. The FBD for this cut has four un-
known member forces. As a strategy to determine the four unknowns,
you might consider writing three equilibrium equations for the left-hand
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portion of the truss and then writing an additional equilibrium equation
for the right-hand portion. However, in view of the foregoing remark,
this strategy will fail because of the four equilibrium equations, only
three are independent and thus it is not possible to determine all four
unknowns in this fashion.

� If the problem had asked for the forces in members BD and DE, then
the method of sections with cut bb shown in Fig. 6.12 (or a similar
cut) would be needed, because it passes through both of these members.
However, as explained in the preceding remarks, the method of sections
with cut bb will not be sufficient to determine these forces. If the truss
is statically determinate (discussed later in this section), then multiple
applications of the method of sections and/or the method of joints will
be needed. In this example, we could first use the method of sections
with cut aa to find FBD followed by the method of sections with cut
bb to find the remaining unknowns. Alternatively, first we could use the
method of joints for jointD to find FDE . Then we could use the method
of sections with cut bb; because FDE is known, the three remaining
unknowns can then be determined.

Treatment of forces that are not at joints

In real life structures, forces often occur at locations other than joints. For
many purposes such forces may be replaced by equivalent force systems, so
that truss analysis may be used. Consider, for example, the vertical force F
shown in Fig. 6.14. To see that F1 and F2 have the values reported in Fig. 6.14,

Figure 6.14
For many purposes, a force that is not located at
a joint may be replaced by an equivalent force
system where forces are positioned at joints.

we use the usual procedure to construct an equivalent force system, given by
Eq. (4.16): �X

Fy

�
system 1

D
�X

Fy

�
system 2

F D F1 C F2; (6.18)

and
�X

MA

�
system 1

D
�X

MA

�
system 2

�Fd D �F2L: (6.19)

Solving Eqs. (6.18) and (6.19) provides

F1 D .1 �
d

L
/F and F2 D

d

L
F: (6.20)

You may wish to verify that Eq. (6.20) provides the proper results for F1 and
F2 for the cases d D 0 and d D L.

Although we say the two force systems shown in Fig. 6.14 are equiva-
lent, exactly how equivalent they really are depends on what we are interested
in. In this case, when member AB is subjected to F (with 0 < d < L),
it experiences bending, while when it is subjected to F1 and F2, it does not.
Nonetheless, the two force systems are equivalent in the sense that effects that
are external to member AB , such as reactions and the forces supported by all
other members, are the same. The issue of when two “equivalent” force sys-
tems really are equivalent is sometimes subtle, and you may not be able to
fully understand these subtleties until you study internal forces in Chapter 8.
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Nonetheless, the discussion of why equivalent force systems are called equiva-
lent in Section 4.4 always applies and is the source for resolving any questions
of interpretation.

Static determinacy and indeterminacy

In a statically determinate truss, the equations of equilibrium are sufficient to
determine the forces supported by all members of the truss and the support
reactions. In a statically indeterminate truss, the equations of equilibrium are
not sufficient to determine all of these. Compared to a statically determinate
truss, a statically indeterminate truss has extra members and/or supports. As a
result, the forces supported by each member and possibly the support reactions
also depend on the material the members are made of and the size of their cross
sections. Methods of analysis for statically indeterminate trusses are covered
in more advanced subjects.

A simple rule of thumb, called equation counting, can be used to help
determine whether a truss is statically determinate or indeterminate. The rule
is developed by comparing the number of unknowns for a truss to the number
of equilibrium equations. Consider a plane truss having

m D number of members,

r D number of support reactions,

j D number of joints.

(6.21)

Each member has one unknown force and each support reaction has one un-
known force, so that m C r is the total number of unknowns. For a plane
truss, each joint has two equilibrium equations so that 2j is the total number
of equations. Thus, the rule of thumb is as follows:

If mC r < 2j The truss is a mechanism and/or has partial
fixity.

If mC r D 2j The truss is statically determinate if it has full
fixity.
The truss is statically indeterminate if it has
partial fixity.

If mC r > 2j The truss is statically indeterminate, and it can
have full fixity or partial fixity.

(6.22)

� If m C r < 2j , not all of the equilibrium equations can be satisfied,
implying that some of them may not be satisfied, in which case motion
will occur. If the truss has only partial fixity, then the truss as a whole
may undergo a rigid body motion. If the truss has full fixity, then it is a
mechanism, meaning it may collapse. The presence of a mechanism in
a truss is disastrous, unless the truss is intended to be part of a machine.
Trusses are almost always supported so that they are fully fixed. Thus,
the situation mC r < 2j is rarely permitted.

� If mC r D 2j , there are as many unknowns as equilibrium equations.
Barring the possibility of having members and/or supports with insuffi-
cient arrangement, all unknowns can be determined and all equilibrium
equations can be satisfied.
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� IfmCr > 2j , not all of the unknowns can be determined, and additional
equations, in the form of models that characterize the deformability of
all members of the truss, must be introduced.

Several examples of equation counting are shown in Fig. 6.15.

Figure 6.15. Examples of equation counting to determine if a truss is statically determi-
nate or statically indeterminate. For trusses that are not fully fixed or are mechanisms,
a possible displaced position is shown by the dashed outlines.
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Design considerations

Simple, compound, and complex trusses

In a simple truss,� members are arranged beginning with three members joined
at their ends to one another in the shape of a triangle, as shown in Fig. 6.16,
and adding to this two new noncollinear members for each new joint that is
added. All of the trusses shown in Fig. 6.2 on p. 330 are simple trusses. A
compound truss is formed by interconnecting two or more simple trusses to
form a stable structure, where stability is provided by a sufficient number and
arrangement of members that connect the simple trusses. A complex truss is
formed by interconnecting two or more simple trusses, along with a sufficient
number and arrangement of supports to make the structure stable. These three
truss categories are contrasted in Fig. 6.17.

Figure 6.16
In a simple truss the arrangement of members
begins with three members that form a triangle
and adding to this two new members (shown by
dashed lines) for each new joint that is added.

Figure 6.17. Examples of simple, compound, and complex trusses. The compound
truss shown is called a Fink truss.

A truss does not need to be a simple truss to be a good design. For example,
the compound and complex trusses shown in Fig. 6.17 and the Baltimore truss
shown in Fig. 6.18 are not simple trusses, but they are nonetheless popular and
effective designs. However, one of the main features of a simple truss is guar-
anteed stability: if the pattern of construction described in Fig. 6.16 is used,
the resulting truss will have no mechanisms; and if it is fully supported, it will
be stable. The worst blunder you can make in designing a truss is to produce
a structure that is unstable. At a minimum, you will be very embarrassed, and
at worst, if the structure is built, people may be injured or killed. Note that
as the arrangement of members in a truss becomes more complex, it becomes
more difficult to ensure there are no mechanisms. Use of equation counting in
Eq. (6.22) is helpful, but is not foolproof.

Figure 6.18
The Baltimore truss is not a simple truss, but it
is a popular and effective design.

Buckling of truss members

A typical truss uses remarkably little material, yet provides impressive strength.
Because truss members are usually slender, they are susceptible to buckling un-
der compressive forces. To understand this phenomenon better, perform the ex-
periment shown in Fig. 6.19, using a wood or metal yardstick (or meterstick),
ideally one that is very straight. Under low compressive force, the yardstick
remains straight. But under sufficiently high compressive force, you should ob-
serve the yardstick suddenly buckles. When it buckles, it begins to bend and
loses strength. In fact, the loss of strength is very dramatic and for this reason,
buckling failures in structures are often catastrophic. Buckling is a fascinating
subject and is crucially important. The following example explores buckling

�Additional details and more advanced methods of analysis are contained in T. Au and
P. Christiano, Fundamentals of Structural Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1993
and E. C. Rossow, Analysis and Behavior of Structures, Prentice-Hall, Upper Saddle River, NJ,
1996.
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for a simple problem, but its results are characteristic of response for more
complicated structures such as columns and truss members.

Figure 6.19
An experiment showing how a yardstick (or me-
terstick) buckles under high compressive force.

� Mini-Example. A simple model for buckling analysis of an initially
straight truss member is shown in Fig. 6.20(a) where bars AB and BC are
rigid, and the ability of the structure to deform is modeled by the torsional
spring. Determine the value of P for which the structure buckles.
Solution. Although this is a crude model for a straight truss member, it is easy
to analyze and its results are revealing. The FBD for the buckled structure is
shown in Fig. 6.20(b). Note that because of the torsional spring, members AB
and BC are not two-force members, although the structure ABC as a whole
is. For this reason (or by writing

P
MA D 0 and

P
MC D 0), we determine

Ax D Cx D 0, and
P
Fy D 0 gives Cy D P . Next, we remove� member AB

from the structure, giving the FBD shown in Fig. 6.20(c). Then

Figure 6.20
A simple model to study buckling.

X
MB D 0 W �Mt C P

L

2
sin � D 0: (6.23)

Noting that the torsional spring is twisted by 2� , the spring law, Eq. (5.14) on
p. 272, givesMt D k.2�/. Assuming small angles with � measured in radians,
sin � � � , and Eq. (6.23) becomes�

2k � P
L

2

�
� D 0: (6.24)

Equation (6.24) has two solutions:

Solution 1: � D 0 trivial solution; (6.25)

Solution 2: 2k � P
L

2
D 0 buckling solution: (6.26)

Solution 1 is called the trivial solution because it says that structure ABC
remains straight. Solution 2 applies when

Pcritical D 4k=L; (6.27)

where the subscript critical is added to emphasize that this value of P causes
the structure to buckle. When P D Pcritical, according to Eq. (6.24), � can have
arbitrary value. Observe that if the spring becomes stiffer, Pcritical increases
whereas if the length of the structure increases, Pcritical decreases.

This solution and its ramifications are summarized in Fig. 6.21. Let force
P slowly increase from zero value. As long as P < Pcritical D 4k=L, equilib-
rium [Eq. (6.24)] requires � D 0. When P D Pcritical D 4k=L, equilibrium
is satisfied regardless of the value of � , which can have arbitrary positive or
negative values. Thus, as P reaches Pcritical, the structure undergoes an abrupt
change from � D 0 to � ¤ 0. Further, there is no particular preference for
� to have a positive or negative value, and this branching of the response is
often called a bifurcation. Any attempt to apply a force greater than Pcritical

will cause a dynamic event in which the member rapidly collapses. �

Figure 6.21
Load-deformation results for buckling of the
model shown in Fig. 6.20.

The buckling analysis of a truss member is more complicated than the fore-
going example, and this is a topic studied in mechanics of materials. The result

�Section 6.4 discusses procedures for taking a structure such as this apart for purposes of deter-
mining the forces supported by multiforce members.
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for the buckling load is Pcritical D c=L
2 where c is a constant that depends on

the member’s material and cross-sectional geometry and L is the length of
the member. The most important observation is the strong dependence of the
buckling load on length: if the length of a member is doubled, its buckling
load decreases by a factor of 4! For this reason, long compression members
are generally undesirable in trusses.

Use of zero-force members

Consider the example analyzed at the start of this section, repeated again in
Fig. 6.22. By inspection, members BC ,DE, and FG are zero-force members.

Figure 6.22
A truss subjected to a 10 kN force. Members
that are in tension and compression are iden-
tified by C and � symbols, respectively, and
zero-force members are identified by 0.

You are probably wondering why zero-force members are present in the truss,
and if they could be eliminated without reducing the strength of the truss.

Concept Alert

Buckling of truss members. Because of
buckling, long compression members are
undesirable in trusses. Zero-force mem-
bers are effective for reducing the length
of compression members, and this can sub-
stantially improve the strength of a truss.

To answer these questions requires knowledge of which members are in
tension and which are in compression, and these are designated in Fig. 6.22
usingC and� symbols, respectively. In Fig. 6.22, members BD andDF both
have 3m length, and as such, the compressive load at which they will buckle
is proportional to 1=.3m/2. If member DE were not present, then joint D
would not be present, member BF would have 6m length, and its buckling
load would be 4 times lower than that for members BD and DF , presum-
ing the material and cross-sectional geometry of the members are the same.
Thus, even though member DE is a zero-force member, its effect on increas-
ing strength is remarkable. Members AC and CE are in tension, and buckling
is not an issue for them. Thus, it may be possible to eliminate member BC
without reducing the strength of the truss. Similarly, it may be possible to
eliminate member FG. It is important to note that there may be reasons for
which members BC and FG are important. For instance, the loading in this
example is very simple, and in real life applications, joints C and G may be
subjected to loads, either continuously or periodically, in which case members
BC and/or FG would not be zero-force members.

Statically determinate versus statically indeterminate trusses

Both statically determinate and statically indeterminate trusses are popular,
and both have advantages and disadvantages. Statically determinate trusses
are usually straightforward to design and analyze using the methods discussed
in this chapter. Statically indeterminate trusses are usually more difficult to
design and analyze. One of the primary features of statically indeterminate
trusses is the potential for greater safety because failure of an individual struc-
tural member or support does not necessarily mean the entire structure will
fail. Figure 6.23 discusses an example of failure in a statically determinate
structure.
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Figure 6.23. Failure of the Interstate 35W bridge in Minneapolis, Minnesota. This
bridge opened to traffic in 1967 and collapsed without warning during the evening rush
hour on August 1, 2007, killing 13 people and injuring over 100 more. The National
Transportation Safety Board’s (NTSB’s) investigation determined that some of the gus-
set plates were undersized and that failure of some of these initiated collapse of the
bridge. One of the criticisms of this bridge’s design is that it was statically determinate,
and hence failure of one member or connection is sufficient to cause collapse of the
entire structure.

End of Sect ion Summary

In this section, the method of sections is developed for determining the forces
supported by individual members of a truss, and several characteristics affect-
ing the design and performance of trusses are discussed. Some of the key
points are as follows:

� In the method of sections, a cut is passed through the truss, and the FBD
that results is required to be in equilibrium by writing the equationsP
Fx D 0,

P
Fy D 0, and

P
M D 0.

� In a statically determinate truss, the equations of equilibrium are suffi-
cient to determine the forces supported by all members of the truss and
the support reactions. In a statically indeterminate truss, there are more
unknowns than the number of equilibrium equations, and hence, not all
of the unknowns (perhaps none of them) can be determined. Equation
counting is an effective way to determine whether a truss is statically
determinate or indeterminate.

� A simple truss has members arranged in a triangular pattern, as shown
in Fig. 6.16. Compound and complex trusses consist of two or more sim-
ple trusses connected to one another. Simple, compound, and complex
trusses are popular, but other designs for trusses are also common and
can perform very well. One of the main features of simple, compound,
and complex trusses is that they are always stable, presuming that no
members or connections fail.

� Because truss members are usually straight and slender, compression
members are susceptible to buckling. Furthermore, the force at which
buckling occurs in a straight member decreases very rapidly as a mem-
ber becomes longer (the buckling load is proportional to 1=L2, where
L is the member’s length). Thus, it is undesirable to have long compres-
sion members in a truss. Zero-force members can be very effective in
reducing the length of compression members and thus improving the
overall strength of a truss.
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E X A M P L E 6.4 Truss Analysis by the Method of Sections

The top chord of the steel truss is subjected to a combined dead load and live load of
6 kN=m. Determine the force supported by member FH . All angles are 60ı.

Figure 1

S O L U T I O N

Road Map Because of the 6 kN=m distributed load, the members of the top chord
of this structure are not two-force members, and hence this structure is not a truss.
Nonetheless, the structure will be approximated as a truss by lumping the distributed
load into forces at joints. After this, support reactions will be determined followed by
use of the method of sections. Before proceeding, we determine if the truss is stati-
cally determinate or indeterminate. Examination of Fig. 1 shows that the numbers of
members, support reactions, and joints are m D 23, r D 3, and j D 13, respectively.
Application of Eq. (6.22) on p. 349 shows m C r D 2j , and since the truss is fully
fixed, it is statically determinate.

Modeling Member AC is subjected to a vertical force of .6 kN=m/.1m/ D 6 kN.
Of this, half will be applied to joint A and half to joint C . Similarly, member CE is
subjected to a 6 kN force, and half will be applied to joint C and half to joint E, and
so on for all members of the top chord of the truss. The final forces are shown in Fig. 2.
To determine the support reactions, the FBD of the whole structure is drawn in Fig. 2.

Figure 2
Free body diagram for determination of the sup-
port reactions.

Governing Equations & Computation In anticipation of using the method of sec-
tions, we will need the reactions for only one side of the truss, and we will use the
left-hand side (for this problem, the right-hand side is an equally good choice). Using
the FBD of Fig. 2, the only equilibrium equation needed isX

MM D 0 W �Ay.6m/C .3 kN/.6m/C .6 kN/.5m/C .6 kN/.4m/

C .6 kN/.3m/C .6 kN/.2m/C .6 kN/.1m/ D 0; (1)

) Ay D 18 kN: (2)

Modeling To use the method of sections to determine the force supported by member
FH , we must take a cut that passes through this member. As usual, once the cut through
FH is started, it must be closed. In Fig. 2, we elect to cut through the three members
shown (EG, FG, and FH ), and then we complete the cut so that it encompasses the
left-hand portion of the structure. The resulting FBD is shown in Fig. 3 where member
forces are taken to be positive in tension. The unknown force FFH can quickly be
determined by applying moment equilibrium about point G:

Figure 3
Free body diagram using the method of sec-
tions.

X
MG D 0 W � .18 kN/.3m/C .3 kN/.3m/C .6 kN/.2m/

C .6 kN/.1m/C FFH .0:866m/ D 0; (3)

) FFH D 31:18 kN: (4)

Although not asked for, forces supported by members EG and FG are easily found:X
Fy D 0 W 18 kN � 3 kN � 6 kN � 6 kNC FFG sin 60ı D 0 (5)

) FFG D �3:464 kN; (6)X
Fx D 0 W FEG C FFG cos 60ı C FFH D 0 (7)

) FEG D �29:44 kN: (8)

Discussion & Verification You should also try to estimate the effort required to use
the method of joints to solve this problem. Doing so will help you judge which of these
methods, or if a combination of them, is most efficient for a particular problem.
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E X A M P L E 6.5 Truss Analysis by the Method of Sections

A transmission tower for supporting electric wires is shown. During construction,� the
tower will, at certain times, support the load of only one wire (the 1000 lb vertical
force at L), and may also be subjected to the force of a storm (crudely modeled by the
1500 lb horizontal force at P ). To help determine if the tower has a sufficient factor of
safety for this loading scenario, determine the forces supported by members AD, BD,
BE, and CE.

Figure 1

S O L U T I O N

Road Map A quick inspection of the members of interest in Fig. 1 indicates that
because of the number of unknowns involved with any candidate cut (some possible
cuts are shown in Fig. 2), use of the method of sections will not be as straightforward
as in Example 6.4. Although we will use the method of sections in this example, more
generally you should also consider the method of joints, or a combination of these, and
select the approach that is most efficient.�

Before proceeding, by inspection we observe that there are eight zero-force mem-
bers present in Fig. 1: JM , JP ,KO ,KQ, IJ , AJ , IM , andMP . Given the complex-
ity of this truss, we may also suspect that it is statically indeterminate. While we do
not have details of the entire structure and thus cannot make a definitive determination,
if we imagine that joints G and H are supported by a pin and roller, respectively, then
the truss has the number of members m D 31, number of support reactions r D 3,
and number of joints j D 17, and the truss is fully fixed. Application of Eq. (6.22) on
p. 349 shows mC r D 2j ; and since the truss is fully fixed, it is statically determinate,
and we should be able to determine the desired member forces.

Figure 2
Various cuts for use by the method of sections.

Modeling Cut aa shown in Fig. 2 passes through all of the members we are interested
in. But, because the resulting FBD will contain four unknowns, additional FBDs will be
needed so that additional equilibrium equations can be written. Cut bb could be used,
and while this also results in an FBD with four unknowns, two of these are the same as
those from cut aa. Thus, this solution strategy will work: draw two FBDs, one for cut
aa and one for cut bb, and write equilibrium expressions to obtain six equations with
six unknowns.

While the foregoing strategy is straightforward, some additional thought gives a
clever solution using cut cc, which results in the FBD shown in Fig. 3: while it has four
unknowns, it is nonetheless possible to determine two of these. Then cut aa, with the
FBD shown in Fig. 4, can be used to obtain the remaining unknowns.

Governing Equations & Computation Using cut cc, the FBD is shown in Fig. 3.
We cannot determine FAB and FBC , but we can determine the remaining unknowns
as follows:

Figure 3
Free body diagram for cut cc.

X
MA D 0 W �.1500 lb/.40 in:/ � .1000 lb/.60 in:/ � FCE .30 in:/ D 0 (1)

) FCE D �4000 lb; (2)X
Fy D 0 W �FAD � FCE � 1000 lb D 0 (3)

) FAD D 3000 lb: (4)

�Safety during construction is a difficult and sometimes overlooked aspect of the overall design
of structures.

�After examining Fig. 1, hopefully you determined that for this problem, the method of sections
is likely more efficient than the method of joints.
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Then consider the FBD for cut aa, shown in Fig. 4. Since there are now only
two unknowns, only two equilibrium equations are needed, and we elect to use the
following:

X
Fx D 0 W 1500 lb � FBD

�15
25

�
C FBE

�15
25

�
D 0; (5)X

Fy D 0 W �FAD � FBD

�20
25

�
� FBE

�20
25

�
� FCE � 1000 lb D 0: (6)

Solving Eqs. (5) and (6) provides

) FBD D 1250 lb and FBE D �1250 lb: (7)

Figure 4
Free body diagram for cut aa.

Discussion & Verification As an alternative to the solution followed here, use of
cuts aa and bb is also a good solution strategy, although it entails more algebra. Nonethe-
less, you may wish to use this strategy, and you should obtain the same solution. If
you are using a computer to solve the equilibrium equations, then the extra algebra is
irrelevant.
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P R O B L E M S

Problems 6.28 and 6.29

All members of the truss have the same length. Determine the force supported by mem-
bers BD, CD, and CE.

Figure P6.28 Figure P6.29

Problem 6.30

(a) By inspection, identify the zero-force members in the truss.

(b) Of the zero-force members identified in Part (a), which could possibly be elimi-
nated without reducing the strength of the truss? Explain.

(c) Find the force supported by member GH .
Figure P6.30

Problem 6.31

(a) By inspection, identify the zero-force members in the truss.

(b) Of the zero-force members identified in Part (a), which could possibly be elimi-
nated without reducing the strength of the truss? Explain.

(c) Find the force supported by member FH .

Figure P6.31

Problem 6.32

(a) By inspection, identify the zero-force members in the truss.

(b) Of the zero-force members identified in Part (a), which could possibly be elimi-
nated without reducing the strength of the truss? Explain.

(c) Find the force supported by member FG.

Figure P6.32
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Problem 6.33

The structure has a frictionless pulley at G.

(a) By inspection, identify the zero-force members in the truss.

(b) Of the zero-force members identified in Part (a), which could possibly be elimi-
nated without reducing the strength of the truss? Explain.

(c) Find the force supported by member GH .

(d) Find the force supported by member JK.

Figure P6.33

Problem 6.34

The electric power transmission tower supports two wires that apply 4 kip vertical
forces, and the 8 kip horizontal force crudely models wind loading during a storm.

(a) Determine if the truss is statically determinate or indeterminate.

(b) Determine the force supported by the four members that emanate from joint D.
Figure P6.34

Problem 6.35

(a) Determine if the truss is statically determinate or indeterminate.

(b) Determine the force supported by the five members that emanate from joint G.

Figure P6.35
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Problem 6.36

The boom of a tower crane is shown. The pulleys at A, B , and Q are frictionless, and
W D 10 kN.

(a) Determine the force supported by cable JT .

(b) Determine the force supported by the five members that emanate from joint J .

Figure P6.36

Problems 6.37 and 6.38

Determine if each truss is statically determinate, statically indeterminate, or a
mechanism.

(a) (b)

(c) (d)

Figure P6.37

(a) (b)

(c) (d)

Figure P6.38

Problem 6.39

A gambrel room-in-attic truss is shown.

(a) Use equation counting, Eq. (6.22) on p. 349, to show this truss is a mechanism.

(b) This truss type is popular for many applications. Discuss why this truss design does
not collapse in view of the fact that it is a mechanism according to truss theory, as
shown in Part (a).

(c) If the roller support at J is replaced by a pin support, equation counting indicates
that the number of equations and the number of unknowns is the same. With a pin
support at J; is the structure no longer a mechanism according to truss theory?
Explain.

Note: Concept problems are about explanations, not computations.

A

D

C

G
E

J

H

F
B I

Figure P6.39

Problem 6.40

The two truss designs differ only in their depths.

(a) Determine the forces supported by all members of both trusses, and compare val-
ues for corresponding members in each truss.

(b) Offer reasons why truss (b) is the better design.

(c) Offer reasons why truss (a) is the better design.

(d) Overall, which of the two trusses do you believe is stronger, assuming all members
are of the same material and have the same cross-sectional shape?

Figure P6.40
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D E S I G N P R O B L E M S

General Instructions. In all problems, write a brief technical report, following the
guidelines of Appendix A, where you summarize all pertinent information in a well-
organized fashion. It should be written using proper, simple English that is easy to
read by another engineer. Where appropriate, sketches along with critical dimensions
should be included. Discuss the objectives and constraints considered in your design,
the process used to arrive at your final design, safety issues if appropriate, and so on.
The main discussion should be typed, and figures, if needed, can be computer-drawn
or neatly hand-drawn. Include a neat copy of all supporting calculations in an appendix
that you can refer to in the main discussion of your report. A length of a few pages,
plus appendix, should be sufficient.

Design Problem 6.1

Design a footbridge for crossing a small stream. The bridge is intended for residential
use only. The bridge consists of two identical trusses, spaced 3 ft apart. For ease of fab-
rication, each truss is to be constructed of one size of welded steel pipe from Table 3.3
on p. 164, with all members having the same 3 ft length. The 100 lb forces represent
the dead loads. You are to specify the maximum safe live load for the bridge and the
diameter of pipe to be used.

Figure DP6.1

Design Problem 6.2

Design a truss to be made of welded steel pipe to support the loads that are given. The
truss is to be supported at joints A and E and should have joints at points B , C , andD
(joints at other locations are also permissible). For ease of fabrication, the truss should
be constructed from only one size of pipe from Table 3.3 on p. 164. You may consider
the weight of the truss as already being approximately accounted for through the loads
that are given, and no additional factors of safety beyond those already incorporated in
Table 3.3 are needed. While it is not necessary to determine the truss design with mini-
mum weight, it is desirable to use a small-diameter pipe so that the truss is reasonably
economical. Figure DP6.2
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Design Problem 6.3

Design a simply supported wooden roof truss for residential construction. The truss
must have the span and height shown, and it will support the following loads:

� The bottom chord of the truss is unloaded.

� The top chord of the truss is subjected to a dead load of 40 lb=ft of chord length
and a maximum live load of 80 lb=ft of chord length (all loads are vertical).

� All other loads can be neglected.
Figure DP6.3 The members of the truss are to be wood with 2 � 4 in: and/or 2 � 6 in: cross section

(nominal dimensions). For ease of fabrication, the top chord should be entirely one
dimension of member, and similarly for the bottom chord. The wood members have the
allowable strengths given in Table 6.1. You are to specify the member size for both the
top and bottom chords, and specify the size and placement of additional truss members
between the top and bottom chords that you determine are needed. Your design does not
need to be fully optimized in terms of minimizing the amount of wood used, but your
design should be reasonably economical (e.g., a truss constructed entirely of 2 � 6 in:
wood is probably not economical). If you determine that it is not possible to achieve the
strength needed using 2 � 4 in: and/or 2 � 6 in: members, then you should specify the
number of identical trusses that should be attached to one another so that the specified
loads can be supported.

Table 6.1
Allowable loads for dimensioned lumber where
L is the length of the member.

Dimensioned Lumber

Allowable load

2 � 4 in: 2 � 6 in:

Tension: 8;000 lb 14;000 lb

Compression:
0 < L � 2 ft 8;000 lb 14;000 lb

2 ft < L � 4 ft 2;000 lb 3;000 lb
4 ft < L � 6 ft 1;000 lb 1;500 lb
6 ft < L � 8 ft 0 1;000 lb
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6.3 Trusses in Three Dimensions

A space truss is a three-dimensional structure that consists of two-force mem-
bers only, where members are organized so that the assemblage as a whole
behaves as a single object. Some examples of space trusses are shown in
Fig. 6.24.

Figure 6.24. Examples of space trusses. (a) The base of the Eiffel Tower in Paris,
France, showing an intricate arrangement of individual truss members that form larger
structural members, which serve as truss members for the entire structure. (b) The
Expo Center, constructed in Vancouver, Canada, for the 1986 World Exposition, uses
a spherical truss structure. (c) A view from the base of a tower that supports electric
wires. (d) A large crane in a lowered position in anticipation of an approaching storm.

For a three-dimensional structure to be a space truss, it must have the fol-
lowing characteristics:

� All members must be connected to one another by frictionless ball-and-
socket joints.

� Each member may have no more than two joints.

� Forces may be applied at joints only.

� The weight of individual members must be negligible.
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If all of the those characteristics are satisfied, then it is guaranteed that all mem-
bers of the structure are two-force members. Note that while trusses are most
often constructed using straight members, they may contain members with
curved or other complex shapes, provided they are two-force
members.

For practical applications, the definition of a space truss is restrictive, be-
cause in real life, members are usually attached to one another using connec-
tions that are not ball-and-socket joints. Similar to the discussion in Fig. 6.4 on
p. 331, the connections in real structures are usually capable of supporting mo-
ments, and thus the members that emanate from such connections usually are
not two-force members. For precise analysis, structures with moment-resisting
connections should be modeled as frame structures, which are discussed in
Section 6.4. Nonetheless, if a particular structure would qualify as a truss ex-
cept for the connection details, in engineering practice these structures are
often modeled as trusses anyway.

Interesting Fact

Computer modeling. Because of the
complexity of most space trusses, com-
puter methods of analysis such as the
finite element method are usually used.
These computer programs automate the
handling of data, generation of equilibrium
equations, and solving for unknowns.
However, you are responsible for modeling,
determination of loads, interpretation of re-
sults, and—hugely important—assessing
the accuracy of results. The methods of
analysis discussed for trusses in this book
give you many of the tools you need to
interpret the results of computer models
and to help ensure their accuracy.

Fundamentally, the methods for equilibrium analysis of space trusses are
the same as those for plane trusses. That is, both the method of joints and
method of sections can be used. The major differences for space trusses are
that FBDs are usually more intricate, reactions are more complex, and the num-
ber of unknowns to be determined and the number of equations to be solved
are greater.

Stability of space trusses and design considerations

A significant difference between space trusses and plane trusses is the diffi-
culty in assessing stability. If a space truss is unstable, it is often difficult,
even for experienced engineers, to identify this defect based on inspection
only. An effective approach to help avoid instability is to design space trusses
starting with the tetrahedral arrangement of members shown in Fig. 6.25; such
structures are called simple space trusses.

Figure 6.25
In a simple space truss the arrangement of mem-
bers begins with six members that form a tetra-
hedron, and adding to this three new members
(shown by dashed lines) for each new joint that
is added.

While there are advanced analytical methods to help determine the stability
of a truss, the simple rule of thumb called equation counting, which was in-
troduced in Section 6.2 for plane trusses, is very useful with the modifications
described here. To help determine whether a truss is statically determinate or
statically indeterminate, and whether it is stable or unstable, we compare the
number of unknown forces to the number of equilibrium equations. Consider
a space truss having

m D number of members,

r D number of support reactions,

j D number of joints.

(6.28)

Each member has one unknown force, and each support reaction has one un-
known force, so thatmC r is the total number of unknowns. For a space truss,
each joint has three equilibrium equations so that 3j is the total number of
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equations. Thus, the rule of thumb� is as follows:

If mC r < 3j The truss is a mechanism and/or has partial fix-
ity.

If mC r D 3j The truss is statically determinate if it has full
fixity. The truss is statically indeterminate if it
has partial fixity.

If mC r > 3j The truss is statically indeterminate, and it can
have full fixity or partial fixity.

(6.29)

Use of this rule of thumb requires that we inspect a truss structure to deter-
mine its fixity. A truss (or any object) in three dimensions has the potential for
six types of rigid body motion: translation in each of the x, y, and ´ directions
and rotation about each of the x, y, and ´ axes, or a combination of these.
Thus, a structure that is fully supported against rigid body motion (i.e., fully
fixed) requires a minimum of six support reactions that are properly arranged.
If a structure in three dimensions has less than six support reactions, then it
will have only partial fixity. Several examples are shown in Fig. 6.26.

Figure 6.26
Examples of equation counting to determine if
a truss is statically determinate or indetermi-
nate and whether it is stable. All trusses shown
here have six support reactions that provide full
fixity.

End of Sect ion Summary

In this section, methods of analysis for space trusses were described. Some of
the key points are as follows:

� The methods for equilibrium analysis of space trusses are the same as
those for plane trusses. That is, both the method of joints and method of
sections can be used.

� A simple space truss has members arranged in a tetrahedral pattern, as
shown in Fig. 6.25. One of the main features of simple space trusses is
that they are always stable.

� A rule of thumb called equation counting, when used with good judg-
ment, can be effective for determining the stability and static determi-
nacy of a space truss.

�The comments following Eq. (6.22) on p. 349 also apply here (with 2j replaced by 3j ).
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E X A M P L E 6.6 Space Truss Analysis by the Method of Joints

A boom for a crane is shown in a horizontal position. IfW D 1 kN, determine the force
supported by member DG.

Figure 1.

S O L U T I O N

Road Map Before beginning our analysis, we determine if the truss is statically de-
terminate or indeterminate. Examination of Fig. 1 shows that the number of members
is m D 33, number of support reactions is r D 9, number of joints is j D 14, and the
truss is fully fixed. Application of Eq. (6.29) on p. 365 providesmC r D 3j , and since
the truss is fully fixed, it is statically determinate.

To use the method of joints to determine the force supported by member DG, we
examine joint D in Fig. 1 to see that there are four members that emanate from it, and
thus its FBD will involve four unknowns, while only three equilibrium equations are
available. Examination of joint A shows that its FBD will have three unknowns, and
therefore this is an ideal joint to begin with.

Modeling The FBDs for jointsA andD are shown in Fig. 2, where member forces are
positive in tension, and the weight of the members is neglected. Assuming the pulley
is frictionless and the cable is weightless, the force supported throughout the entire
cable is the same, with value T D 1 kN. Either we can leave the pulley attached to the
truss,� or as shown in Fig. 2, we can remove the pulley by shifting the pulley forces to
the bearing of the pulley.

Figure 2
Free body diagrams of joints A and D.

Governing Equations & Computation Referring to the FBD for joint A shown in
Fig. 2, we observe the equilibrium equation

P
F´ D 0 will have only one unknown,

namely, TAD . The vector expression for the force member AD exerts on joint A is

ETAD D TAD

��O{ C 2 Ok
p
5

�
: (1)

� If we elect to leave the pulley on the truss, then we will need to assume a value for the radius
of the pulley. The radius we select, however, is arbitrary, since all member forces, reactions,
etc., will be the same as those found in this solution regardless of the pulley’s radius. If you are
uncertain that these comments are true, or how to proceed if the pulley is left on the truss, then
you should review Fig. 5.11 on p. 271.
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Using a scalar approach to sum forces in the ´ direction provides
Joint A:X

F´ D 0 W �1 kNC TAD
� 2
p
5

�
D 0 ) TAD D 1:118 kN: (2)

We omit finding the remaining unknowns for joint A since they are not needed for
equilibrium of joint D.

Referring to the FBD for joint D shown in Fig. 2, we see that it will probably be
easier to write the equilibrium equations using a vector approach. Vector expressions
for the forces the emanate from joint D are

ETDA D � ETAD D .1:118 kN/
� O{ � 2 Ok
p
5

�
; (3)

ETDB D TDB

��O{ C O| � 2 Ok
p
6

�
; (4)

ETDC D TDC

��O{ � O| � 2 Ok
p
6

�
; (5)

ETDG D TDG.�O{/: (6)

The equilibrium equations for joint D are
Joint D: X

EF D E0 W ETDA C ETDB C ETDC C ETDG D E0: (7)

Substituting Eqs. (3) through (6) into the above along with TAD D 1:118 kN and
grouping terms in the x, y, and ´ directions provide the following three equations

TDB

� �1
p
6

�
CTDC

� �1
p
6

�
C TDG.�1/ D .�1:118 kN/

� 1
p
5

�
; (8)

TDB

� 1
p
6

�
CTDC

� �1
p
6

�
D 0; (9)

TDB

� �2
p
6

�
CTDC

� �2
p
6

�
D .1:118 kN/

� 2
p
5

�
: (10)

Solving these equations provides

) TDB D TDC D �0:6124 kN and TDG D 1:000 kN: (11)

Discussion & Verification Because the loading for this truss is simple, based on
inspection we expect members AD and DG to be in tension, and members DB and
DC to be in compression, and indeed our solution shows this. Further, because of the
symmetry of the problem, we expect the force supported by members DB and DC to
be the same, and our solution also shows this. Other checks include substituting the
solutions into the original equilibrium equations to verify that all of these are satis-
fied. However, this does not provide a check that the equilibrium equations are correct.
Therefore, it is essential that FBDs be accurately drawn and equilibrium equations be
correctly written.



368 Structural Analysis and Machines Chapter 6

E X A M P L E 6.7 Space Truss Analysis by the Method of Sections

For the structure in Example 6.6 with W D 1 kN, determine the force supported by all
members that emanate from the supports at points K, L, and N .

S O L U T I O N

Road Map We will use the method of sections with a cut that passes through the
members of interest, as shown in Fig. 1. Observe that the cut passes through six mem-

Figure 1
To use the method of sections, a cut is taken
that passes through the structure, intersecting
the members of interest.

bers. Since six equilibrium equations are available, we expect to be able to determine
all of the unknown member forces using the FBD that results from this cut.

Modeling Using the cut shown in Fig. 1, the FBD for the left-hand portion of the
structure is shown in Fig. 2, where member forces are positive in tension, and the
weight of the members is neglected. Assuming the pulley is frictionless and the cable
is weightless, the force supported throughout the entire cable is the same, with value
T D 1 kN. We can either leave the pulley attached to the truss or, as shown in Fig. 2,
remove the pulley by shifting the pulley forces to the bearing of the pulley. In this
problem, removing the pulley from the truss will be slightly easier since we will be
able to combine the two 1 kN forces at point A in Fig. 2 into a single force vector and
thus will be able to evaluate its moment using one cross product.

Figure 2. Free body diagram.

Governing Equations & Computation Before we write equilibrium equations, vec-
tor expressions for truss member forces and the cable forces at A, which we will call
EF , are needed:

ETHK D THK.�O{/; ETHL D THL

��2O{ � 2 O|
p
8

�
; (1)

ETIL D TIL.�O{/; ETMK D TMK

��O{ C O| � 2 Ok
p
6

�
; (2)

ETML D TML

��O{ � O| � 2 Ok
p
6

�
; ETMN D TMN .�O{/; (3)

EF D .1 kN/.�O{ � Ok/: (4)

Equilibrium of forces will provide three scalar equations with six unknowns, while
equilibrium of moments about point M will provide three scalar equations with three
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unknowns; thus, we begin by summing moments. Using the following position vectors

ErMA D .7O{ � 2
Ok/m; ErMH D .O{ C O| � 2

Ok/m; ErMI D .O{ � O| � 2
Ok/m; (5)

we sum moments about point M :X
EMM D E0 W ErMA � EF C ErMH � . ETHK C ETHL/C ErMI � ETIL D E0: (6)

Carrying out the cross products in Eq. (6), canceling the meter unit, and grouping terms
in the x, y, and ´ directions give the following equations:� �4

p
8

�
THL D 0; (7)

2THK C
� 4
p
8

�
THL C 2TIL D �9 kN; (8)

THK � TIL D 0: (9)

Equations (7)–(9) are easily solved to obtain

) THL D 0 and THK D TIL D �2:250 kN: (10)

Equilibrium of forces providesX
EF D E0 W EF C ETHK C ETHL C ETIL C ETMK C ETML C ETMN D E0: (11)

By using the solutions given in Eq. (10) and grouping terms in the x, y, and ´ directions,
Eq. (11) gives the following equations:� �1

p
6

�
TMK C

� �1
p
6

�
TML � TMN D �3:500 kN; (12)

� 1
p
6

�
TMK C

� �1
p
6

�
TML D 0; (13)

� �2
p
6

�
TMK C

� �2
p
6

�
TML D 1 kN: (14)

Equations (12)–(14) are easily solved to obtain

) TMN D 4:000 kN and TMK D TML D �0:6124 kN: (15)

Discussion & Verification

� Because of the complexity of most space trusses, verification of the solution can
be challenging. In this problem, based on inspection, we expect member MN
to be in tension and members HK and IL to be in compression, and indeed
our solution shows this. Further, because of the symmetry of the problem, we
expect the forces supported by members HK and IL to be the same and the
forces supported by members MK and ML to be the same, and our solution
also shows this.

� A simple partial check of our solution’s quantitative accuracy can be obtained
by using a scalar approach to evaluate moment equilibrium about line KL in
the FBD of Fig. 2. Taking moments to be positive in the y direction, we obtainX

MKL D 0 W .1 kN/.8m/ � TMN .2m/ D 0 ) TMN D 4:000 kN; (16)

which agrees with the result found earlier. You should study Fig. 2 to see if
other scalar equilibrium equations can be written to help check the remaining
solutions.
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P R O B L E M S

Problem 6.41

The truss shown has a socket support at point D, rollers at points E and F , and a link
from E to G that prevents motion in the x direction.

(a) Does the truss have partial fixity or full fixity?

(b) Determine if the truss is statically determinate or statically indeterminate.

(c) Determine the force supported by all members of the truss ifP D 1 kip,Q D 2 kip,
and R D 3 kip.

Figure P6.41

Problem 6.42

The truss shown has a socket support at point A and rollers at points B and C . Points
A, B , and C lie in the xy plane, and point E lies in the y´ plane.

(a) Does the truss have partial fixity or full fixity?

(b) Determine if the truss is statically determinate or statically indeterminate.

(c) Determine the force supported by all members of the truss if P D 1 kN. Force P
is vertical.

Figure P6.42

Problem 6.43

Imagine you have been retained by an attorney to serve as an expert witness for pos-
sible litigation regarding an accident that occurred on the playground structure shown.
You have been given only preliminary information on this structure, including the fol-
lowing:

� It was designed as a truss structure.

� It had been in service for several years, without incident.

� It collapsed while an adult was climbing on it, causing serious injury to the
person.

� It was thought to be in good condition at the time of the accident.

� Detailed information on the design, fabrication, installation, and so forth has not
yet been made available to you.

Until you have fully studied all of the information available, it is not possible for you to
render an informed opinion on this structure and/or the accident that occurred. Nonethe-
less, the attorney retaining you is anxious to informally hear your initial impressions.
With the information provided, what would you tell the attorney? In answering this,
consider responses such as the structure may have been defective in its design, it may
have been defective in its fabrication or installation, the adult probably should not have
been on the structure and thus he or she is probably responsible for its failure, or I
really don’t know until I have further information.

Figure P6.43



Section 6.3 Trusses in Three Dimensions 371

Problems 6.44 through 6.48

The truss shown has a socket support at point L, a roller at point K, and a cylindrical
roller at point A that prevents motion in the y and ´ directions.

Problem 6.44 Determine if the truss is statically determinate or statically indeter-
minate.

Problem 6.45 Use the method of joints to determine the force supported by member
DG if P D 40 kN and Q D 0 kN.

Problem 6.46 Use the method of joints to determine the force supported by member
MJ if P D Q D 10 kN.

Problem 6.47 Use the method of sections to determine the force supported by mem-
ber JG if P D 40 kN and Q D 0 kN.

Problem 6.48 Use the method of sections to determine the force supported by mem-
ber JG if P D Q D 10 kN.

Figure P6.44–P6.48
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6.4 Frames and Machines

Analysis of frames and machines is discussed in this section, and these are
defined as follows:

Figure 6.27
The mountain bike frame shown is an example
of a frame structure where multiforce members
are used and the connections between members
are often moment-resisting.

Figure 6.28
This microelectromechanical system (MEMS)
machine was fabricated at Sandia National Lab-
oratory. The machine features a mirror whose
tilt angle can be adjusted by a motor (not
shown) that drives gears and a rack and pinion.
The largest gear is about 150�m in diameter (a
human hair is about 100�m in diameter). The
methods discussed in this section can be used to
analyze such systems. A large challenge is con-
trolling contact and friction forces in MEMS.

Frame. A frame is a structure that contains one or more three-force and/or
multiforce members. Typically, a frame is fully fixed in space and uses a sta-
tionary arrangement of members with the goal of supporting forces that are
applied to it.

Machine. A machine is an arrangement of members where typically the
members can have significant motion relative to one another. The usual goal
of a machine is transmission of motion and/or force. While a machine can be
composed entirely of two-force members, in which case it may be analyzed as
a truss, in this section we are interested in machines that contain one or more
multiforce members.

These definitions are broad and have considerable overlap. Nonetheless,
when multiforce members are involved, the methods of static analysis for
frames and machines are the same. Throughout statics, we assume that if mo-
tion is possible, it is slow enough that inertia can be neglected. If this is not
the case, then

P
EF ¤ E0,

P
EM ¤ E0, and methods of analysis from dynamics

must be used.

Analysis procedure and free body diagrams (FBDs)

The main objective in structural analysis of frames and machines is determi-
nation of the forces supported by all members. Depending on the arrangement
and loading of members, a particular problem may involve a combination
of particles in equilibrium (discussed in Chapter 3), two-force members in
equilibrium (truss analysis, discussed in Sections 6.1 and 6.2), and multiforce
members in equilibrium (discussed in Chapter 5). Thus, there are no new tech-
nical tools needed to analyze frames and machines. Rather, the challenge is
synthesis of the many skills you have already developed.

Determination of the forces supported by the individual members of a
frame or machine requires that each member be separated from its neighbor-
ing members, with an FBD being drawn for each. The forces of action and
reaction between the various members must be shown in the FBDs so that New-
ton’s third law is satisfied. Using these FBDs, equilibrium equations are then
written for each member, and presuming the frame or machine is statically de-
terminate, these equations are solved to determine the forces supported by all
members. Because frames and machines usually involve numerous members
and because many of these members will typically be three-force members
and/or multiforce members,� numerous FBDs are usually needed and some-
times these are complex. You will likely find the FBDs for frames and ma-
chines to be among the most challenging you will encounter in statics, and all
of the skills you have cultivated for drawing FBDs will be needed.

To draw the FBDs needed for the analysis of a frame or machine, the
procedure for drawing the FBD for a single body, discussed in Section 5.2,

� If only two-force members were involved, then the structure or machine would be a truss, and
the methods of Chapter 3 and Sections 6.1 and 6.2 would be sufficient.
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is repeatedly applied to each of the members of the frame or machine. This
procedure is as follows:

Helpful Information

Two-force members. When drawing FBDs

for frames and machines, it is helpful to
first identify two-force members and label
their unknowns. Doing this provides for
less complicated FBDs, fewer equilibrium
equations that need to be written, and
fewer unknowns to be determined.

Procedure for Drawing FBDs

1. Disassemble the frame or machine into individual members.

For each member:

2. Imagine this member is “cut” completely free (separated) from its en-
vironment. That is:

� In 2D, think of a closed line that completely encircles the mem-
ber.

� In 3D, think of a closed surface that completely surrounds the
member.

3. Sketch the member.

4. Sketch the forces.

(a) Sketch the forces that are applied to the member by the environ-
ment (e.g., weight).

(b) Wherever the cut passes through a structural member, sketch the
forces that occur at that location.

(c) Wherever the cut passes through a support (i.e., where a support
is removed from the member), sketch the reaction forces and
moments that occur at that location.

5. Sketch the coordinate system to be used. Add pertinent dimensions
and angles to the FBD to fully define the locations and orientations of
all forces.

Common Pitfall

Statics versus dynamics. Consider the
structure shown, where member AB is
pinned to member BC and force F is
known.

The following FBD

is properly drawn. However, a common pit-
fall for problems such as this is to write equi-
librium equations such as

P
MA D 0 to de-

termine the reactionCy . The error in writing
equilibrium equations such as this is that
this is not a problem of static equilibrium.
Clearly, in this structure with this loading,
members AB and BC will undergo accel-
erations, and hence

P
MA ¤ 0, and con-

cepts of dynamics are needed to determine
reactions, velocities, accelerations, etc.

The order in which the forces are sketched in Step 4 is irrelevant. For com-
plicated FBDs, it may be difficult to include all of the dimensions and/or angles
in Step 5. When this is the case, some of this information may be obtained
from a different sketch.

Examples of correct FBDs

Figure 6.29 shows several examples of properly constructed FBDs for frames
and machines. Comments on the construction of these FBDs follow.

Traffic signal pole. After sketching each member, we apply external forces,
which consist of the weightsWC andWH . If you want to consider the weights
of other members (e.g., the weight of member ABF may be relatively large),
then their weights can also be included in the FBDs. Next, we apply the ap-
propriate reactions for the built-in support at point A. Then we search for
two-force members and identify cables DE and GF , and we assign their
forces as TFG and TDE , respectively. Finally, at locations where members are
joined to one another, we include the appropriate forces, ensuring that forces
of action and reaction between interacting bodies are equal in magnitude and
opposite in direction (i.e., Newton’s third law is satisfied).
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Figure 6.29. Examples of properly constructed FBDs.
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Aircraft service vehicle. We are instructed to consider the weights of the
crates at J and K only, although clearly the weights of several other compo-
nents are large. When sketching each member’s shape, we elect to leave the
wheels on the vehicle. Assuming the vehicle is parked on a level surface, the
support reactions consist of Ay and By . The only two-force member is the
hydraulic cylinder HI and the force it supports is labeled Hy . Finally, at lo-
cations where members are joined to one another, we include the appropriate
forces, ensuring that forces of action and reaction between interacting bodies
are equal in magnitude and opposite in direction.

Pickup tool. We are instructed to neglect the weights of individual members.
Rod CE and the item GH being gripped are the only two-force members, and
the forces they support are labeled Cx and Gy , respectively. At pin D, in
addition to the usual two forces Dx and Dy , we have a moment MD due to
the torsional spring.

Examples of incorrect and/or incomplete FBDs

Figure 6.30 shows several examples of incorrect and/or incomplete FBDs for
frames and machines. Comments on how these FBDs must be revised follow,
but before reading these, you should study Fig. 6.30 to find as many of the
needed corrections and/or additions on your own as possible.

Frame with pulley

1. The forces on the pulley must be revised in one of the following ways:

� Either the force W applied to the bearing of the pulley must be
placed on the right-hand rim of the pulley, or

� The force W oriented at 30ı on the left-hand rim of the pulley
must be shifted to the bearing.

2. The connection forces at pin B must also include vertical forces By .

3. The support reactions at A must also include a moment reaction MA.

Scraper

1. The connection at E allows no rotation about the ´ axis (direction out
of the plane of the figure); therefore a moment ME must be applied to
the scoop and tractor such that they are in opposite directions.

2. The front tire exerts a horizontal force on the ground due to the axle
torque MD , and therefore a horizontal force Bx is needed between the
tire and ground.

Ratchet pruner

1. Although not really a deficiency with the FBDs, a coordinate system
should be selected and shown.

2. With the information given, the positions of the two 10 lb forces on the
handles are uncertain. Either we must do more detailed work to pre-
cisely locate these (this may be difficult), or we must make a reason-
able decision for these positions. In these FBDs, the latter approach is
used, and while the locations of the 10 lb forces are approximate, they
nonetheless will probably be very acceptable for purposes of analysis
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Figure 6.30. Examples of incorrect and/or incomplete FBDs.
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and design. The main deficiency shown by the 10 lb forces in these FBDs
is that they have different lines of action; if this is the case, then the
pruner will tend to rotate due to the moment they produce. Hence, the
FBDs must be revised so that the two 10 lb forces have the same line of
action.

3. The connection forces at pin A must also include horizontal forces Ax .

4. The connection forces at pin B must also include horizontal forces Bx .

End of Sect ion Summary

In this section, methods of analysis for frames and machines are discussed.
Some of the key points are as follows:

� A frame is a structure that contains one or more three-force and/or mul-
tiforce members. Typically, a frame is fully fixed in space and uses a
stationary arrangement of members with the goal of supporting forces
that are applied to it.

� A machine is an arrangement of members where typically the members
can have significant motion relative to one another. The usual goal of
a machine is transmission of motion and/or force. Throughout statics,
when motion is possible, we assume it is slow enough that inertia can be
neglected. When this is not the case, methods of analysis from dynamics
must be used.

� When drawing FBDs for frames and machines, it is helpful to first iden-
tify two-force members and label their unknowns. Doing this provides
for less complicated FBDs, fewer equilibrium equations that need to be
written, and fewer unknowns to be determined.
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E X A M P L E 6.8 Analysis of a Bridge

The design shown is common in multispan highway bridges. If the bridge supports a
uniform vertical load of 8 kN=m, determine the support reactions and the force sup-
ported by the link CD.

Figure 1

S O L U T I O N

Road Map This bridge has a beam from A to C and a beam from D to E. Because
the two beams, when connected by link CD, do not behave as a single body, multiple
FBDs will be required.

Modeling The FBDs are shown in Fig. 2 and are constructed as follows. We start
by sketching beams AC and DE and link CD, which we assume is vertical. We ex-
amine the structure for two-force members and find that link CD is the only two-force
member present (disregarding the vertical support column atB). We label the force sup-
ported by link CD in the FBDs as TCD , where positive corresponds to tension. Next,
we add the support reactions to the FBDs. Finally, beam AC has 30m length, and there-
fore the force it supports due to the distributed load is .8 kN=m/.30m/ D 240 kN,
which we place at the center of beam AC . Similarly, beam DE has 20m length, and
therefore the force it supports is .8 kN=m/.20m/ D 160 kN, which we place at the
center of beam DE.

Figure 2. Free body diagrams.

Helpful Information

Two-force members. When we draw FBDs,
identifying and treating two-force members
first will simplify the analysis because all
the equilibrium equations for the two-force
members are satisfied. For example, the
FBD for link CD shown in Fig. 2 satisfiesP
Fx D 0,

P
Fy D 0, and

P
M D 0,

leaving only the equations for the remaining
FBDs to be written and solved.

Governing Equations & Computation Examining Fig. 2 shows that beam AC has
four unknowns, while beam DE has only three. Thus, we will begin writing equilib-
rium equations for beam DE first, followed by equations for beam AC .
Member DE:X

Fx D 0 W Ex D 0 ) Ex D 0; (1)X
ME D 0 W �TCD.20m/C .160 kN/.10m/ D 0 ) TCD D 80:0 kN; (2)X
Fy D 0 W TCD � 160 kNCEy D 0 ) Ey D 80:0 kN: (3)

Member AC:X
Fx D 0 W Ax D 0 ) Ax D 0; (4)X
MA D 0 W �.240 kN/.15m/C By.25m/ � TCD.30m/ D 0 (5)

) By D 240 kN; (6)X
Fy D 0 W Ay � 240 kNC By � TCD D 0 ) Ay D 80:0 kN: (7)
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Discussion & Verification

� Does the solution appear to be reasonable? To the extent possible, you should
verify that your solution is reasonable. For example, beam DE is simply sup-
ported, and with a 160 kN load at its midspan, the solutions TCD D 80:0 kN
and Ey D 80:0 kN given by Eqs. (1) and (2) are clearly correct.

� Verification of the solution. You should verify that the solution is mathemati-
cally correct by substituting forces into all equilibrium equations to check that
each of them is satisfied. However, this check does not verify the accuracy of
the equilibrium equations themselves, so it is essential that you draw accurate
FBDs and check that your solution is reasonable.
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E X A M P L E 6.9 Analysis of a Basketball Hoop

A basketball hoop whose rim height is adjustable is shown. The supporting postABCD
weighs 90 lb with center of gravity at point C , and the backboard-hoop assembly
weighs 50 lb with center of gravity at point G. The height of the rim is adjustable
by means of the screw and hand crank IJ , where the screw is vertical. If a person with
180 lb weight hangs on the rim, determine the support reactions at D and the forces
supported by all members.

Figure 1

S O L U T I O N

Road Map To determine the support reactions at the base of the structure, we first
draw an FBD of the entire structure, using a cut that passes through point D only, and
we then write and solve the equilibrium equations for this FBD. To determine the forces
supported by the individual members, we will draw FBDs of each member followed by
writing and solving equilibrium equations for these.

Modeling To determine the support reactions for the structure, we draw an FBD, us-
ing a cut that passes through the structure at point D only, as shown in Fig. 2. The 90
and 50 lb weights are vertical forces placed at their respective centers of gravity, and
we assume the weights of the other components are negligible. We assume the person
hanging on the rim is in static equilibrium and thus applies a 180 lb vertical force at
point H .

Helpful Information

Hanging on the rim. If the person hanging
on the rim is in static equilibrium, then the
force applied to the rim is his or her weight.
If the person is in motion (e.g., swinging or
jumping), then because of inertia, the force
applied is usually different than his or her
weight, with magnitude and direction that
are time-dependent.

Figure 2
Free body diagram of the entire structure for de-
termining the support reactions.

Governing Equations & Computation Using the FBD in Fig. 2, we write and solve
the following equilibrium equations:X

Fx D 0 W Dx D 0 ) Dx D 0; (1)X
Fy D 0 W Dy � 90 lb � 50 lb � 180 lb D 0 ) Dy D 320 lb; (2)X
MD D 0 W MD � .50 lb/.2:4 ft/ � .180 lb/.4:5 ft/ D 0; (3)

) MD D 930 ft�lb: (4)

Modeling To determine the forces supported by the individual members, we draw
FBDs for each member as shown in Fig. 3. These FBDs are constructed by first sketch-
ing the members. We then identify any two-force members and label their forces first.
In Fig. 3, members AE and IJ are the only two-force members, and we label their
forces as TAE and TIJ , respectively. After the FBDs for the two-force members are
completed, we add to the remaining FBDs the forces from the two-force members such
that Newton’s third law is satisfied. That is, we apply force TAE to the post ABCD,
and to the backboard-hoop, making sure they are applied in directions opposite to the
forces on member AE. Similarly, we apply force TIJ to the post ABCD and to mem-
ber IBF . The FBDs are completed by adding the support reactions at D and adding
horizontal and vertical forces at pins where structural members are attached.

Governing Equations & Computation By treating two-force members as described
here, members AE and IJ automatically satisfy

P
Fx D 0,

P
Fy D 0, and

P
M D

0. Of the three members remaining, the backboard-hoop assembly has the fewest un-
knowns (three), and thus we begin writing and solving equilibrium equations for it.
Using the geometry shown in Fig. 1, the horizontal component of the force supported
by member AE is TAE .2 ft/=

p
.2 ft/2 C .1:6 ft/2 D TAE .2=2:561/, and the vertical

component is TAE .1:6=2:561/. Thus, equilibrium equations can be written as
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Figure 3. Free body diagrams for determining the forces supported by each member.

Member EFH:X
MF D 0 W TAE

� 2

2:561

�
.1:6 ft/ � .50 lb/.0:4 ft/ � .180 lb/.2:5 ft/ D 0; (5)

) TAE D 376:2 lb; (6)X
Fx D 0 W Fx � TAE

� 2

2:561

�
D 0 ) Fx D 293:8 lb; (7)X

Fy D 0 W Fy � TAE

� 1:6

2:561

�
� 50 lb � 180 lb D 0 ) Fy D 465:0 lb: (8)

The FBDs remaining for members ABCD and IBF now have three unknowns
each, and either could be considered next. We will use member IBF , and we write
Member IBF:X

MB D 0 W TIJ .0:5 ft/C Fx.1:6 ft/ � Fy.2 ft/ D 0; (9)

) TIJ D 920:0 lb; (10)X
Fx D 0 W Bx � Fx D 0 ) Bx D 293:8 lb; (11)X
Fy D 0 W �TIJ C By � Fy D 0 ) By D 1385 lb: (12)

With Eq. (12), all of the unknowns have been determined, and it is not necessary to
write the equilibrium equations for the post ABCD.

Helpful Information

Strategy for finding reactions. Rather
than begin our solution by finding the sup-
port reactions, we could have proceeded
directly to the FBDs in Fig. 3, and this
eventually would have produced the same
reactions. This was the procedure used
in Example 6.8 because in that problem it
was not possible to determine the support
reactions at the outset.

Discussion & Verification

� You should check that the solutions appear to be reasonable. In this problem the
loading is simple enough that we expect members AE and IJ to be in tension,
and indeed our solution shows this. By inspection, the reactions at the base of
the post, point D, also have the proper signs.

� In this solution we found the support reactions first. Doing this used three equi-
librium equations, and thus it was possible to find all of the remaining unknowns
without writing the equilibrium equations for the post ABCD. To help ver-
ify the solution’s accuracy, you could write and solve these equations and you
should find that Dx , Dy , and MD agree with the results in Eqs. (1), (2), and
(4).
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E X A M P L E 6.10 Analysis of a Ladder

A ladder used by swimmers to climb in and out of a pool is shown. The ladder has rungs
at points E and F . Neglecting forces applied by the water to the ladder, determine the
forces supported by each member.

Figure 1

S O L U T I O N

Road Map Since the ladder contains at least one multiforce member, this structure
must be analyzed as a frame. In fact, all three members of the ladder are multiforce
members (three-force members, to be precise). What is challenging here is that point
A is complicated—three members are joined by a single pin at this location. While
we could disassemble the structure and draw FBDs for the three members only, for
problems such as this where three or more members are supported by a single pin, it is
especially helpful to draw a separate FBD for the pin. Hence, four FBDs will be used in
our solution.

Helpful Information

Three or more members supported by
a pin. When we draw FBDs of frames and
machines where three or more members
are supported by a single pin, such as the
pin at point A in this example, it is helpful
to also draw an FBD of the pin.

Modeling We disassemble the structure into its three members plus the pin at A,
which leads to the FBDs shown in Fig. 2. These FBDs are constructed as follows. Begin-
ning with member AGD, point D is pin-supported so it has the usual two orthogonal
reactions Dx and Dy . In addition, the member is supported by a pin at A; the pin ap-
plies forces A1x and A1y to the member, and the member applies these same forces
to the pin, but in opposite directions in accord with Newton’s third law. Next, member
AFC is supported by a roller at C , so there is one reaction that is perpendicular to the
wall of the pool. In addition, the member is supported by a pin at A: the pin applies
forces A2x and A2y to the member, and the member applies these same forces to the
pin, but in opposite directions. The FBD for member AEB is similarly drawn.

Figure 2. Free body diagrams.

Governing Equations & Computation Examination of the FBDs shows that mem-
ber AFC has only three unknown forces, and hence we choose this to begin writing
equilibrium equations for it. Thus,
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Member AFC:X
MA D 0 W �.30 lb/.8 in:/C Cx.9 in:/ D 0 ) Cx D 26:67 lb; (1)X
Fy D 0 W A2y � 30 lb D 0 ) A2y D 30:00 lb; (2)X
Fx D 0 W A2x � Cx D 0 ) A2x D 26:67 lb: (3)

Examination of the remaining FBDs shows they each contain four unknowns, so there
is no preferred order for treating them since a system of coupled algebraic equations
will need to be solved. Thus, for the remaining three FBDs, the equilibrium equations
are as follows:
Member AGD:X

MA D 0 W �.20 lb/.8 in:/ �Dx.18 in:/CDy.16 in:/ D 0; (4)X
Fx D 0 W A1x CDx D 0; (5)X
Fy D 0 W A1y CDy � 20 lb D 0: (6)

Member AEB:X
MA D 0 W Bx.9 in:/C By.12 in:/ � .40 lb/.4 in:/ D 0; (7)X
Fx D 0 W A3x C Bx D 0; (8)X
Fy D 0 W A3y C By � 40 lb D 0: (9)

Pin A: X
Fx D 0 W �A1x � A2x � A3x D 0; (10)X
Fy D 0 W �A1y � A2y � A3y D 0: (11)

Equations (4)–(11) are a system of eight equations with eight unknowns. While these
may be solved manually, the use of a computer is more effective, and provides

Bx D �19:6 lb By D 28:0 lb Dx D 46:2 lb Dy D 62:0 lb

A1x D �46:2 lb A1y D �42:0 lb A3x D 19:6 lb A3y D 12:0 lb
(12)

Discussion & Verification

� Verification of solution. You should verify that the solution is mathematically
correct by substituting forces into all equilibrium equations to check that each
of them is satisfied. However, this check does not verify the accuracy of the
equilibrium equations themselves, so it is essential that you draw accurate FBDs

and check that your solution is reasonable.

� Alternate FBDs. The use of a separate FBD for the pin at A was helpful in this
problem. However, other FBDs, provided they are properly drawn, can also be
used. For example, if pin A is left on member AGD so that the remaining two
members directly apply forces to AGD, then the FBDs are as shown in Fig. 3.
You should sketch for yourself the FBDs that result if pin A is left on member
AFC , or member AEB .

� The bigger picture. The solution outlined here is the first step (a major first
step) in fully designing and/or analyzing this pool ladder. In mechanics of ma-
terials, a subject that follows statics, you will use the forces determined here to
investigate if the ladder is strong enough, if its deformations are acceptable, and
so on.

Figure 3
Alternate FBDs where pin A and its forces are
left on member AGD.
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P R O B L E M S

Problem 6.49

A cork puller for removing the cork from a bottle is shown. Draw FBDs for all of the
members of the cork puller and the cork (i.e., members AB , CD, LM , HBEDI , and
JKL), labeling all unknowns.

Figure P6.49

Problem 6.50

The keyboard mechanism for a piano consists of a large number of parts, but for pur-
poses of modeling the transmission of force and motion from the key to the piano wire,
the model shown can be used. Draw FBDs for all of the members (i.e., members ABC ,
DCE, EF , and GFH ), labeling all unknowns.

Figure P6.50

Problem 6.51

The tool shown is used for picking up items that otherwise would be out of a person’s
reach. In the position shown, the torsional spring at C supports a moment of 10 in:�lb
which tends to open the jaws of the tool. Neglect the weights of the individual members
and neglect friction at pointsH andG. Determine the forces supported by all members
of the tool and the force applied by the tool to the item being gripped at H and G.

Figure P6.51

Problem 6.52

Compare the designs for the pickup tools shown in Fig. P6.51 and in Fig. 6.29 on p. 374.
If the dimensions of the members in these tools are approximately the same, speculate
on which of these tools will be capable of applying the greater force to the item being
gripped at H and G before one of the members of the tool fails.
Note: Concept problems are about explanations, not computations.

Problems 6.53 and 6.54

The elevation and tilt angle of tableAB are controlled by an operator’s hand at pointD.
The table supports a box weighing 10 lb with center of gravity at point G. Determine
the force the operator must apply to keep the table in equilibrium, and determine the
force supported by all members of the machine.

Problem 6.53 The force applied by the operator is vertical.

Problem 6.54 The force applied by the operator is horizontal.

Figure P6.53 and P6.54
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Problems 6.55 and 6.56

The elevation and tilt angle of tableAB are controlled by an operator’s hand at pointD.
The table supports a box weighing 40N with center of gravity at point G. Determine
the force the operator must apply to keep the table in equilibrium, and determine the
force supported by all members of the machine.

Problem 6.55 The force applied by the operator is vertical.

Problem 6.56 The force applied by the operator is horizontal.

Figure P6.55 and P6.56

Problem 6.57

A hydraulically powered lift supports the two boxes shown. Each box weighs 200 lb
with center of gravity in the middle of each box. Neglect the weight of individual
members.

(a) Draw four FBDs, one each for members AEF , ABC , ED, and BE, labeling all
forces.

(b) Determine the force in the hydraulic actuator BE required to keep the lift in equi-
librium.

Figure P6.57

Problem 6.58

The shovel of an end loader has pins at points A, B , C , and D. The scoop supports a
downward vertical load of 2000 lb, which is not shown in the figure, at point E.

(a) Draw four FBDs, one each for parts AB and AC , hydraulic cylinder AD, shovel
CDE, and member BD, labeling all forces.

(b) Determine the force the hydraulic cylinder AD must generate to keep the shovel
in equilibrium.

Figure P6.58

Problem 6.59

A backhoe is shown. Hydraulic cylinders GF and BC are horizontal and vertical, re-
spectively. Neglect the weights of members.

(a) Draw six FBDs, one each for membersDEF and FCA, shovel AB , and hydraulic
cylinders BC , CE, and FG.

(b) If each of the three hydraulic cylinders is capable of producing a 1000 lb force
(in both tension and compression), determine the largest weight W that can be
supported in the position shown.

Figure P6.59
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Problem 6.60

The hand brake for a bicycle is shown. PortionsDE and FG are free to rotate on boltA
which is screwed into the frame BC of the bicycle. The brake is actuated by a shielded
cable where T1 is applied to point E and T2 is applied to point G. A spring having
50N compressive force is placed between points E and G so that the brake stays open
when it is not being used. Assume the change in the spring’s force is negligible when
the brake is actuated to produce the 200N forces at points D and F .

(a) Draw three FBDs, one each for DE and FG and bolt A, labeling all forces.

(b) Determine the necessary cable forces T1 and T2.

(c) Determine the forces exerted by DE and FG on bolt A.

Figure P6.60

Problem 6.61

A bicycle is pedaled up a gentle incline. The rider and bicycle weigh 120 lb with center
of gravity at point C . For the position shown, determine the force the rider must apply
to the pedal at F for the bicycle to move at constant speed. Assume the rider applies a
force to the pedals using her right foot only, the force applied by the rider to pedal F is
perpendicular to the crank EF , and the lower portion of the chain between sprockets
D and E is slack.

Figure P6.61

Problem 6.62

The linkage shown is used on a garbage truck to lift a 2000 lb dumpster. Points A–G
are pins, and memberABC is horizontal. This linkage has the feature that as the dump-
ster is lifted and rotated, the front edge A of the dumpster is simultaneously lowered,
placing it at a more convenient height for emptying.

(a) Draw five FBDs, one each for members ABC , CD, and EDG, dumpster H , and
hydraulic cylinder CF , labeling all forces.

(b) For the position shown, when the dumpster just fully lifts off the ground, determine
the force in hydraulic cylinder CF .

Figure P6.62
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Problem 6.63

An end loader for a small garden tractor is shown. All connections are pinned. The only
significant weight is W .

(a) Draw six FBDs, one each for members BC ,DG, and AEF , plate CDE, hydraulic
cylinder EG, and shovel AB , labeling all forces.

(b) If the hydraulic cylinder EG is capable of producing a 3000 lb force, determine
the largest weight W that may be lifted in the position shown.

Figure P6.63

Problem 6.64

A prosthetic arm and hand assembly is shown. Points B and H are fixed to the arm.
The hand is actuated by a pneumatic cylinder BF that opens and closes the hand. The
spring FH helps keep the hand in alignment with the arm. If the person holds a bag
of groceries that weighs 30N and grips the bag at A and D with a 10N force, de-
termine the forces supported by the pneumatic cylinder and the spring. Assume that
while holding the bag of groceries, the arm and hand have the geometry shown where
the pneumatic cylinder is horizontal. Figure P6.64

Problem 6.65

Three common designs for a bridge to span a multilane highway are shown. Design 1 is
the same as that considered in Example 6.8 on p. 378 where link CD is used to connect
the two spans of the bridge. Design 2 uses two simply supported I beams. Design 3 uses
a single I beam from points A to E with a roller support at midspan. Comment on the
pros and cons of each of these designs, considering issues such as the following:

� Which are straightforward to analyze for determining the support reactions and
which may be difficult to analyze?

� Which may be easier to construct?

� Which may be more sensitive to unexpected support motion, such as if the sup-
port at B settles with time?

� Which may be safer, such as if the support at B were accidentally struck by a
vehicle passing under the bridge?

Note: Concept problems are about explanations, not computations.

Figure P6.65
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6.5 Chapter Review

Important definitions, concepts, and equations of this chapter are summarized.
For equations and/or concepts that are not clear, you should refer to the origi-
nal equation and page numbers cited for additional details.

Trusses

A truss is a structure that consists of two-force members only, where members
are organized so that the assemblage as a whole behaves as a single object.
For a two-dimensional structure, for all members to be two-force members,
the structure must have the following characteristics:

� All members must be connected to one another by frictionless pins, and
the locations of these pins are called joints.

� Each member may have no more than two joints.

� Forces may be applied at joints only.

� The weight of individual members must be negligible.

A structure having the above characteristics is called a plane truss.

Method of joints. In the method of joints, the force supported by each mem-
ber of a truss is determined by drawing FBDs for each joint, and then requiring
that each joint be in equilibrium by writing the equations

P
Fx D 0 andP

Fy D 0 for each joint.

Method of sections. In the method of sections, the force supported by mem-
bers of a truss is determined by taking a cut through the structure, and the FBD
that results is required to be in equilibrium by writing the equations

P
Fx D 0,P

Fy D 0, and
P
M D 0.

Zero-force members. A truss member (or any member) that supports no
force is called a zero-force member. Zero-force members in a truss can be
identified by finding joints that match the pattern shown in Fig. 6.31. If

� A particular joint has three members connected to it,

� Two of these members are collinear, and

� The joint has no external force applied to it,

then the noncollinear member at that joint is a zero-force member.Figure 6.31
Geometry of members in a truss allowing a
zero-force member to be recognized by inspec-
tion.

Zero-force members can be very effective in improving the overall strength
of a truss by reducing the length of compression members and thus improving
their resistance to buckling.
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Statically determinate and indeterminate trusses. In a statically determi-
nate truss, the equations of equilibrium are sufficient to determine the forces
supported by all members of the truss and the support reactions. In a statically
indeterminate truss, the equations of equilibrium are not sufficient to deter-
mine all of these. A simple rule of thumb to help determine whether a truss is
statically determinate or indeterminate is to compare the number of unknowns
to the number of equilibrium equations, and we call this equation counting.
For a plane truss having

m D number of members,

r D number of support reactions,

j D number of joints,

Eq. (6.21), p. 349

the rule of thumb is as follows:

If mC r < 2j The truss is a mechanism and/or has partial fix-
ity.

If mC r D 2j The truss is statically determinate if it has full
fixity.
The truss is statically indeterminate if it has
partial fixity.

If mC r > 2j The truss is statically indeterminate, and it can
have full fixity or partial fixity.

Eq. (6.22), p. 349

Successful use of equation counting requires good judgment on your part,
which is why it is called a rule of thumb rather than a rule.

Simple, compound, and complex trusses. A simple truss has members
arranged in a triangular pattern, as shown in Fig. 6.16 on p. 351. Compound
and complex trusses consist of two or more simple trusses connected to one
another. While simple trusses (and compound and complex trusses) are popu-
lar, other designs for trusses are also common and can perform very well. One
of the main features of simple trusses (and compound and complex trusses) is
that they are always stable.

Buckling. Because truss members are usually straight and slender, compres-
sion members are susceptible to buckling. Furthermore, the force at which
buckling occurs in a straight member decreases very rapidly as a member be-
comes longer (the buckling load is proportional to 1=L2 where L is the length
of the member). Thus, it is undesirable to have long compression members in
a truss.

Space trusses

A space truss is a three-dimensional structure that consists of two-force mem-
bers only, where members are organized so that the assemblage as a whole
behaves as a single object. The comments made earlier regarding the require-
ments for two-force members in a plane truss also apply, except in a space
truss, members must be connected to one another by ball-and-socket joints.
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Space trusses can be analyzed using the method of joints and the method of
sections, and the equation-counting rule of thumb can also be used, except
each joint has three equilibrium equations.

Frames and machines

Frame. A frame is a structure that contains one or more three-force and/or
multiforce members. Typically, a frame is fully fixed in space and uses a sta-
tionary arrangement of members with the goal of supporting forces that are
applied to it.

Machine. A machine is an arrangement of members where typically the
members can have significant motion relative to one another. The usual goal
of a machine is transmission of motion and/or force. Throughout statics when
motion is possible, we assume it is slow enough that inertia can be neglected.
When this is not the case, methods of analysis from dynamics must be used.

FBDs. When we draw FBDs for frames and machines, it is helpful to first
identify two-force members and label their unknowns. Doing this provides for
less complicated FBDs, fewer equilibrium equations that need to be written,
and fewer unknowns to be determined.
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R E V I E W P R O B L E M S

Problem 6.66

Member AGB is a single member with pin connections at points A, G, and B . Simi-
larly, member BHC is a single member with pin connections at points B , H , and C .
All other connections are also pins.

(a) Is this structure a truss? Explain.

(b) Determine the forces supported by all truss members.

Figure P6.66

Problem 6.67

(a) Determine if the truss is statically determinate or indeterminate.

(b) By inspection, identify the zero-force members in the truss.

(c) Regardless of your answer to Part (a), determine the force supported by member
QI .

Figure P6.67

Problem 6.68

(a) Determine if the truss is statically determinate or indeterminate.

(b) By inspection, identify the zero-force members in the truss.

(c) Regardless of your answer to Part (a), determine the force supported by member
DG.

Figure P6.68

Problem 6.69

Compared to the truss shown in Fig. P6.69(a):

� The truss in (b) subdivides members AB and BC in half.

� The truss in (c) subdivides members AB , BC , AD, and DC in half.

� The truss in (d) subdivides members AB and BC into thirds.

Consider failure due to in-plane buckling only. If the truss in Fig. P6.69(a) fails when
P D 1440 lb, specify (if possible) the values of P at which the trusses in Fig. P6.69(b),
(c), and (d) will fail. Figure P6.69
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Problem 6.70

The boom hangs in the vertical x´ plane and is supported by a socket at point N and
cablesOB and BP . The bottom flange of the boom is equipped with a roller system so
that a load can be moved along its length. Even though the top and bottom flanges of
the boom are continuous members, idealize the structure as a truss, and determine the
force supported by the two cables and member CD when the 600 lb load is positioned
at point C .

Figure P6.70

Problem 6.71

A hoist for lifting building materials is attached to a scaffold. The hoist has frictionless
pulleys at points A and B , and both pulleys have 300mm radius.

(a) By inspection, identify the zero-force members in the truss.

(b) Determine the force supported by member DE.

(c) Determine the force supported by member EH .

Figure P6.71

Problem 6.72

Steps CDE and FGH are supported by a truss structure having nine members. Deter-
mine the forces supported by all nine members of the truss.

Figure P6.72



Section 6.5 Chapter Review 393

Problem 6.73

A lifting platform is supported by members JKF and LH and hydraulic cylinder KL.
All connections are frictionless pins.

(a) Determine the force the hydraulic cylinder must support for equilibrium.

(b) Use the method of joints to determine the force supported by member GH .

(c) Use the method of sections to determine the force supported by member BC .

Figure P6.73

Problem 6.74

A small trailer-mounted dumper is shown. All connections are pinned and memberEF
is horizontal. The hydraulic cylinder simultaneously tilts the dump and opens the gate.

(a) Draw five FBDs, one each for hydraulic cylinder AE, members BDE and EF ,
gate FG, and the dump, labeling all forces.

(b) Determine the force supported by hydraulic cylinder AE.

Figure P6.74
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7 Centroids and Distributed
Force Systems

This chapter begins with discussions of cen-
troid, center of mass, and center of gravity. The
common element among these is that centroid,
center of mass, and center of gravity represent
average positions of distributions. Applications
of these concepts to distributed force systems,
fluid pressure loading, and gas pressure load-
ing are then considered.

7.1 Centroid

Introduction – center of gravity

While centroids are the focus of this section, it is more intuitive to begin with
a short discussion dealing with center of gravity.

Consider the chapter opening photo, shown on this page, of Hoover Dam,
located on the Colorado River on the border between Arizona and
Nevada. The dam is made primarily of concrete, but also includes steel pip-
ing, turbine generators, and so on. Every atom of material in the dam has a
weight due to gravity, and in aggregate, these yield the total weight of the
dam, which of course is quite substantial. The dam retains water in the reser-
voir, and this water applies pressure to the dam whose direction and intensity
vary with every point on the face of the dam. In aggregate, this water pres-
sure gives rise to a substantial force. For many analysis and design purposes,

395
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it is sufficient to know only the total weight of the dam and the total force
exerted by the water on the dam. Indeed, each of these constitutes an equiva-
lent force system—that is, part of an equivalent force system. The remaining
information needed is the location of the line of action for the weight, called
the center of gravity, and the location of the line of action for the fluid force,
sometimes called the center of pressure. Among the topics discussed in this
chapter are methods for determining the center of gravity and the center of
pressure. Thus, the concepts of this chapter build on and enhance the concepts
of equivalent force systems discussed in Chapter 4. However, the concepts of
this chapter go beyond forces and equivalent force systems. For example, the
centroid of an area is important in governing the strength of a beam, and while
the centroid is mathematically similar to the center of gravity, it is nonetheless
very different. The underlying concept of this chapter is determination of the
average position of a distribution, where the distribution may be shape, mass,
weight, fluid pressure, gas pressure, and so on.

We may quantify some of the ideas discussed above by considering a sim-
ple example, as shown in Fig. 7.1(a), where a waiter at a restaurant brings
you wine and pasta on a tray. The center of gravity is defined to be the av-
erage position of the weight distribution of the objects the waiter carries. If
the waiter is any good at his job, he will be sure that the center of gravity of
the tray, wine, and pasta is positioned directly over the hand he uses to carry
these. If this is not the case, then the tray will fall as he attempts to carry it. In

Figure 7.1
(a) A tray with wine and pasta. (b) Construc-
tion of an equivalent force system provides the
weight of the collection of objects and the loca-
tion of this weight, which is called the center of
gravity.

Fig. 7.1(a), the weights of the wine, tray, and pasta are 12, 8, and 10N, respec-
tively, with the positions shown. We would like to replace these weights with
a single force, which is to be located at the center of gravity for the collection
of objects. Determination of the force and its position (the center of gravity)
can be accomplished by constructing an equivalent force system, as shown in
Fig. 7.1(b). Using Eq. (4.16) on p. 223 for constructing an equivalent force
system provides X

.Fy/system 1 D
X

.Fy/system 2 (7.1)

12NC 8NC 10N D F (7.2)

) F D 30N; (7.3)

X
.MA/system 1 D

X
.MA/system 2 (7.4)

.12N/.12 cm/C .8N/.30 cm/C .10N/.46 cm/ D F Nx (7.5)

) Nx D 28:1 cm: (7.6)

The force F D 30N represents the entire weight of the collection of objects,
and the center of gravity Nx D 28:1 cm is the location of the line of action for
this force. The important idea here is that the center of gravity is the average
position of the weight distribution.

Equations (7.1)–(7.6) can be generalized to give the center of gravity for a
collection of an arbitrary number of objects as

Nx D

nP
iD1

x̃iWi

nP
iD1

Wi

(7.7)
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where n is the number of objects, Wi is the weight of object i , and x̃i is the
location of Wi (i.e., the moment arm) measured from the origin of the coordi-
nate system. In Eq. (7.7), we use the superposed tilde ˜ to emphasize that x̃i
is the position of the center of gravity of object i , and this notation will help
avoid confusion with the coordinate x.

Concept Alert

Centroid, etc. Centroid, center of mass,
and center of gravity all measure the aver-
age position of distributions. Furthermore,
the calculation procedures for determining
these are almost identical.

� The centroid is the average position
of a distribution of shapes.

� The center of mass is the average
position of a distribution of mass.

� The center of gravity is the average
position of a distribution of weight.

In Eq. (7.7), the products Wi x̃i are called the first moments of the weights
Wi . The concept underlying Eq. (7.7) can be generalized so that by evaluating
the first moment of any distribution, the average position of that distribution
may be determined. For example, by replacing Wi in Eq. (7.7) with the mass
mi of each object, Nx then measures the average position of the mass for a col-
lection of objects, and this is called the center of mass. Similarly, by replacing
Wi in Eq. (7.7) with the volume Vi of each object, Nx then measures the aver-
age position for the volume of a collection of objects, and this is called the
centroid.

Centroid of an area

The centroid is defined to be the average position of a distribution of shapes.
If the distribution consists of a single shape, the shape can be a line (straight
or curved), an area, or a volume. For a distribution (or collection) of shapes, the
distribution can include multiple lines, or multiple areas, or multiple volumes—
but not combinations of these. For the present, we consider the area shown in
Fig. 7.2. By considering the area to be a collection of composite areas Ai ,
where the centroid of each of these is located at x̃i and ỹi , the position of
the centroid for the entire area, Nx and Ny, can be determined by generalizing
Eq. (7.7) to obtain

Figure 7.2
The centroid C of area A is located at Nx and
Ny. Area A can be considered as consisting of
composite areas Ai , where the centroid of each
of these is located at x̃i and ỹi .Nx D

nP
iD1

x̃iAi

nP
iD1

Ai

and Ny D

nP
iD1

ỹiAi

nP
iD1

Ai

; (7.8)

where n is the number of composite shapes that constitute the entire area,Ai is
the area of composite shape i , and x̃i and ỹi ; are the locations of the centroid
of Ai measured from the origin of the coordinate system. In Eq. (7.8), the
numerator

P
x̃iAi is called the first moment of the area about the y axis, andP

ỹiAi is called the first moment of the area about the x axis.
By taking the limits of Eq. (7.8) as Ai ! 0, the summations become

integrals and Eq. (7.8) becomes

Nx D

R
x̃ dAR
dA

and Ny D

R
ỹ dAR
dA

; (7.9)

where x̃ and ỹ, are the locations of the centroid of area element dA measured
from the origin of the coordinate system. In Eq. (7.9), the numerator

R
x̃ dA

is called the first moment of the area about the y axis, and
R
ỹ dA is called the

first moment of the area about the x axis.

Centroid of a line

Consider the line shown in Fig. 7.3. By considering the line to be a collection
of composite lines with lengths Li , where the centroid of each of these is
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located at x̃i and ỹi , the position of the centroid for the entire line, Nx and Ny, is
given by

Figure 7.3
The centroidC of a line with lengthL is located
at Nx and Ny. Length L can be considered as con-
sisting of composite lengths Li , where the cen-
troid of each of these is located at x̃i and ỹi .

Nx D

nP
iD1

x̃iLi

nP
iD1

Li

and Ny D

nP
iD1

ỹiLi

nP
iD1

Li

; (7.10)

where n is the number of composite lines that constitute the entire length, Li
is the length of composite line i , and x̃i and ỹi are the locations of the centroid
of Li measured from the origin of the coordinate system.

By taking the limits of Eq. (7.10) as Li ! 0, this equation becomes

Nx D

R
x̃ dLR
dL

and Ny D

R
ỹ dLR
dL

; (7.11)

where x̃ and ỹ are the locations of the centroid of length element dLmeasured
from the origin of the coordinate system.

Integration along a path. In Eq. (7.11) (and Eq. (7.18) later in this section),
integrations are to be carried out along the path of a line. Such integrals are
often called line integrals (or path integrals, or curve integrals). Rather than
integrate along the path of the line, it will often be more convenient to inte-
grate with respect to x or y, and to do this, a transformation between dL and
dx or dy is needed. As shown in Fig. 7.4, length increment dL is related to
increments dx and dy by the Pythagorean theorem:

Figure 7.4
Length increment dL is related to increments
dx and dy by the Pythagorean theorem.

dL D
p
.dx/2 C .dy/2: (7.12)

Multiplying the right-hand side of Eq. (7.12) by dx=dx and bringing 1=dx
within the radical give

dL D

r
1C

�dy
dx

�2
dx: (7.13)

Similarly, multiplying the right-hand side of Eq. (7.12) by dy=dy and bringing
1=dy within the radical give

dL D

s�dx
dy

�2
C 1 dy: (7.14)

Rather than memorize Eqs. (7.13) and (7.14), it is perhaps easier to simply
remember Eq. (7.12) along with multiplication by dx=dx or dy=dy. Exam-
ple 7.5 on p. 407 illustrates the use of Eq. (7.13).

Centroid of a volume

Consider the volume shown in Fig. 7.5. By considering the volume to be a
collection of composite volumes Vi , where the centroid of each of these is
located at x̃, ỹ, and ˜́, the position of the centroid for the entire volume Nx, Ny,
and Ń is given by

Figure 7.5
The centroid C of a volume V is located at Nx,
Ny, and Ń . Volume V can be considered as con-
sisting of composite volumes Vi , where the cen-
troid of each of these is located at x̃i , ỹi , and
˜́i .
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Nx D

nP
iD1

x̃iVi

nP
iD1

Vi

; Ny D

nP
iD1

ỹiVi

nP
iD1

Vi

; and Ń D

nP
iD1

˜́ iVi
nP
iD1

Vi

; (7.15)

where n is the number of composite volumes that constitute the entire volume,
Vi is the volume of composite volume i , and x̃i , ỹi and ˜́i are the locations of
the centroid of Vi measured from the origin of the coordinate system.

By taking the limits of Eq. (7.15) as Vi ! 0, this equation becomes

Nx D

R
x̃ dVR
dV

; Ny D

R
ỹ dVR
dV

; and Ń D

R
˜́ dVR
dV

; (7.16)

where x̃, ỹ and ˜́ are the locations of the centroid of volume element dV
measured from the origin of the coordinate system.

Helpful Information

Centroid of symmetric shapes. If a shape
has an axis of symmetry, such as the y

axis in the figure below, the centroidC of
that shape lies on the axis of symmetry.

To understand why this is true, consider the
two symmetrically located area elements
shown. For every area element dA D h dx
to the right of the axis of symmetry, there is
an equal area element to the left, with equal
but negative x̃ value. Thus, when we evalu-
ate Nx D

R
x̃ dA

ı R
dA, the integral in the

numerator is zero and hence Nx D 0. If a
shape has two axes of symmetry, then the
centroid is located at the intersection of the
axes of symmetry.

Unification of concepts

In this section, expressions using composite shapes and integration for the cen-
troid of lines, areas, and volumes, in one, two, and three dimensions, have been
given. The unifying idea behind all of these is that the centroid is the average
position of a distribution of shape. While the number of equations presented
is rather large, Eq. (7.19), discussed in the End of Section Summary on p. 400,
boils all of these down into one compact expression. If you remember and un-
derstand this expression, then it is easy to extrapolate it for other applications.
In addition to this, Eq. (7.12) (and/or Eqs. (7.13) and (7.14)) is also needed to
determine the centroid of lines by using integration.

Which approach should I use: composite shapes
or integration?

Determination of the centroid using composite shapes is usually very straight-
forward provided that the centroid position of each of the composite shapes
is readily available, either by inspection or from tabulated data for common
geometric shapes. To this end, the tables contained on the inside back cover of
this book will be useful.

Use of integration to determine the centroid is simple in concept, but not al-
ways simple in evaluation. Nonetheless, integration can always be used. When
we evaluate integrals, many choices are possible for coordinate systems (Carte-
sian coordinates, polar coordinates, and cylindrical coordinates are common),
and area and volume integrations may require double or triple integrals. These
various choices are extensively discussed in calculus. In this book, our discus-
sion of integration for determining the centroid is more focused. In particular,
we will evaluate all area and volume integrations by using single integrals.
Computer mathematics software such as Mathematica and Maple can make
evaluation of an integral easy, but it is still necessary for you to properly set
up the integral including the limits of integration.
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Finer points: surfaces and lines in three dimensions

In this section, we have considered the centroid of lines and areas in two di-
mensions. However, Eqs. (7.8) through (7.11) are also applicable to lines and
areas in three dimensions, provided an additional expression is written for the
´ location of the centroid. For example, for a surface area A in three dimen-
sions, as shown in Fig. 7.6, the centroid positions Nx and Ny are as given in
Eqs. (7.8) and (7.9), and the ´ position is given by

Figure 7.6
The centroid C of a surface area A in three di-
mensions is located at Nx, Ny, and Ń . Area A can
be considered as consisting of composite areas
Ai , where the centroid of each of these is lo-
cated at x̃i , ỹi , and ˜́i .

Ń D

nP
iD1

˜́iAi
nP
iD1

Ai

D

R
˜́ dAR
dA

(7.17)

Similarly, for a line of length L in three dimensions, as shown in Fig. 7.7, the
centroid positions Nx and Ny are as given in Eqs. (7.10) and (7.11), and the ´
position is given by

Figure 7.7
The centroid C of a line of length L in three
dimensions is located at Nx, Ny, and Ń . Length L
can be considered as consisting of composite
lengths Li , where the centroid of each of these
is located at x̃i , ỹi , and ˜́i .

Ń D

nP
iD1

˜́iLi
nP
iD1

Li

D

R
˜́ dLR
dL

(7.18)

End of Sect ion Summary

The centroid is defined to be the average position of a distribution of shapes.
If the distribution consists of a single shape, the shape can be a line (straight
or curved), an area, or a volume. For a distribution (or collection) of shapes, the
distribution can include multiple lines, or multiple areas, or multiple volumes—
but not combinations of these. The centroid can be determined by use of com-
posite shapes or by integration.

The many formulas presented in this section can be compactly summa-
rized. Consider the case of the centroid of an area or a distribution of areas, as
shown in Fig. 7.2 on p. 397. The expressions for Nx in Eqs. (7.8) and (7.9) can
be written together as

Nx D

nP
iD1

x̃iAi

nP
iD1

Ai

D

R
x̃ dAR
dA

: (7.19)

The following remarks apply to Eq. (7.19):

� The summation form is used if the centroid is to be determined using
composite shapes. This approach is straightforward provided the cen-
troid position x̃i for each of the composite shapes is readily available.

� The integral form can always be used to determine the centroid. Many
of the example problems of this section illustrate this approach.

� To determine the y position of the centroid, an equation for Ny is written
by replacing all of the x’s that appear in Eq. (7.19) by y’s.
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� If the ´ position of the centroid is needed, such as for an object in three
dimensions (e.g., the area in three dimensions shown in Fig. 7.6), then
an equation for Ń is written by replacing all of the x’s that appear in
Eq. (7.19) by ´’s.

� To determine the centroid of a line or a distribution of lines (straight
and/or curved), replace all of the A’s that appear in Eq. (7.19) by L’s.

� To determine the centroid of a volume or a distribution of volumes, re-
place all of the A’s that appear in Eq. (7.19) by V ’s.

The final point to summarize is that if a shape has an axis of symmetry,
then the centroid lies on the axis of symmetry. Furthermore, if a shape has two
axes of symmetry, then the centroid is located at the intersection of the axes of
symmetry.
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E X A M P L E 7.1 Centroid of an Area Using Composite Shapes

The cross section of an extruded aluminum channel is shown. Determine the x and y
positions of the cross section’s centroid.

Figure 1

S O L U T I O N

Road Map The shape of the channel’s cross section is an arrangement of simple
geometric shapes, namely rectangles. Thus it will be straightforward to determine the
position of the centroid by using composite shapes with Eq. (7.8) on p. 397. There
are several possible arrangements of composite shapes that may be used, and we will
consider solutions for two of these.

Solution 1

Governing Equations & Computation In Fig. 2, the shape is subdivided into three
rectangles, where A1 is the area of rectangle 1, C1 denotes the centroid of rectan-
gle 1, and so on. Because the cross-sectional shape is symmetric about the line y D
25mm, the centroid must lie on this line, and therefore the y position of the centroid is
Ny D 25mm. The areas and centroid positions of each composite shape are collected in
Table 1 followed by evaluation of Eq. (7.8).

Figure 2
A selection of three composite shapes to de-
scribe the channel’s cross section.

Table 1. Areas and centroid positions for composite shapes in Fig. 2.

Shape no. Ai x̃i

1 .10mm/.50mm/ D 500mm2 5mm
2 .30mm/.8mm/ D 240mm2 25mm
3 .30mm/.8mm/ D 240mm2 25mm

Nx D

3P
iD1

x̃iAi

3P
iD1

Ai

D
.5mm/.500mm2/C .25mm/.240mm2/C .25mm/.240mm2/

500mm2 C 240mm2 C 240mm2

D 14:8mm: (1)

Solution 2

Governing Equations & Computation Shown in Fig. 3 is a selection of two com-
posite shapes for the cross section of the channel, where the second of these has neg-
ative area. The areas and centroid positions of each composite shape are collected in
Table 2 followed by evaluation of Eq. (7.8).

Figure 3
A selection of two composite shapes to describe
the channel’s cross section.

Table 2. Areas and centroid positions for composite shapes in Fig. 3.

Shape no. Ai x̃i

1 .40mm/.50mm/ D 2000mm2 20mm
2 �.30mm/.34mm/ D �1020mm2 25mm

Nx D

2P
iD1

x̃iAi

2P
iD1

Ai

D
.20mm/.2000mm2/C .25mm/.�1020mm2/

2000mm2 � 1020mm2
D 14:8mm: (2)

Discussion & Verification As expected, Eqs. (1) and (2) agree. As an exercise, you
should add a column for ỹi to Tables 1 and 2 and use Eq. (7.8) to show Ny D 25mm.
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E X A M P L E 7.2 Centroid of a Volume Using Composite Shapes

A solid has the shape of a cylinder with a truncated cone. Determine the location of the
centroid.

Figure 1

S O L U T I O N

Road Map This object consists of an arrangement of simple geometric shapes. Thus,
compared to using integration, it will be easier to determine the position of the centroid
by using composite shapes with Eq. (7.15) on p. 399. This object is symmetric about
the x´ plane, and therefore its centroid must lie in the x´ plane. The object is also
symmetric about the y´ plane, and therefore its centroid must also lie in the y´ plane.
The intersection of these planes is the ´ axis. Therefore, we can conclude that the x
and y positions of the centroid are Nx D Ny D 0.

Governing Equations & Computation In Fig. 2 the object is subdivided into three

Figure 2
A selection of three composite shapes to de-
scribe the solid.

shapes. The volume and centroid position of each of the composite shapes are given in
the Table of Properties of Solids on the inside back cover of this book, and these values
are collected in Table 1. For example, for shape 2, the volume is V2 D �r

2h=3 where

Helpful Information

Solid of revolution. The shape shown in
Fig. 1 is called a solid of revolution because
it can be produced by revolving a planar
shape about a straight line, called the axis
of revolution. For example, rotating the
area shown below by 360ı about the ´ axis
produces the shape shown in Fig. 1:

Table 1. Volumes and centroid positions for composite shapes in Fig. 2.

Shape no. Vi ˜́i
1 �.2 in:/2.3 in:/ D 37:70 in:3 1:5 in:
2 �

3 .2 in:/2.4 in:/ D 16:76 in:3 3 in:C 1
4 .4 in:/ D 4 in:

3 ��3 .1 in:/2.2 in:/ D �2:094 in:3 5 in:C 1
4 .2 in:/ D 5:5 in:

r D 2 in: is the radius of the cone’s base and h D 4 in: is its height. The centroid for
the cone measured from its base is h=4, and to this value, the distance from the origin
of the coordinate system to the cone’s base (i.e., 3 in:) must be added. Evaluating the
expression for Ń in Eq. (7.15) provides

Ń D

3P
iD1

˜́iVi
3P
iD1

Vi

D
.1:5 in:/.37:70 in:3/C .4 in:/.16:76 in:3/C .5:5 in:/.�2:094 in:3/

37:70 in:3 C 16:76 in:3 � 2:094 in:3

D 2:14 in: (1)

Discussion & Verification Short of resolving this problem by using a different se-
lection of composite shapes, or using a different method (e.g., integration), there are
no definitive checks of accuracy for our solution. Nonetheless, we expect Ń to be some-
what larger than 1:5 in:, which is the centroid of volume V1 only, and in view of this,
the value found in Eq. (1) is reasonable.
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E X A M P L E 7.3 Centroid of an Area Using Integration

The cross section of a turbine blade in a pump is shown. Determine the x and y posi-
tions of the centroid.

Figure 1

S O L U T I O N

Road Map The cross section shape of the turbine blade is an area, and thus Eq. (7.9)
on p. 397 will be used to determine the x and y positions of its centroid. In Eq. (7.9),
three ingredients are needed: expressions for dA, x̃, and ỹ. These expressions can
be developed using either a vertical area element or a horizontal area element, and
solutions using both of these are demonstrated.

Solution 1 – vertical area element

Governing Equations & Computation To evaluate Eq. (7.9), expressions for dA,
x̃, and ỹ are needed, and these can be developed using the vertical area element shown
in Fig. 2 as follows.

Figure 2
A vertical area element is used to develop ex-
pressions for dA, x̃, and ỹ.

Helpful Information

Notation. Throughout this problem, sub-
scripts are used to help distinguish top and
bottom curves, and left and right curves,
as follows:

� Subscript t denotes “top.”

� Subscript b denotes “bottom.”

� Subscript r denotes “right.”

� Subscript l denotes “left.”

dA D .yt � yb/ dx D
�
3
p
x � 3

5x
�
dx; (1)

x̃ D x; (2)

ỹ D 1
2 .yt C yb/ D

1
2

�
3
p
x C 3

5x
�
: (3)

Substituting Eqs. (1) through (3) into Eq. (7.9), the position of the centroid is given by

Nx D

R
x̃ dAR
dA

D

25mmR
0

x
�
3
p
x � 3

5x
�
dx

25mmR
0

�
3
p
x � 3

5x
�
dx

D

�6x5=2
5
�
x3

5

�ˇ̌̌25mm

0�
2x3=2 �

3x2

10

�ˇ̌̌25mm

0

D
625mm3

62:5mm2
D 10mm; (4)

Ny D

R
ỹ dAR
dA

D

25mmR
0

1
2

�
3
p
x C 3

5x
� �
3
p
x � 3

5x
�
dx

25mmR
0

�
3
p
x � 3

5x
�
dx

D

�9x2
4
�
3x3

50

�ˇ̌̌25mm

0�
2x3=2 �

3x2

10

�ˇ̌̌25mm

0

D
468:75mm3

62:5mm2
D 7:5mm: (5)

Solution 2 – horizontal area element

Governing Equations & Computation The centroid can also be determined using
the horizontal area element shown in Fig. 3. Since integrations will be over y, it is nec-
essary to express the shape of the object as functions of y. Thus, the equation for the
bottom curve yb D .3=5/x is rearranged to obtain xr D .5=3/y. Similarly, the equa-
tion for the top curve yt D 3

p
x is rearranged to obtain xl D y

2=9. Then expressions
for dA, x̃, and ỹ can be written as follows:

Figure 3
A horizontal area element is used to develop ex-
pressions for dA, x̃, and ỹ.

dA D .xr � xl / dy D
�
5
3y �

y2

9

�
dy; (6)

x̃ D 1
2 .xr C xl / D

1
2

�
5
3y C

y2

9

�
; (7)

ỹ D y: (8)
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Substituting Eqs. (6) through (8) into Eq. (7.9), the position of the centroid is given by

Nx D

R
x̃ dAR
dA

D

15mmR
0

1
2

�
5
3y C

y2

9

��
5
3y �

y2

9

�
dy

15mmR
0

�
5
3y �

y2

9

�
dy

D

�25y3
54
�
y5

810

�ˇ̌̌15mm

0�5y2
6
�
y3

27

�ˇ̌̌15mm

0

D
625mm3

62:5mm2
D 10mm; (9)

Ny D

R
ỹ dAR
dA

D

15mmR
0

y
�
5
3y �

y2

9

�
dy

15mmR
0

�
5
3y �

y2

9

�
dy

D

�5y3
9
�
y4

36

�ˇ̌̌15mm

0�5y2
6
�
y3

27

�ˇ̌̌15mm

0

D
468:75mm3

62:5mm2
D 7:5mm: (10)

As expected, the solutions for both Nx and Ny agree with those obtained earlier in Eqs. (4)
and (5).

Discussion & Verification

� The location of the centroid is shown as point C in Fig. 4, and this location
appears to be reasonable.

Figure 4
The centroid C of the area is located at Nx and
Ny.

� The solution procedure outlined here can be used for a wide variety of area
centroid problems by simply using the appropriate expressions for the bounding
curves yt and yb , or xr and xl . Specifically:

– If a vertical area element is used, then expressions for the top and bottom
curves yt and yb , respectively, as functions of x are needed, and Eqs. (1)
through (3) can be used to obtain expressions for dA, x̃, and ỹ.

– If a horizontal area element is used, then expressions for the right and left
curves xr and xl , respectively, as functions of y are needed, and Eqs. (6)
through (8) can be used to obtain expressions for dA, x̃, and ỹ.

� For some problems, a vertical area element may be more convenient than a hor-
izontal area element, or vice versa. For example, for the area shown in Fig. 5, a
vertical area element will be more convenient because both yt and yb are given
by single equations. To use a horizontal area element, two different equations
are needed for xr , depending on where the area element is located.

Figure 5
Example of a shape for which a vertical area el-
ement is more convenient than a horizontal area
element.

� Software such as Mathematica and Maple can make evaluation of integrals easy,
but obtaining correct results with such software requires that you provide the
correct integrand and limits of integration.
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E X A M P L E 7.4 Centroid of a Line Using Integration

Determine the x and y positions of the centroid for the circular arc shown.

Figure 1

S O L U T I O N

Road Map Because the arc is symmetric about the x axis, the centroid must lie on the
x axis. Therefore, by inspection, the y position of the centroid is Ny D 0. To determine
the x position of the centroid, we will evaluate the first expression in Eq. (7.11) on
p. 398, and for developing expressions for dL and x̃, polar coordinates will be very
convenient.

Governing Equations & Computation Expressions for dL and x̃ will be written
using the line element shown in Fig. 2 as follows:

Figure 2
A line element is used to develop expressions
for dL and x̃.

dL D r d�; (1)

x̃ D r cos �: (2)

Substituting Eqs. (1) and (2) into the first expression of Eq. (7.11), the x position of
the centroid is given by

Nx D

R
x̃ dLR
dL

D

R̨
�˛
r cos � r d�

R̨
�˛
r d�

D
r2
�

sin �
�ˇ̌˛
�˛

r
�
�
�ˇ̌˛
�˛

D
2r2 sin˛

2r˛
(3)

D
r sin˛

˛
: (4)

Discussion & Verification

� For a circular arc, r D constant, and the integrals in Eq. (3) are simplified, as
follows. Because r is not a function of � , the r2 term in the numerator and
the r term in the denominator of Eq. (3) may be brought outside their integrals,
leaving simple functions of � to be integrated. For a line that is not a circular arc,
r is a function of � , giving rise to generally more difficult integrals to evaluate.
For such cases, the approach used in Example 7.5, where integrations are carried
out with respect to x (or y), may be more convenient.

� The validity of our results can be partially checked by considering the location
of Nx for particular values of ˛. When ˛ ! 0, the arc approaches a point, and
the centroid should approach Nx D r , which Eq. (4) does.� When ˛ D � , the
arc becomes a full circle, and the centroid should become Nx D 0, which Eq. (4)
does.

� To evaluate Eq. (4) for particular values of r and ˛, it is necessary to measure ˛
in radians.

� As an exercise, you can evaluate the second expression of Eq. (7.11) on p. 398
by using ỹ D r sin � to confirm that Ny D 0.

�Recall the small-angle approximation sin˛ � ˛ when ˛� 1 (˛ measured in radians).
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E X A M P L E 7.5 Centroid of a Line Using Integration

Determine the x and y positions of the centroid for the uniform curved bar shown.

Figure 1

S O L U T I O N

Road Map To determine the position of the centroid, we will evaluate Eq. (7.11) on
p. 398. Because the equation for the line is expressed in terms of x and y, it will be
more convenient to perform integrations with respect to x or y, rather than with respect
to length along the path of the line. To this end, we will use Eqs. (7.13) and (7.14) on
p. 398.

Governing Equations In Eq. (7.11), x̃ and ỹ locate the centroid of length element
dL, as shown in Fig. 2. An expression for dL will be written in terms of dx by using
Eq. (7.13) on p. 398.� Noting that dy=dx D 2x,

Figure 2
A line element is used to develop expressions
for dL and x̃.

dL D

r
1C

�dy
dx

�2
dx D

p
1C 4x2 dx; (1)

x̃ D x; (2)

ỹ D y D x2: (3)

Substituting Eqs. (1) – (3) into Eq. (7.11), the x and y positions of the centroid are
given by

Nx D

R
x̃ dLR
dL

D

0:5mR
0

x
p
1C 4x2 dx

0:5mR
0

p
1C 4x2 dx

; (4)

Ny D

R
ỹ dLR
dL

D

0:5mR
0

x2
p
1C 4x2 dx

0:5mR
0

p
1C 4x2 dx

: (5)

Computation The integrals in Eqs. (4) and (5) are perhaps tedious to evaluate. Using
software to evaluate these integrals provides

Nx D
0:1524m2

0:5739m
D 0:265m; (6)

Ny D
0:05252m2

0:5739m
D 0:0915m: (7)

Discussion & Verification

� When using software, we must be especially cautious to check the accuracy of
the answers it produces. In the intermediate results in Eqs. (6) and (7), the de-
nominator (i.e., 0:5739m) is the total length of the line. Note that if the line
were straight, its length would be

p
.0:5/2 C .0:25/2 m D 0:559m, and as ex-

pected, the length of the curved line is slightly greater than this. Also, if the
line were straight, by inspection its centroid would be at the x and y positions
0:25m and 0:125m, respectively. Thus, the Nx and Ny values in Eqs. (6) and (7)
are reasonable.

� As an exercise, you should repeat this example, using Eq. (7.14) on p. 398 to
relate dL to dy.

�Alternatively, we could use Eq. (7.14) to write an expression for dL in terms of dy.
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E X A M P L E 7.6 Centroid of a Volume Using Integration

Determine the position of the centroid for the solid hemisphere of radius r shown.

Figure 1

Figure 2
A thin disk volume element is used to develop
expressions for dV and x̃. The expression for
the radius y of the disk is obtained by rearrang-
ing x2 C y2 C ´2 D r2, with ´ D 0.

Figure 3
A thin shell volume element is used to develop
expressions for dV and x̃. The expression for
the length x of the cylinder is obtained by re-
arranging x2 C y2 C ´2 D r2, with ´ D 0.

S O L U T I O N

Road Map Because the object is symmetric about both the xy and x´ planes, the
centroid lies on the x axis and we can conclude that Ny D Ń D 0. To determine the x
position of the centroid, we will evaluate the expression for Nx in Eq. (7.16) on p. 399.
Expressions for dV and x̃ are needed, and these can be developed using either a thin
disk volume element or a thin shell volume element, and both of these approaches are
shown.

Solution 1 – thin disk volume element

Governing Equations & Computation Expressions for dV and x̃ can be written
using the thin disk volume element shown in Fig. 2 as follows:

dV D �y2 dx D �.r2 � x2/ dx; (1)

x̃ D x: (2)

In Eq. (1), �y2 is the area of a disk where y is the radius and dx is the thickness. The
entire disk element is at the same x position, so that x̃ D x. Substituting Eqs. (1) and
(2) into the first expression of Eq. (7.16) provides the x position of the centroid as

Nx D

R
x̃ dVR
dV

D

rR
0

x�.r2 � x2/ dx

rR
0

�.r2 � x2/ dx

D
�
�
r2
x2

2
�
x4

4

�ˇ̌̌r
0

�
�
r2x �

x3

3

�ˇ̌̌r
0

D

�r4

4

2�r3

3

D
3r

8
: (3)

Solution 2 – thin shell volume element

Governing Equations & Computation Expressions for dV and x̃ can be written
using the thin shell volume element shown in Fig. 3 as follows:

dV D 2�yx dy D 2�y dy

q
r2 � y2; (4)

x̃ D
x

2
D 1

2

q
r2 � y2: (5)

In Eq. (4), 2�y is the circumference of the shell where y is the radius, x is the length
of the shell, and dy is the thickness. In Eq. (5), the x position of the centroid of the
shell element x̃, is given by x=2. Substituting Eqs. (4) and (5) into the first expression
of Eq. (7.16) provides the x position of the centroid as

Nx D

R
x̃ dVR
dV

D

rR
0

1
2

p
r2 � y2 2�y

p
r2 � y2 dy

rR
0

2�y
p
r2 � y2 dy

D
3r

8
: (6)

Discussion & Verification As expected, the solutions for Nx obtained by using the
two different volume elements agree. Also, the result for the denominator of Eq. (3),
namely, 2�r3=3, is the correct volume of a hemisphere (reported in the Table of Prop-
erties of Solids on the inside back cover).
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P R O B L E M S

General instructions. For shapes that have one or more axes or planes of symme-
try, you may use inspection to determine some of the coordinates of the centroid.

Problems 7.1 through 7.6

For the area shown, use composite shapes to determine the x and y positions of the
centroid.

Figure P7.1 Figure P7.2

Figure P7.3 Figure P7.4

Figure P7.5 Figure P7.6

Problem 7.7

The solid shown consists of a circular cylinder and a hemisphere. Use composite shapes
to determine the x, y, and ´ locations of the centroid. Figure P7.7
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Problem 7.8

The rectangular block is a solid with rectangular cutouts. Use composite shapes to
determine the x, y, and ´ locations of the centroid.

Figure P7.8

Problem 7.9

The solid shown consists of a hemisphere with a conical cavity. Use composite shapes
to determine the x, y, and ´ locations of the centroid. Express your answers in terms
of R.

Figure P7.9

Problems 7.10 through 7.13

For the area shown, use integration to determine the x and y positions of the centroid.

(a) Use a horizontal area element.

(b) Use a vertical area element.

Figure P7.10 Figure P7.11

Figure P7.12 Figure P7.13

Problems 7.14 and 7.15

For the area shown, use integration to determine the x and y positions of the centroid.

Figure P7.14 Figure P7.15
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Problems 7.16 and 7.17

Determine expressions for lines y1 and y2, and then use integration to determine the x
and y positions of the centroid.

Figure P7.16 Figure P7.17

Problem 7.18

For the triangle shown, having base b and height h, use integration to show that the y
position of the centroid is Ny D h=3. Hint: Begin by writing an expression for the width
of a horizontal area element as a function of y. Figure P7.18

Problem 7.19

Use integration to determine the x and y positions of the centroid. Express your an-
swers in terms of r and ˛.

Figure P7.19

Problem 7.20

Determine constants c1 and c2 so that the curves intersect at x D a and y D b. Use
integration to determine the x and y positions of the centroid. Express your answers in
terms of a and b.

Figure P7.20

Problems 7.21 and 7.22

For the line shown:

(a) Set up the integrals for integration with respect to x, including the limits of inte-
gration, that will yield the x and y positions of the centroid.

(b) Repeat Part (a) for integrations with respect to y.

(c) Evaluate the integrals in Parts (a) and/or (b) by using computer software such as
Mathematica, Maple, etc.

Figure P7.21 Figure P7.22
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Problems 7.23 and 7.24

For the line shown:

(a) Set up the integrals for integration with respect to x, including the limits of inte-
gration, that will yield the x and y positions of the centroid.

(b) Evaluate the integrals in Part (a) by using computer software such as Mathematica,
Maple, etc.

Figure P7.23 Figure P7.24

Problem 7.25

A solid cone is shown. Use integration to determine the position of the centroid. Ex-
press your answers in terms of r and h.Figure P7.25

Problem 7.26

For the hemisphere with a conical cavity shown in Fig. P7.9 on p. 410, use integration
to determine the x location of the centroid. Express your answers in terms of R.

Problem 7.27

A solid of revolution is produced by revolving the shaded area shown 360ı around the
y axis. Use integration to determine the position of the centroid.

Figure P7.27
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7.2 Center of Mass and Center of Gravity

Centroid, center of mass, and center of gravity are different, but the methods
used to determine them are essentially the same, as discussed in this section. In
fact, under certain circumstances, which occur often, all of these have the same
values. To understand the differences between these and when their values
differ or are the same, we expand on the definitions that were given in the
previous section:

Helpful Information

Centroid, center of mass and center
of gravity. Because the centroid, center
of mass, and center of gravity often have
the same values, some people use these
words synonymously. However, these are
fundamentally different—even when their
values are the same—and thus we will
always use proper nomenclature.

Centroid. The centroid is defined to be the average position of a shape, or a
distribution of shapes. The shape, or distribution of shapes, can consist
of lines (straight and/or curved), areas, or volumes, but not combinations
of these. The centroid depends on geometry only and is independent of
the material an object might be made of and the presence of gravity.

Center of mass. The center of mass is defined to be the average position of
a distribution of mass. The center of mass depends on the geometry
(shape) of an object and the density of the material it is made of and is
independent of the presence of gravity.

Center of gravity. The center of gravity is defined to be the average position
of a distribution of weight. The center of gravity depends on the geome-
try (shape) of an object, the density of the material, and the presence of
gravity.

Center of mass

Using the concepts of the previous section, the center of mass for an object, or
a collection of objects, in three dimensions is given by

Nx D

nP
iD1

x̃imi

nP
iD1

mi

D

R
x̃ dmR
dm

; Ny D

nP
iD1

ỹimi

nP
iD1

mi

D

R
ỹ dmR
dm

;

Ń D

nP
iD1

˜́imi
nP
iD1

mi

D

R
˜́ dmR
dm

:

(7.20)

The above equations are also applicable to objects in two dimensions, in which
case only the Nx and Ny expressions are needed, and for objects in one dimension
in which case only the Nx equation is needed. Furthermore, Eq. (7.20) is appli-
cable to solids, surfaces, and wires, and combinations of these, where these
various terms are defined as follows:

A solid is formed when mass is distributed throughout a volume.

A surface is formed when mass is distributed over an area. Usu-
ally, the thickness of the surface is small compared to the other
dimensions of the surface. Surfaces are often called plates or
shells.
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A wire is formed when mass is distributed along a line (either
straight or curved). Usually, the dimensions of the wire’s cross
section are small compared to the length of the wire.

Figure 7.8
Example of an object that consists of a solid, a
surface, and a wire, with some of the informa-
tion needed to determine its center of mass.

For example, consider the object shown in Fig. 7.8, which consists of a
solid, a surface, and a wire. Using composite shapes, the x position of the
center of mass is given by the first expression in Eq. (7.20) as

Nx D

nP
iD1

x̃imi

nP
iD1

mi

D
x̃1�V C x̃2�AAC x̃3�LL

�V C �AAC �LL
; (7.21)

with similar expressions for Ny and Ń . In Eq. (7.21), x̃1, x̃2 and x̃3 are the x
positions of the centers of mass for the solid, surface, and wire, respectively,
for the object in Fig. 7.8. Using integration, the x position of the center of
mass for the object in Fig. 7.8 is given by the first expression in Eq. (7.20) as

Nx D

R
x̃ dmR
dm
D

R
x̃� dV C

R
x̃�A dAC

R
x̃�L dLR

� dV C
R
�A dAC

R
�L dL

; (7.22)

with similar expressions for Ny and Ń .
In Eqs. (7.21) and (7.22), the densities �, �A, and �L have different defini-

tions and these should not be confused with one another. � is the density of a
material, according to the usual definition, with dimensions of mass/volume.
In contrast, �A is the density of a surface, with dimensions of mass/area. Simi-
larly, �L is the density of a wire, with dimensions of mass/length. Summaries
of these definitions and relationships between them are as follows:

� D density of a material (7.23)

(dimensions: mass/volume),

�A D density of a surface (7.24)

(dimensions: mass/area) �A D �t;

�L D density of a wire (7.25)

(dimensions: mass/length) �L D �A;

where in Eq. (7.24), t is the thickness of the surface, and in Eq. (7.25), A is
the cross-sectional area of the wire.

Center of gravity

As we have done throughout this book, and for the vast majority of applica-
tions in statics, we assume the special case of a uniform gravity field , where
the acceleration due to gravity g, as given by Eq. (1.7) on p. 15, is assumed
to be constant, and the direction of the attractive forces between Earth and
every element of material in a body is assumed to be parallel. With this ide-
alization, the magnitude of the weight dw of a volume dV of material is
dw D � dV D �g dV , where � is the material’s specific weight (dimensions:
weight/volume) and � is the material’s density (dimensions: mass/volume).
Furthermore, since the direction for the weight that each volume element dV
experiences is the same, it is customary to define the center of gravity to be
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the average position of a weight distribution in the same fashion as the center
of mass is the average position of a mass distribution. Hence, for a uniform
gravity field, formulas for the center of gravity are identical to Eq. (7.20) with
appearances of mi replaced by the weight of an object wi and appearances of
dm replaced by the weight element dw. Hence,

Interesting Fact

Gravity gradient satellites. For some
applications, such as satellite mechanics
and orbital mechanics, a more accurate
treatment of gravity, and hence a more
appropriate definition of the center of grav-
ity, is needed. Consider a satellite orbiting
Earth.

As indicated by Eq. (1.6) on p. 15, portions
of the satellite’s mass that are closer to
Earth experience slightly higher forces of at-
traction (weight) than portions that are far-
ther away. Hence, for the satellite shown
here, the center of gravity is closer to Earth
than the center of mass. In fact, assum-
ing the satellite has an overall length of,
say, 20m and is in a low Earth orbit with
an altitude of, say, 800 km, and depending
on details of its mass distribution, the cen-
ter of mass and center of gravity may dif-
fer by only about 10�5 m. While this differ-
ence may seem insignificant, it is often suf-
ficient to stabilize the satellite’s orientation,
and such satellites are called gravity gradi-
ent satellites.

Nx D

nP
iD1

x̃iwi

nP
iD1

wi

D

R
x̃ dwR
dw

; Ny D

nP
iD1

ỹiwi

nP
iD1

wi

D

R
ỹ dwR
dw

;

Ń D

nP
iD1

˜́iwi
nP
iD1

wi

D

R
˜́ dwR
dw

:

(7.26)

For applications to objects in two dimensions, only the Nx and Ny expressions
are needed, and for objects in one dimension only the Nx equation is needed.
Furthermore, Eq. (7.26) is applicable to solids, surfaces, and wires, and com-
binations of these.

Substituting wi D gmi and dw D g dm into Eq. (7.26), and noting that
g is a constant and thus can be canceled from the numerator and denominator,
we see that Eqs. (7.20) and (7.26) are identical, and thus the center of mass
and the center of gravity are identical when the gravity field is uniform.

Figure 7.9
Example of an object that consists of a solid, a
surface, and a wire, with some of the informa-
tion needed to determine its center of gravity.

In Fig. 7.9 we reconsider our earlier example of an object that consists of
a solid, a surface, and a wire. Using composite shapes, the x position of the
center of gravity is given by the first expression in Eq. (7.26) as

Nx D

nP
iD1

x̃iwi

nP
iD1

wi

D
x̃1�V C x̃2�AAC x̃3�LL

�V C �AAC �LL
; (7.27)

with similar expressions for Ny and Ń . In Eq. (7.27), x̃1, x̃2, and x̃3 are the
x positions of the centers of gravity for the solid, surface, and wire, respec-
tively. Using integration, the x position of the center of gravity for the object
in Fig. 7.9 is given by the first expression in Eq. (7.26) as

Nx D

R
x̃ dwR
dw

D

R
x̃� dV C

R
x̃�A dAC

R
x̃�L dLR

� dV C
R
�A dAC

R
�L dL

; (7.28)

with similar expressions for Ny and Ń .
In Eqs. (7.27) and (7.28), the specific weights � , �A, and �L have different

definitions. � is the specific weight (or unit weight) of a material, according to
the usual definition, with dimensions of weight/volume. In contrast, �A is the
specific weight of a surface, with dimensions of weight/area. Similarly, �L is
the specific weight of a wire, with dimensions of weight/length. Summaries of
these definitions and relationships between these are as follows:

� D specific weight of a material (7.29)

(dimensions: weight/volume),
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�A D specific weight of a surface (7.30)

(dimensions: weight/area) �A D � t;

�L D specific weight of a wire (7.31)

(dimensions: weight/length) �L D �A;

where in Eq. (7.30), t is the thickness of the surface, and in Eq. (7.31), A is
the cross-sectional area of the wire.

End of Sect ion Summary

The center of mass is defined to be the average position of a distribution of
mass. The center of mass for an object can be determined using composite
shapes and/or integration, and the object can be a solid, surface, or wire, or a
combination of these. The center of mass is affected by an object’s shape and
mass distribution.

The center of gravity is defined to be the average position of a distribution
of weight. For the vast majority of applications in statics, we assume the spe-
cial case of a uniform gravity field , where the acceleration due to gravity g
is assumed to be constant, and the direction of the attractive forces between
Earth and every element of material in a body is assumed to be parallel. With
this idealization, the center of gravity can be defined in similar fashion as the
center of mass, and indeed, for a uniform gravity field the center of mass and
center of gravity of an object are always the same.

The final point to summarize is that if an object has an axis of symmetry,
which means that both the object’s shape and its mass distribution are sym-
metric, then the center of mass lies on the axis of symmetry. Furthermore, if
the object has two axes of symmetry, then the center of mass is located at the
intersection of the axes of symmetry.
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E X A M P L E 7.7 Center of Mass Using Composite Shapes

A kite consists of wooden members, paper, and string. The wooden members AB and
CD have density �w D 510 kg=m3 and 5mm by 5mm square cross section. The paper
ADBC has density �p D 0:039 kg=m2. Around the perimeter of the kite (between

pointsA,D,B , C , andA) is taut string with density �s D 2:6.10/
�5 kg=m. Determine

the weight of the kite and the center of mass.

Figure 1

S O L U T I O N

Road Map The kite consists of an arrangement of objects having simple shapes.
Thus it will be easiest to determine the center of mass by using composite shapes with
Eq. (7.21) on p. 414. The kite is symmetric about the x axis, thus its center of mass
must lie on the x axis, and hence Ny D 0.

Governing Equations & Computation In Fig. 2 the kite is subdivided into eight

Figure 2
A selection of composite objects to describe the
kite.

composite shapes, or objects. The mass of each composite shape and the position of its
center of mass are collected in Table 1.

Table 1. Masses and center of mass positions for the composite objects in Fig. 2. Note:
“w,” “p,” and “s” stand for wood, paper, and string, respectively.

Object no. mi (kg) x̃i (m)

1 (w AB) 510
kg
m3
.0:005m/.0:005m/.0:7m/ D 0:008925 0:15

2 (w CD) 510
kg
m3
.0:005m/.0:005m/.0:6m/ D 0:007650 0

3 (p ADC ) 0:039
kg
m2

1
2 .0:6m/.0:2m/ D 0:002340 �0:06667

4 (p BCD) 0:039
kg
m2

1
2 .0:6m/.0:5m/ D 0:005850 0:1667

5 (s AD) 2:6.10/�5
kg
m

p
.0:2m/2 C .0:3m/2 D 9:374.10/�6 �0:1

6 (s AC ) .. . . ''. . . / D 9:374.10/�6 �0:1

7 (s BD) 2:6.10/�5
kg
m

p
.0:5m/2 C .0:3m/2 D 1:516.10/�5 0:25

8 (s BC ) .. . . ''. . . / D 1:516.10/�5 0:25

Using Eq. (7.21) provides the x position of the center of mass as

Nx D

nP
iD1

x̃imi

nP
iD1

mi

D
.0:15m/.0:008925 kg/C � � � C .0:25m/.1:516.10/�5 kg/

0:008925 kgC � � � C 1:516.10/�5 kg
(1)

D
0:002163 kg�m

0:02481 kg
D 0:0872m: (2)

For brevity, numbers for only the first and eighth objects are shown in Eq. (1), and you

Figure 3
Location of the kite’s center of mass.

should verify the results that are given. The location of the center of mass is shown in
Fig. 3. In Eq. (2), the denominator is the total mass of the kite,m D 0:02481 kg. Hence,
the weight of the kite is

w D mg D .0:02481 kg/.9:81m=s2/ D 0:243N: (3)

Discussion & Verification We do not have a definitive check of our solution’s accu-
racy. Nonetheless, the center of mass has a reasonable location, and the weight of the
kite is reasonable (it may be helpful to express the weight in U.S. Customary units—
you should find that the kite weighs slightly less than 1 ounce).
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E X A M P L E 7.8 Center of Gravity Using Composite Shapes

A sign for a restaurant is constructed of rectangular sheets of plywood ABCD and
FGHI , steel bar CED, and chains DF and EG. The plywood weighs 2 lb=ft2, the
steel bar weighs 5 lb=ft, and the weight of the chains is negligible.

(a) Determine the center of gravity.

(b) Determine the support reactions at A and B .

Figure 1

S O L U T I O N

Road Map Because the sign consists of an arrangement of objects having simple
shapes, it will be easiest to determine the center of gravity by using composite shapes
with Eq. (7.27) on p. 415. Once the center of gravity is determined, it will be straight-
forward to determine the support reactions.

Part (a)

Governing Equations & Computation The sign is subdivided into four composite
shapes, or objects, as shown in Fig. 2. The weight of each composite shape and the
position of its center of gravity are collected in Table 1. For object 3 in Table 1 (the

Figure 2
A selection of composite objects to describe the
sign.

Table 1. Weights and center of gravity positions for composite objects. Note: “w” and
“s” stand for wood and steel, respectively.

Object no. wi (lb) x̃i (ft) ỹi (ft)

1 (w ABCD) 2 lb
ft2
.3 ft/.6 ft/ D 36 3.0 1.5

2 (w FGHI ) 2 lb
ft2
.2 ft/.3 ft/ D 12 7.5 �1:5

3 (s CE) 5 lb
ft �.3 ft/=2 D 23:56 7.910 1.910

4 (s DE) 5 lb
ft .3 ft/ D 15 7.5 0

quarter circular pipe), �.3 ft/=2 is the length of the pipe, and we consult the Table of
Properties of Solids on the inside back cover of this book to determine x̃ D 6 ft C
2.3 ft/=� D 7:910 ft and ỹ D 2.3 ft/=� D 1:910 ft. Using Eq. (7.27) provides the x
and y positions of the center of gravity as

Nx D

nP
iD1

x̃iwi

nP
iD1

wi

(1)

D
.3:0 ft/.36 lb/C .7:5 ft/.12 lb/C .7:910 ft/.23:56 lb/C .7:5 ft/.15 lb/

36 lbC 12 lbC 23:56 lbC 15 lb
(2)

D
496:9 ft�lb

86:56 lb
D 5:74 ft; (3)

Ny D

nP
iD1

ỹiwi

nP
iD1

wi

(4)

D
.1:5 ft/.36 lb/C .�1:5 ft/.12 lb/C .1:910 ft/.23:56 lb/C .0 ft/.15 lb/

86:56 lb
(5)
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D
81:00 ft�lb

86:56 lb
D 0:936 ft: (6)

The denominators in Eqs. (1) through (6) are the total weight of the sign, hence

w D 86:6 lb (7)

Part (b)

Modeling The FBD for the sign is shown in Fig. 3 where the sign’s 86:6 lb weight is
placed at the center of gravity.

Figure 3
Free body diagram where the sign’s weight is
placed at the center of gravity.

Governing Equations & Computation With the FBD in Fig. 3, equilibrium equa-
tions are written and easily solved as follows:X

MB D 0 W Ax.3 ft/ � .86:6 lb/.5:74 ft/ D 0 (8)

) Ax D 166 lb; (9)X
Fx D 0 W Ax C Bx D 0 (10)

) Bx D �166 lb; (11)X
Fy D 0 W By � 86:6 lb D 0 (12)

) By D 86:6 lb: (13)

Discussion & Verification

� The center of gravity for the sign, given by Eqs. (3) and (6), appears to be in
a reasonable position. The reactions have proper directions and appear to have
reasonable values.

� If we required the answer to only Part (b) of this example, we could use the
solution as carried out above (note that the FBD shown in Fig. 3 requires deter-
mination of the center of gravity); or alternatively, it may be quicker to use the
FBD shown in Fig. 4, where the center of gravity of the sign is not needed. In
Fig. 4, the weight of each component object is placed at its center of gravity.

Figure 4
Free body diagram where the weight of each
component object is placed at that object’s cen-
ter of gravity.
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E X A M P L E 7.9 Center of Gravity Using Integration

A solid cone is constructed of a functionally graded material that is designed to be hard
at the tip and softer farther away. As a consequence, the specific weight of the material
varies linearly from �0 at the tip to �0=2 at x D L. Determine the location of the center
of gravity and the weight of the cone.

Figure 1

S O L U T I O N

Road Map Because the cone has specific weight that changes with position, the cen-
ter of gravity will most likely not coincide with the centroid. To determine the center
of gravity, we have little choice but to use integration, with the integral expressions
in Eq. (7.26) on p. 415, or equivalently the volume integral expressions in Eq. (7.28).
Noting that the specific weight changes with x coordinate only, the cone is symmetric
about the x axis, and thus its center of gravity must lie on the x axis, and Ny D Ń D 0.

Governing Equations & Computation Using the expression Nx D
R
x̃ dw in

Eq. (7.26) with dw D � dV gives

Figure 2
A thin disk volume element is used to develop
expressions for dV and x̃.

Nx D

R
x̃� dVR
� dV

(1)

In Eq. (1), x̃ is the location of the center of gravity for the weight element � dV . Be-
cause of the variable specific weight, a thin disk weight (volume) element, as shown
in Fig. 2, will be more convenient than a thin shell weight (volume) element (see
Prob. 7.37 for further discussion). Expressions for dV and x̃ are

dV D �r2 dx and x̃ D x: (2)

In Eq. (2), �r2 is the area of a disk where, as shown in Fig. 2, r is the radius and dx
is the thickness. The center of gravity of the disk element is located at x̃ D x. Before
we evaluate Eq. (1), it is necessary to express both the radius r and specific weight �
of the cone as functions of x position. These expressions are

r D R
x

L
and � D �0

�
1 �

x

2L

�
: (3)

The validity of Eqs. (3) is easily verified by evaluating each expression at x D 0

and x D L to see that they produce the proper results. The margin note on this page
provides some tips for developing expressions such as these.

Helpful Information

Linear functions. You will often need to
develop expressions for linear functions,
such as for r and � in this problem. While
expressions such as Eq. (3) can by written
by inspection or by using a little trial and
error, the following more rigorous proce-
dure can always be used. Consider the
expression for the specific weight � . The
problem description states that � varies
linearly, hence

� D aC bx (4)

where a and b are constants that are deter-
mined by noting that � D �0 at x D 0 and
� D �0=2 at x D L. Hence,

� D aC b.0/ D �0; (5)

� D aC b.L/ D �0=2: (6)

Solving Eqs. (5) and (6) for a and b

provides

a D �0 and b D �
�0
2L
: (7)

Substituting a and b into Eq. (4) results
in Eq. (3). Note that regardless of the ap-
proach you use to obtain a linear expres-
sion, you can always check its validity.

Substituting Eqs. (2) and (3) into Eq. (1) provides the center of gravity

Nx D

R
x̃� dVR
� dV

D

LR
0

x�0

�
1 �

x

2L

�
�
�
R
x

L

�2
dx

LR
0

�0

�
1 �

x

2L

�
�
�
R
x

L

�2
dx

D

3�L2R2

20
�0

5�LR2

24
�0

D
18L

25
: (8)

The denominator in Eq. (8) is the total weight of the cone, hence

w D
5�LR2

24
�0: (9)

Discussion & Verification The centroid of a solid cone, as given in the Table of
Properties of Solids on the inside back cover of this book, is 3L=4 from the tip, while
the center of gravity in this example, from Eq. (8), is Nx D 18L=25 D .0:72/L. As
expected, because of the specific weight distribution in this problem, we see that the
center of gravity is closer to the tip than the centroid. Of course, if the specific weight
were uniform, the center of mass and the centroid would have the same location.
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P R O B L E M S

General instructions. For shapes that have one or more axes or planes of symme-
try, you may use inspection to determine some of the coordinates of the center of mass
or center of gravity.

Problem 7.28

The radio antenna shown is symmetric about its horizontal member. The horizontal
member weighs 0:6 lb=ft, the vertical members weigh 0:1 lb=ft, and the circuit box
weighs 8 lb with center of gravity at point A. Determine the location of the antenna’s
center of gravity, measured from the left-hand end.

Figure P7.28

Problem 7.29

In Example 7.2 on p. 403, let the cylindrical portion be steel with specific weight
490 lb=ft3 and the truncated cone portion be aluminum alloy with specific weight
170 lb=ft3. Determine the center of gravity.

Problem 7.30

In Prob. 7.7 on p. 409, let the cylindrical portion be cast iron with specific weight
450 lb=ft3 and the hemispherical portion be aluminum alloy with specific weight
170 lb=ft3. Determine the center of gravity.

Problem 7.31

A square plate having 1:25 lb=in:2 weight has a circular hole. Along the right-hand
edge of the plate, a circular cross section rod having 0:75 lb=in: weight is welded to it.
Determine the x position of the center of gravity.

Figure P7.31 Figure P7.32

Problem 7.32

The assembly shown consists of a flywheel, a counterweight, and a bolt that attaches the
counterweight to the flywheel. The flywheel is uniform with mass per area of 2 g=mm2

and has a 40mm diameter hole as shown. Determine the massmC of the counterweight
so that the center of mass of the assembly is at point O . The counterweight is attached
to the flywheel by a bolt with massmB D 800 g that is screwed into a 10mm diameter
hole that passes completely through the flywheel.
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Problem 7.33

A floor lamp consists of a half-circular base with weight per area of 0:06 lb=in2, tubes
AB and BC , each having weight 0:05 lb=in, and the lamp shade at C with weight 2 lb.
Tube BC is parallel to the x axis. Determine the coordinates of the center of gravity.

Figure P7.33

Problem 7.34

The assembly shown is made of a semicircular plate having weight per area of
0:125 lb=in:2 and uniform rods having weight per length of 0:05 lb=in. Determine the
coordinates of the center of gravity.

Problem 7.35

The object shown consists of a rectangular solid, a plate, and a quarter-circular wire,
with masses as follows: solid: 0:0005 g=mm3, plate: 0:01 g=mm2, wire: 0:05 g=mm.
Determine the coordinates of the center of mass.

Figure P7.34 Figure P7.35

Problem 7.36

A sign frame is constructed of metal pipe having a mass per length of 4 kg=m. Portion
CDE is semicircular. The frame is supported by a pin at B and a weightless cable CF .
Determine the center of mass for the frame, the reactions at B , and the force in the
cable.

Figure P7.36
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Problem 7.37

In Example 7.9 on p. 420, the center of gravity of a cone with variable specific weight is
found using integration with a thin disk mass element. Discuss why, for this example, a
thin disk mass element is considerably more convenient than a thin shell mass element.
Note: Concept problems are about explanations, not computations.

Problems 7.38 through 7.41

For the object indicated:

(a) Fully set up the integral, including the limits of integration, that will yield the
center of mass of the object.

(b) Evaluate the integral determined in Part (a), using computer software such as Math-
ematica, Maple, etc.

Problem 7.38 The solid hemisphere of radius r shown has density �0=2 for 0 �
x � r=2 and �0 for r=2 � x � r .

Figure P7.38

Problem 7.39 The hollow cone shown is constructed of a material with uniform
density �0 and has wall thickness that varies linearly from 2t0 at x D 0 to t0 at x D L.
Assume t0 is much smaller than L and R.

Problem 7.40 A solid of revolution is formed by revolving the area shown 360ı

about the x axis. The material has uniform density �0.

Problem 7.41 A solid of revolution is formed by revolving the area shown 360ı

about the y axis. The material has uniform density �0.

Figure P7.39

Figure P7.40 and P7.41
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Problems 7.42 through 7.44

For the object indicated:

(a) Fully set up the integral, including the limits of integration, that will yield the
center of gravity of the object.

(b) Evaluate the integral determined in Part (a), using computer software such as Math-
ematica, Maple, etc.

Problem 7.42 The solid shown has a cone-shaped cavity. The material has uniform
specific weight �0.

Problem 7.43 A solid of revolution is formed by revolving the area shown 360ı

about the x axis. The material has uniform specific weight �0.

Problem 7.44 A solid of revolution is formed by revolving the area shown 360ı

about the y axis. The material has uniform specific weight �0.

Figure P7.42 Figure P7.43 and P7.44
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7.3 Theorems of Pappus and Guldinus

The two theorems discussed here are jointly attributed to Pappus of Alexan-
dria, a mathematician who was active at the end of the 3rd century A.D. (the
years of his birth, his death, and publication of his works are uncertain), and
Paul Guldin, or Guldinus (original name Habakkuk Guldin) (1577–1643), who
was a mathematician and astronomer. These theorems are useful and straight-
forward to apply for determining the area of a surface of revolution and the
volume of a solid of revolution. We first present these theorems and then prove
their validity.

Area of a surface of revolution

A surface of revolution is produced by rotating a generating curve, as shown
in Fig. 7.10, by an angle � (in radians) about an axis of revolution. The axis of

Figure 7.10
A surface of revolution is produced by rotat-
ing a generating curve by an angle � about an
axis of revolution. The generating curve has arc
length L and centroid C located a distance Nr
from an axis of revolution.

revolution and the generating curve lie in the same plane, and the generating
curve must not intersect the axis of revolution, although portions of the gener-
ating curve may lie on the axis of revolution. Based on physical considerations,
the angle � through which the generating curve is rotated must be positive. If
� D 2� , a full surface of revolution is produced whereas if 0 < � < 2� , then
a partial surface of revolution is produced. Values of � > 2� are normally
not possible, but may be considered for unusual applications (e.g., a very thin
surface wrapped upon itself multiple times).

If the generating curve has arc length L and the position of its centroid
relative to the axis of revolution is Nr , as shown in Fig. 7.10, then the area of
the surface of revolution is

A D � NrL: (7.32)

Equation (7.32) gives the area of only one side of the surface.
The generating curve does not need to be smooth for Eq. (7.32) to apply.

For example, the generating curve shown in Fig. 7.11 consists of two straight-
line segments. Equation (7.32) may be applied directly if we first determine the

Figure 7.11
Example of a surface of revolution produced by
a generating curve consisting of simple compos-
ite shapes. The two straight-line segments have
lengths L1 and L2 and centroids located at C1
and C2.

centroid location for the entire generating curve. An approach that is usually
simpler for generating curves that consist of simple composite shapes, such as
in Fig. 7.11, is to recognize that NrL in Eq. (7.32) is the first moment of the
generating curve’s length with respect to the axis of revolution, in which case
NrL D

Pn
iD1 r̃iLi , where Li is the arc length of composite shape i (which is

a line segment, either straight or curved, but usually with simple shape), r̃i is
the position of the centroid of Li measured from the axis of revolution, and n
is the number of composite shapes that constitute the generating curve. Hence,
Eq. (7.32) can be expressed as

A D �

nX
iD1

r̃iLi : (7.33)

For the example in Fig. 7.11, Eq. (7.33) becomes

A D �

2X
iD1

r̃iLi D �.r̃1L1 C r̃2L2/: (7.34)
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Volume of a solid of revolution

A solid of revolution is produced by rotating a generating area, as shown in
Fig. 7.12, by an angle � (in radians) about an axis of revolution. The axis of

Figure 7.12
A solid of revolution is produced by rotating a
generating area by an angle � about an axis of
revolution. The generating area A has its cen-
troid C located a distance Nr from the axis of
revolution.

revolution and the generating area lie in the same plane, and the generating
area must not intersect the axis of revolution, although portions of the gener-
ating area may lie on the axis of revolution. Based on physical considerations,
the angle � through which the generating area is rotated must be positive. If
� D 2� , a full solid of revolution is produced whereas if 0 < � < 2�; then a
partial solid of revolution is produced. Values of � > 2� are not possible.

If the centroid C of the generating area A has position Nr from the axis of
revolution, as shown in Fig. 7.12, then the volume of the solid of revolution is

V D � NrA: (7.35)

For applications when the generating area consists of composite shapes,
such as shown in Fig. 7.13, Eq. (7.35) may be applied directly if we first deter-

Figure 7.13
Example of a solid of revolution produced by a
generating area consisting of simple composite
shapes. The triangle and rectangle have areas
A1 and A2 and centroids located at C1 and C2,
respectively.

mine the centroid location for the entire generating area. However, it is usually
easier to replace NrA in Eq. (7.35) by NrA D

Pn
iD1 r̃iAi ; where Ai is the area of

composite shape i , r̃i is the position of the centroid of Ai measured from the
axis of revolution, and n is the number of composite shapes that constitute the
generating area. Hence, Eq. (7.35) can be expressed as

V D �

nX
iD1

r̃iAi : (7.36)

For the example in Fig. 7.13, Eq. (7.36) becomes

V D �

2X
iD1

r̃iAi D �.r̃1A1 C r̃2A2/: (7.37)

Proof of the Pappus–Guldinus theorems

The theorems of Pappus and Guldinus are easy to prove using calculus and
the concepts of centroid defined in Section 7.1. In recognition of their contri-
bution, we note Pappus and Guldinus developed these theorems long before
calculus was invented. Because of the similarity between the proofs for a solid
of revolution, and a surface of revolution, we discuss only the solid of revo-
lution, using the generating area shown in Fig. 7.14. The area element dA is

Figure 7.14
The area element dA is located a distance r̃
from the axis of revolution, and it gives rise to
a volume dV D �r̃ dA.

located a distance r̃ from the axis of revolution, and this area element gives
rise to a volume dV D �r̃ dA. The total volume of the solid of revolution is
then

V D

Z
dV D �

Z
r̃ dA: (7.38)

Using Eq. (7.9) from Section 7.1 (p. 397), with position measured from the
axis of revolution, the centroid of the generating area is Nr D

R
r̃ dA=A, and

hence Eq. (7.38) becomes
V D � NrA; (7.39)

which is identical to Eq. (7.35).
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End of Sect ion Summary

The theorems of Pappus and Guldinus provide a straightforward means to de-
termine the surface area and volume of objects of revolution.

A surface of revolution is produced by rotating a generating curve, as
shown in Fig. 7.10, by an angle � (in radians) about an axis of revolution.
A solid of revolution is produced by rotating a generating area, as shown in
Fig. 7.12, by an angle � about an axis of revolution. A full surface or vol-
ume of revolution will have � D 2� , whereas a partial surface or volume of
revolution will have 0 < � < 2� .
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E X A M P L E 7.10 Volume and Surface Area of an Object of Revolution

The cross section of a solid-fuel rocket motor is shown, where the fuel is a solid of
revolution.

(a) Determine the volume of fuel.

(b) Determine the total surface area of the fuel.

Figure 1

S O L U T I O N

Road Map The fuel for the rocket is a solid of revolution, as shown in Fig. 2. We will

Figure 2
The fuel for the rocket is a solid of revolution.

use the theorems of Pappus and Guldinus to determine the volume of the solid and the
surface area of the solid.

Part (a)

Governing Equations & Computation In Fig. 3, three simple composite areas are
selected to describe the generating area for a solid of revolution (i.e., the volume of the
rocket’s fuel). Before evaluating Eq. (7.36) on p. 426, we collect in Table 1 the area of

Figure 3
Three composite areas (shown with a slight hor-
izontal separation for clarity) that describe the
generating area for a solid of revolution.

each composite shape and the distance from the axis of revolution to the centroid of
each shape.

Table 1. Areas and centroid positions relative to the axis of revolution for the composite
shapes in Fig. 3.

Shape no. Ai r̃i

1 �.35 cm/2=4 D 962:1 cm2 4
3� .35 cm/ D 14:85 cm

2 .230 cm/.30 cm/ D 6900 cm2 20 cm
3 �12 .30 cm/.15 cm/ D �225 cm2 20 cmC 2

3 .15 cm/ D 30 cm

Since the fuel is a full solid of revolution, � D 2� , and Eq. (7.36) provides

V D 2�

3X
iD1

r̃iAi

D 2�
�
.14:85 cm/.962:1 cm2/C .20 cm/.6900 cm2/C .30 cm/.�225 cm2/

�
D 9:145�105 cm3: (1)

Converting Eq. (1) from cm3 to m3 provides

V D .9:145�105 cm3/
� m

100 cm

�3
D 0:9145m3: (2)

Part (b)

Governing Equations & Computation In Fig. 4, six simple composite lines are
identified to describe the generating curve for a surface of revolution (i.e., the surface
area of the rocket’s fuel). Before evaluating Eq. (7.33) on p. 425, we collect in Table 2

Figure 4
Six composite lines that describe the generat-
ing curve for a surface of revolution. The arc
lengths of the lines are given byL1 throughL6,
and the centroid positions of the lines are indi-
cated by the solid dots (the centroid position of
L6 is not shown).

the arc length of each composite line and the distance from the axis of revolution to the
centroid of each line.

Since the surface of the fuel is a full surface of revolution, � D 2� , and Eq. (7.33)
provides
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Table 2. Lengths and centroid positions relative to the axis of revolution for the com-
posite shapes in Fig. 4.

Shape no. Li r̃i

1 �.35 cm/=2 D 54:98 cm 2
� .35 cm/ D 22:28 cm

2 200 cm 35 cm
3
p
.30 cm/2 C .15 cm/2 D 33:54 cm 20 cmC 1

2 .15 cm/ D 27:50 cm
4 15 cm 5 cmC 1

2 .15 cm/ D 12:50 cm
5 230 cm 5 cm
6 5 cm 2:5 cm

A D 2�

6X
iD1

r̃iLi

D 2�
�
.22:28 cm/.54:98 cm/C � � � C .2:5 cm/.5 cm/

�
D 65;960 cm2: (3)

For brevity, numbers for only the first and sixth line elements are shown in Eq. (3),
and you should verify the results that are given. Converting Eq. (3) from cm2 to m2

provides

A D .65;960 cm2/
� m

100 cm

�2
D 6:596m2: (4)

Discussion & Verification To help judge if our solutions are reasonable, we will
compare the volume and surface area of the fuel, as given by Eqs. (1) and (3), with those
for a circular cylinder with radius r and length L. Using r D 35 cm and L D 265 cm,
the volume of this cylinder is V D �r2L D 1:02�106 cm3, and the surface area
including the ends is A D 2�rLC 2�r2 D 66;000 cm2. Observe that with the values
of r and L cited, the volume of the cylinder is larger than the exact volume of the
fuel, while it is unclear if the surface area of the cylinder should be larger or smaller
than the exact surface area of the fuel. The volume estimate of 1:02�106 cm3 is in
reasonable agreement with Eq. (1) and, as expected, is larger than Eq. (1). The surface
area estimate of 66;000 cm2 is in good agreement with Eq. (3).
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P R O B L E M S

General instructions. Use the theorems of Pappus and Guldinus to determine the
volume and/or surface area for the following problems.

Problem 7.45

The cross section of a rubber V belt is shown. If the belt has circular shape about the
axis of revolution with an inside radius of 6 in:, determine the volume of material in
the belt and the surface area of the belt.

Figure P7.45

Problem 7.46

A pharmaceutical company’s design for a medicine capsule consists of hemispherical
ends and a cylindrical body. Determine the volume and outside surface area of the
capsule.

Figure P7.46

Problem 7.47

A solid is produced by rotating a triangular area 360ı about the vertical axis of revolu-
tion shown. Determine the volume and surface area of the solid.

Figure P7.47 and P7.48 Figure P7.49 and P7.50

Problem 7.48

Repeat Prob. 7.47 if the solid is produced by rotating the triangular area about the
horizontal axis shown.

Problem 7.49

A solid is generated by rotating the shaded area shown 360ı about the y axis. Deter-
mine the volume and surface area of this solid in terms of the dimension h.

Problem 7.50

Repeat Prob. 7.49 if the solid is generated by rotating the shaded area about the x axis.

Problem 7.51

Determine the volume and surface area for the solid of revolution in Example 7.2 on
p. 403.
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Problem 7.52

A metal Sierra cup is used by campers as a multipurpose utensil for drinking, holding
food, and so on. It is an object of revolution that has the generating curve shown. If the
cup is made of titanium sheet that weighs 0:004 lb=in:2, determine the volume of fluid
the cup is capable of holding and the total weight of the cup.

Figure P7.52

Problem 7.53

A funnel is to be made of thin sheet metal using the generating curve shown. If the fun-
nel is to be plated with 0:005mm thick chrome on all surfaces, determine the volume
of chrome required.

Figure P7.53

Problem 7.54

A pressure vessel is to be constructed as a solid of revolution using the generating area
shown.

(a) Determine the volume of material needed to construct the pressure vessel.

(b) Determine the outside surface area.

(c) Determine the inside surface area.

Figure P7.54

Problem 7.55

The penstock shown is retrofitted to an existing dam to deliver water to a turbine gener-
ator so that electricity may be produced. The penstock has circular cross section with
24 in: diameter throughout its length, including section BC , which is a 90ı elbow. De-
termine the total weight of portion ABCD of the penstock, including the water that
fills it. The penstock is made of thin-walled steel with a weight of 0:07 lb=in:2, and the
water weighs 0:036 lb=in:3.

Figure P7.55

Problem 7.56

Determine the volume and surface area for the hemispherical solid with a conical cavity
shown in Fig. P7.9 on p. 410.

Problem 7.57

The area of Prob. 7.12 on p. 410 is revolved 360ı about the line x D �1m to create
a solid of revolution. Determine the volume and surface area of the solid. Hint: This
problem is straightforward if you first solve Prob. 7.12 on p. 410 and Prob. 7.21 on
p. 411.
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7.4 Distributed Forces, Fluid and Gas
Pressure Loading

Throughout this book, we have idealized all forces to be point forces. A point
force is a force that is concentrated at a single point. Point forces do not exist
in nature. Rather, all forces are distributed as discussed below. In this section,
we discuss procedures for how distributed forces can be idealized, or modeled,
by point forces.

Distributed forces

Distributed forces are forces that are distributed along a line, over a surface, or
throughout a volume. Specific types of distributed forces are as follows:

Line force. A force distributed along a line is called a line force, or a line
load. Examples of a line force w are shown in Fig. 7.15, where w has dimen-
sions of force/length. Line forces are often used in connection with beam-type
structures.

Figure 7.15
(a) A line force w is a distributed force that acts
along a line; w has dimensions of force/length.
(b) An example of a line force applied to an I
beam.

Surface force. A force distributed over a surface is called a surface force,
or a traction. Examples of a surface force p are shown in Fig. 7.16, where
p has dimensions of force/area. Surface forces result from fluid and gas pres-
sure loadings, contact (with or without friction), as well as a variety of other
situations.

Figure 7.16
(a) A surface force p is a distributed force
that acts over a surface; p has dimensions of
force/area. (b) An example of a surface force is
the air pressure applied to the bottom surface of
an airplane wing. Volume force. A force distributed throughout a volume is called a volume

force, or a body force. Examples of a volume force b are shown in Fig. 7.17,
where b has dimensions of force/volume. Common examples of volume forces
are weight due to gravity and attractive forces within an iron object due to a
magnetic field.

Figure 7.17
(a) A volume force b is a distributed force that
acts throughout a volume; b has dimensions
of force/volume. (b) An example of a volume
force is the weight of material in a dumbbell
used for weight-lifting exercises.

Line forces, surface forces, and volume forces are all vectors. Line forces
and surface forces do not need to be perpendicular to the objects or structures
to which they are applied, although often they will be. For example, consider
standing on a gently sloped sidewalk on a cold winter day. Under one foot
there is dry pavement while under your other foot is ice. For the foot touching
dry pavement, there is a surface force distribution that consists of a normal
direction component and a tangential direction component. In fact, the tan-
gential direction component keeps you from slipping! For the foot touching
ice, the surface force distribution has only a normal direction component. In
nature, all forces are either surface forces or volume forces. Line forces and
point forces are useful idealizations for surface forces and volume forces. In
this section, we use Chapter 4 concepts on equivalent force systems and the
concepts of centroid discussed earlier in this chapter to replace distributed
forces by point forces.

Helpful Information

Units for surface forces. For convenience,
special units for surface forces have been
defined. In the U.S. Customary system,
1 psi D 1 lb=in:2, and in the SI system,
1 Pa D 1N=m2. These units are read as
follows: “psi” means pound per square
inch, and “Pa” means pascal, which is a
unit named in honor of the French scientist
Blaise Pascal (1623–1662).

Distributed forces applied to beams

Consider the example shown in Fig. 7.18(a) where a 30m long cantilever beam
is subjected to a distributed force. The distributed force w varies linearly from
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12 kN=m at the left-hand end to 6 kN=m at the right-hand end. Using the co-
ordinate system shown in Fig. 7.18(a), the distributed force w as a function of
position x is (for tips on developing expressions for linear functions, see the
Helpful Information margin note on p. 420)

Figure 7.18
(a) A distributed force applied to a cantilever
beam. (b) A distributed force w acting over a
small length dx produces a force dF D w dx.
(c) An equivalent force system consisting of a
force F at position Nx. (d) A FBD that can be
used to determine the support reactions.

w D 12 kN=m � .0:2 kN=m2/x: (7.40)

Note that in writing Eq. (7.40), we consider the distributed force w to be
positive when acting in the �y direction, and we will follow this convention
throughout this book. As shown in Fig. 7.18(b), over a small length of beam
dx, the distributed force w produces a force dF D w dx. Hence, the total
force F produced by the distributed loading is

F D

Z
dF D

Z
w dx (7.41)

D

30mZ
0

�
12 kN=m � .0:2 kN=m2/x

�
dx D 270 kN: (7.42)

Using Eq. (7.19) on p. 400, with dA replaced by the force dF , the centroid of
the distributed load, and hence the position of the line of action of the force F ,
is

Nx D

R
x̃ dFR
dF

D

R
x̃ w dxR
w dx

(7.43)

D

30mR
0

x
�
12 kN=m � .0:2 kN=m2/x

�
dx

270 kN
D
3600 kN�m

270 kN
D 13:33m: (7.44)

Using the results of Eqs. (7.42) and (7.44), the equivalent force system shown
in Fig. 7.18(c) can be constructed. Then an FBD may be drawn as shown in
Fig. 7.18(d), and reactions may be determined (you should verify for yourself
that the reactions are NA D 0, VA D 270 kN, and MA D �3600 kN�m).

The forgoing treatment demonstrates the use of integration to determine
the force and centroid of a distributed load. For distributed loads that have sim-
ple shape, such as uniform and linear distributions, it may be more convenient
to use composite shape concepts, as was done in earlier sections of this chapter.
Returning to the cantilever beam shown in Fig. 7.18(a), either of the composite
shapes shown in Fig. 7.19 may be used. In the case of Fig. 7.19(a), the “area”

Figure 7.19
Two examples of using composite shapes to de-
termine the forces due to the distributed load
shown in Fig. 7.18(a). (a) Triangular and rect-
angular distributions. (b) Two triangular distri-
butions.

and centroid of the triangular distribution are F1 D .1=2/.base/.height/ D
.1=2/.30m/.6 kN=m/ D 90 kN and x̃1 D 10m. The “area” and centroid of
the rectangular distribution are F2 D .base/.height/ D .30m/.6 kN=m/ D
180 kN and x̃2 D 15m. Similar comments apply for determining the values of
F1, x̃1, F2, and x̃2 for Fig. 7.19(b). For Fig. 7.19(a) and (b), you should draw
FBDs and verify that the reactions are the same as those reported earlier.

Fluid and gas pressure

Pressures from fluids and gases are surface forces and are always compres-
sive. We consider an incompressible stationary (nonflowing) fluid, as shown
in Fig. 7.20. The surface of the fluid lies in the xy plane and is subjected to
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a gas pressure p0. We consider an infinitesimally small cube of fluid located
at a depth d below the surface. Regardless of the cube’s orientation, such as
the two different orientations shown in Fig. 7.20, all six faces of the cube are
subjected to the same compressive pressure p as follows

Figure 7.20
A volume of incompressible stationary fluid
with density �. The surface of the fluid lies
in the xy plane and is subjected to a pressure
p0. Infinitesimally small cubes of fluid are sub-
jected to hydrostatic compressive pressure p.

p D p0 C �gd

D p0 C �d;
(7.45)

where

p0 is the pressure at the surface of the fluid;
d is the depth below the fluid’s surface;
g is acceleration due to gravity;
� is the density of the fluid;
� is the specific weight of the fluid (� D �g); and
p is the pressure at a depth d due to the fluid and gas, with dimen-

sions of force/area.

Remarks

� The state of pressure due to gas and/or fluid loading is called hydrostatic
because the pressure at a particular point has the same intensity in all
directions.

� Observe that Eq. (7.45) is a linear function of depth d .

� Equation (7.45) gives the absolute pressure at a point, that is, the total
pressure due to both gas and fluid loading. For many applications, only
the portion of the pressure due to the fluid loading is needed, and this is
often called the gage pressure, and Eq. (7.45) with p0 omitted becomes

p D �gd

D �d:
(7.46)

� If there is no gas pressure acting on the surface of the fluid, then p0 D 0
and the absolute pressure and the gage pressure are identical. However,
even when the gas pressure is significant, exact analyses can often be
carried out using only the gage pressure, and this is the approach nor-
mally used. The margin note on this page and Example 7.14 on p. 442
discuss this issue in greater detail.

Helpful Information

Can gas pressure be neglected in FBDs?
Provided all surfaces of an object are
subjected to the same gas pressure, for
most purposes we can omit this pressure
in FBDs with no error or loss of accuracy.
For example, consider a glass full of
your favorite beverage resting on a table,
as shown in (a) below. The figure in (b)
shows a two-dimensional view of the FBD

including air pressure, and (c) shows the
FBD omitting air pressure, where W is
the weight of the glass and beverage and
R is the reaction between the glass and
table. Although we do not prove this, when
summing forces in the vertical direction, the
downward component of all forces due to
the air pressure in (b) is equilibrated by the
upward component of all forces due to the
air pressure. Hence, the same reaction R
is obtained for both FBDs, namely, R D W .

� If there is no fluid pressure loading, then Eq. (7.45) shows that all points,
regardless of position d , are subjected to the same gas pressure p0.
While this model is suitable for some applications, you should note that
in contrast to fluids where the assumption of incompressibility is reason-
able over a very large range of conditions, gases are highly compressible
and pressures are strongly dependent on temperature.

To understand more deeply why Eq. (7.45) describes gas and fluid pres-
sure, consider the rectangular prism of fluid shown in Fig. 7.21(a). The FBD
for this prism of fluid is three-dimensional, but only a two-dimensional view
is needed and this is shown in Fig. 7.21(b). Note that at point A, the pressure
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acting on the vertical surface is the same as the pressure acting on the horizon-
tal surface. Identical remarks apply for points B , C , and D. Summing forces
in the ´ direction provides

Figure 7.21
(a) A rectangular prism of fluid with height d ,
width a, and thickness a, whose surface is sub-
jected to a pressure p0. (b) A two-dimensional
view of the FBD for the prism of fluid.

X
F´ D 0 W p0a

2 CW � pa2 D 0; (7.47)

where W is the weight of the prism of fluid, which is equal to the product of
the density of the fluid �, acceleration due to gravity g, and the volume of the
prism a2d ; thus W D �ga2d . In writing Eq. (7.47), the force from the gas
pressure on surface AB is given by the product of pressure at that location p0
and the area over which it acts, which is a2. Similarly, the force on surface
CD is the product of pressure at that location p and the area over which it
acts, which is also a2. Substituting W D �ga2d into Eq. (7.47) and solving
for p yields Eq. (7.45).

Forces produced by fluids

When a fluid makes contact with the surface of a body, a surface force that
is compressive is exerted on the body, and this can be a significant source of
loading. In the following discussion, we consider approaches for determining
the forces that fluids apply to surfaces of bodies and structures.

Fluid forces on flat surfaces

In Fig. 7.22, we consider the situation of a rectangular plate submerged in an
incompressible stationary fluid.

Figure 7.22. (a) Fluid pressure acting on one surface of a flat rectangular plate and
a force P that is equivalent to the fluid pressure distribution. The other surfaces of
the plate also have fluid pressures acting on them, but these pressures are not shown.
(b) A view of the plate looking down the x axis showing the pressure distribution and
an approach for determining the force the fluid applies to the surface of the plate. (c)
An alternative approach using an FBD of a volume of fluid for determining the force
the fluid applies to the surface of the plate.

Helpful Information

Don’t confuse p and P . In Fig. 7.22, and
elsewhere in this section, lowercase p rep-
resents pressure (dimensions: force/area),
and uppercase P represents force. Thus,
p and P are different—but they are related.
Integrating pressure p over the area it acts
upon yields the force P .

The upper and lower edges of the plate, denoted by A and B , are parallel
to the surface of the fluid and have depths dA and dB , respectively. We focus
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on the gage pressure, which is the pressure due to the fluid only. The pressure
on the upper edge is given by Eq. (7.46) and has value pA D �dA, and the
pressure on the lower edge has value pB D �dB . Between edges A and B
the pressure distribution is linear, and, very importantly, the direction of the
pressure is perpendicular to the surface of the plate over the entire surface of
the plate.

Concept Alert

Fluid and gas pressure. The direction of
the pressure that a fluid or gas applies to
the surface of a body is always perpendic-
ular to the surface over which the pressure
acts.

Two approaches for determining the force P and/or P1 and P2 that the
fluid applies to the surface of the plate are shown in Fig. 7.22(b) and (c). In
Fig. 7.22(b), we use concepts of equivalent force systems from Chapter 4 and
the concepts of centroid discussed earlier in this chapter to break the pressure
distribution into two simple composite shapes. The first shape is a rectangu-
lar “volume” with dimensions pA by L by s; the force corresponding to this
is P1 D pALs; and the position of the line of action of P1 is through the
centroid of a rectangular volume, namely, L=2 from edge B as shown. The
second shape is a triangular “volume” with height pB � pA, length L, and
width s; the force corresponding to this is P2 D .1=2/.pB � pA/Ls; and the
position of the line of action of P2 is through the centroid of a triangular vol-
ume, namely, L=3 from edge B as shown. After P1 and P2 are known and
their lines of action have been located, we proceed to determine similar quan-
tities for other surfaces of the body that may be in contact with fluid. We then
draw an FBD where all forces acting on the body are included, followed by
writing equilibrium equations and so on.

In Fig. 7.22(c), we use a different approach wherein equilibrium concepts
are used to determine the force the fluid applies to the surface of the structure.
We begin by drawing an FBD of a triangular wedge of fluid; although the
FBD is three-dimensional, a two-dimensional view as shown in Fig. 7.22(c) is
adequate for our purposes. The wedge of fluid has weight W , the upper edge
of the fluid is subjected to a uniform pressure pA (D �dA), the vertical surface
is subjected to a linear pressure distribution that changes from pA at the top
to pB (D �dB ) at the bottom, and rather than show the pressure distribution
on surface AB , we instead show the force P that this pressure distribution
produces. We then write equilibrium equations

P
Fy D 0 and

P
F´ D 0 to

determine the y and ´ components of P , and we write
P
M D 0 to locate the

line of action of P . Note that by determining the force P that acts on edgeAB
of the fluid, we have, according to Newton’s third law of motion, determined
the force that the fluid applies to the surface of the structure, also shown in
Fig. 7.22(c).

Common Pitfall

Errors in FBDs. A common error when
drawing FBDs is to have fluid and gas pres-
sures that are not perpendicular to the sur-
faces over which they act. For example,
consider a gravity dam that retains water.

Both of the FBDs in (b) and (c) correctly
have linear water pressure distributions, but
the FBD in (b) is incorrect because the wa-
ter pressure is not perpendicular to the sur-
face over which it acts.

Fluid forces on nonflat surfaces

In Fig. 7.23, we consider the situation of a curved plate with uniform width s
submerged in an incompressible stationary fluid. The upper and lower edges
of the plate are parallel to the surface of the fluid and have depths dA and
dB , respectively. The pressures on the upper and lower edges have values pA
and pB , respectively. Between edges A and B the value of the pressure has
a linear distribution; for example, if edge B is twice as deep as edge A, then
pB is twice as large as pA. Despite the linearity in the value of the pressure,
because the direction of the pressure is always perpendicular to the surface of
the plate, the pressure distribution is complex. To determine the force P that
the fluid applies to the plate by using the approach shown in Fig. 7.23(b), it is
necessary to develop expressions for the y and ´ components of the pressure



Section 7.4 Distributed Forces, Fluid and Gas Pressure Loading 437

Figure 7.23. (a) Fluid pressure acting on one surface of a curved plate, and a force P
that is equivalent to the fluid pressure distribution. The other surfaces of the plate also
have fluid pressures acting on them, but these pressures are not shown. (b) A view of
the plate looking down the x axis showing the pressure distribution. (c) An approach
using an FBD of a volume of fluid for determining the force the fluid applies to the
surface of the plate.

py and p´ and to integrate these over the area of the plate to obtain the force
Py D

R
pys dL, whereL is the arc length of the curved plate and s is its width,

and similarly for P´ D
R
p´s dL. Once Py and P´ are known, the force the

fluid applies to the plate is P D
q
P 2y C P

2
´ , and then we must proceed to

determine the location of its line of action. Carrying out these calculations can
be tedious.

Fortunately, for many problems the alternative procedure shown in
Fig. 7.23(c) will be much easier to use. If the shape of the volume of fluid
in the FBD is sufficiently simple that its volume and centroid can be readily
determined, then this approach is straightforward. Observe in Fig. 7.23(b) and
(c) that while the fluid pressures are always perpendicular to the surfaces they
act on, the line of action of force P is not necessarily perpendicular to the
surface.

Remarks

We end this discussion with a few closing remarks. We have presented two
solution approaches for determining the force that a fluid applies to the surface
of a structure. The examples of this section give further details on how these
two solution approaches are carried out and contrast them to help you decide
which approach is more convenient for a particular problem. For surfaces with
more complicated shape and/or orientation than those considered here, we may
have no choice but to carry out the integrations described above to determine
the forces due to the fluid loading.

Forces produced by gases

Loads applied to structures from a pressurized gas are often important, and the
preceding discussion of fluid pressure loading is generally applicable with the
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following simplifications. In a pressurized gas, the density of the gas is typi-
cally negligible� so that all surfaces of a structure over which the gas makes
contact are subjected to the same pressure p0. As with fluids, gas pressure is
compressive and always acts perpendicular to the surface the gas makes con-
tact with. Thus, Figs. 7.22 and 7.23 are applicable with pA D pB D p0, and
in Figs. 7.22(c) and 7.23(c), the weight of the volume of gas in the FBDs is
W D 0. Example 7.14 provides further details on treatment of forces due to a
pressurized gas.

End of Sect ion Summary

In this section, distributed forces and their treatment were discussed. Dis-
tributed forces are forces that are distributed along a line, over a surface, or
throughout a volume. A force distributed along a line is called a line force, or
a line load, and this has dimensions of force/length. A force distributed over
a surface is called a surface force, or a traction, and this has dimensions of
force/area. A force distributed throughout a volume is called a volume force,
or a body force, and this has dimensions of force/volume.

Fluid pressure is a surface force. If the fluid is incompressible and at rest,
then the pressure within the fluid is given by Eq. (7.45) as p D p0 C �gd

where p0 is the gas pressure (constant) at the surface of the fluid. For many
purposes, only the portion of the pressure due to fluid loading is important,
and this pressure (p D �gd ) is sometimes called the gage pressure. In either
case, fluid pressure acts normal to the surface the fluid makes contact with.

Gas pressure is a surface force. If the gas has negligible density and is
at rest, then the pressure throughout the gas has constant value p0, and all
surfaces that make contact with the gas are subjected to this pressure, which
acts normal to the surfaces.

Also discussed in this section were methods for determining the forces that
fluid and gas pressure distributions apply to structures.

� If the density of a gas is large enough that it cannot be neglected, then the gas is essentially
a fluid and is treated as such. Further, if the gas is stationary and can be assumed to have
constant density, then the methods for treatment of fluids discussed in this section can be applied.
However, because gases are highly compressible, the assumption of constant density is more
restrictive for gases than for fluids.
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E X A M P L E 7.11 Distributed Forces Applied to a Beam

A bookshelf holding 11 books is supported by brackets at points A and B . The weights
and thicknesses of the books are given in Table 1. Determine the support reactions.

Figure 1

Table 1
Weights and thicknesses of books.

Books Weight Thickness

1–4 4 lb 2 in:
5–7 3 lb 3 in:

8 4 lb 1 in:
9 3 lb 1 in:

10 2 lb 1 in:
11 1 lb 1 in:

S O L U T I O N

Road Map We could determine the support reactions for the shelf by applying 11
individual loads according to the weights given in Table 1, but because of the large
number of forces, it will be better to model the weight of the books by using distributed
forces. Once this is accomplished, an FBD is drawn and equilibrium equations are
written and solved.

Modeling Books 1–4 have identical weight and thickness, and thus over the por-
tion of the shelf where these books rest, they apply a uniform distributed force of
4 lb=2 in: D 2 lb=in. Similarly, books 5–7 have identical weight and thickness, and
thus over the portion of the shelf where these books rest, they apply a uniform dis-
tributed force of 3 lb=3 in: D 1 lb=in. Books 8–11 have the same thickness and show a
linear variation in their weights, and thus the force they apply will be modeled using a
linear distributed force that varies from 4 lb=in: at book 8 to 1 lb=in: at book 11. The
model for books 8–11 is approximate, although reasonably accurate; Prob. 7.68 gives
suggestions for developing a more accurate model. The distributed forces are shown in
Fig. 2.

Figure 2
Free body diagram showing distributed loads.

The problem statement does not provide details of the supports at A and B , and
thus we will idealize the support reactions to consist of vertical forces only, and the
FBD is shown in Fig. 2. At point A and/or B , there is probably also a horizontal force
reaction, but the presence of such is not important to this problem.

Figure 3
Free body diagram showing concentrated loads.

Governing Equations & Computation Shown in Figs. 2 and 3 are FBDs; the first of
these shows the distributed loads while the second has replaced these with equivalent
concentrated loads as follows:

F1 D .2 lb=in:/.8 in:/ D 16 lb; F2 D .1 lb=in:/.9 in:/ D 9 lb;

F3 D .1 lb=in:/.4 in:/ D 4 lb; F4 D
1
2 .3 lb=in:/.4 in:/ D 6 lb;

(1)

and the locations of these forces are shown in Fig. 3. Each of the forces given in Eq. (1)
is determined by evaluating the “area” of the distributed load and placing this at the
centroid of the distributed load. For example, the distributed load for books 1–4 is
a rectangle with height 2 lb=in: and base 8 in:; the “area” of this rectangle is F1 D
.2 lb=in:/.8 in:/ D 16 lb, and the centroid is at the interface between books 2 and 3.
The distributed load for books 8–11 is broken into two simpler distributions consisting
of a rectangle and a triangle, as shown by the dashed lines in Fig. 3.

The support reactions are found by writing and solving the following equilibrium
equations:X

MA D 0 W B.13 in:/ � F2.8:5 in:/ � F3.15 in:/ � F4.14:33 in:/ D 0 (2)

) B D 17:1 lb; (3)X
Fy D 0 W AC B � F1 � F2 � F3 � F4 D 0 (4)

) A D 17:9 lb: (5)

Discussion & Verification To help verify that F1 through F4 are evaluated accu-
rately, note that their sum is equal to the total weight of the books from Table 1, which
is 35 lb. Note that the sum of the reactions A and B is also 35 lb.
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E X A M P L E 7.12 Fluid Pressure Loading and FBD Choices

Freshwater in a channel is retained by a flat rectangular gate with 0:6m width (into the
plane of the figure) that is supported by a pin at B . The vertical wall BD is fixed in
position. If the weight of the gate is negligible, determine the force F required to begin
opening the gate.

Figure 1

S O L U T I O N

Road Map When drawing an FBD, we can use either of the approaches shown in
Fig. 7.22 on p. 435 for treating the fluid. Namely, we may draw an FBD of the gate
alone, including the pressures the water applies to it, as shown in Fig. 7.22(b). Or we
may draw an FBD of the gate and a judiciously selected volume of water, as shown in
Fig. 7.22(c). Both approaches are effective for this problem, although the first approach
is slightly easier and will be used here.

Modeling While the gate is a three-dimensional structure with length from A to B of
L D

p
.1m/2 C .1m/2 D 1:414m and a width of 0:6m, an FBD in two dimensions is

suitable, as shown in Fig. 2. When the gate begins to open, contact at A is broken and
Ay D 0.

Figure 2
Free body diagram showing the pressure distri-
bution the water applies to the gate.

Governing Equations & Computation The density of freshwater is � D 103 kg=m3,
and from Eq. (7.46) on p. 434, the pressures at points A and B are

pA D � gdA D

�
103

kg

m3

��
9:81

m

s2

�
.1:4m/ D 13;730

N

m2
D 13:73

kN

m2
; (1)

pB D � gdB D

�
103

kg

m3

��
9:81

m

s2

�
.0:4m/ D 3924

N

m2
D 3:924

kN

m2
: (2)

In Fig. 3, the FBD of Fig. 2 is redrawn with the pressure distribution replaced by the
forces the water applies to the structure. These forces are determined by breaking the

Figure 3
Free body diagram showing the forces the water
applies to the gate.

pressure distribution into simpler composite shapes consisting of a rectangular “vol-
ume” with height pB , length L D 1:414m, and width 0:6m, and a triangular “volume”
with height pA�pB and the same length and width. Thus, the forces corresponding to
these shapes are

P1 D pBL.0:6m/ D 3:330 kN; P2 D
1
2 .pA � pB /L.0:6m/ D 4:162 kN; (3)

and the locations of the lines of action of these forces are shown in Fig. 3.
To determine the force F required to begin opening the gate, we sum moments

about point B as follows:

X
MB D 0 W F.0:7m/ � P1

�L
2

�
� P2

�2L
3

�
D 0 (4)

) F D 8:97 kN: (5)

If desired, the reactions Bx and By can be determined by writing the equilibrium equa-
tions

P
Fx D 0 and

P
Fy D 0.

Discussion & Verification The force F determined above is large, but is reasonable
considering the depth of the water and the size of the gate. To contrast the solution ap-
proaches cited in the Road Map discussion, you should consider resolving this problem
using an FBD that includes a volume of fluid.
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E X A M P L E 7.13 Fluid Pressure Loading and FBD Choices

Freshwater in a channel is retained by a cylindrical gate with 0:6m width (into the
plane of the figure) that is supported by a pin at B . The vertical wall BD is fixed in
position. If the weight of the gate is negligible, determine the force F required to begin
opening the gate.

Figure 1

S O L U T I O N

Road Map This example differs from Example 7.12 only in the geometry of the
gate. Fundamentally, we may develop an FBD using either of the approaches shown in
Fig. 7.23(b) or (c) on p. 437 for treating the fluid. However, for this problem it will be
considerably easier to use the latter approach where the FBD includes an appropriate
volume of fluid.

Modeling An FBD of the gate and a cylindrical volume of fluid is shown in Fig. 2.
When the gate begins to open, contact at A is broken and Ay D 0.

Figure 2
Free body diagram showing the gate, a cylindri-
cal volume of fluid, and the pressure distribu-
tion acting on the volume of fluid.

Governing Equations & Computation The density of freshwater is � D 103 kg=m3,
and from Eq. (7.46) on p. 434, the pressures at points A and B are

pA D � gdA D

�
103

kg

m3

��
9:81

m

s2

�
.1:4m/ D 13;730

N

m2
D 13:73

kN

m2
; (1)

pB D � gdB D

�
103

kg

m3

��
9:81

m

s2

�
.0:4m/ D 3924

N

m2
D 3:924

kN

m2
: (2)

Note that these pressures are identical to those found in Example 7.12. In Fig. 3, the
FBD of Fig. 2 is redrawn with the pressure distributions replaced by the forces

Figure 3
Free body diagram showing the forces pro-
duced by the pressure distributions.

P1 D P2 D pB .1m/.0:6m/ D 2:354 kN; (3)

P3 D
1
2 .pA � pB /.1m/.0:6m/ D 2:943 kN; (4)

where locations of the lines of action of these forces are shown in Fig. 3. The weightW
of the cylindrical volume of water is the product of the water’s density �, acceleration
due to gravity g, and the cylindrical volume V :

W D �gV D

�
103

kg

m3

��
9:81

m

s2

�
�.1m/2

4
.0:6m/ D 4623N D 4:623 kN: (5)

The line of action of W is obtained by using the centroid position of a quarter-circular
area from the Table of Properties of Lines and Areas on the inside back cover of this
book and then evaluating .1m/ � .4/.1m/=.3�/ D 0:5756m.

To determine the force F required to begin opening the gate, we sum moments
about point B as follows:X

MB D 0 W F.0:7m/ � P1.0:5m/ � P2.0:5m/ � P3.0:667m/

�W.0:576m/ D 0 ) F D 9:97 kN: (6)

If desired, the reactions Bx and By can be determined by writing the equilibrium equa-
tions

P
Fx D 0 and

P
Fy D 0.

Discussion & Verification The force F determined here is slightly larger than the
result for Example 7.12. The ease of carrying out the solution strategy in this example
depends strongly on how easy it is to obtain the volume and centroid position of the
fluid volume used in the FBD. To help you contrast this solution approach with that used
in Example 7.12, the FBD of only the gate is shown in Fig. 4 where the complexity of
the pressure distribution is apparent.

Figure 4
Free body diagram showing the pressure distri-
bution the water applies to the gate.
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E X A M P L E 7.14 Gas Pressure Loading

A pressure cooker is a large pot used for cooking and canning� foods under high pres-
sure and temperature. The pressure cooker shown is cylindrical, operates at an internal
pressure of 30 psi (psi = lb=in2), and has a lid that is clamped to the base using six hand-
tightened screws symmetrically located around the pot’s circumference. Determine the
force each screw must support due to the pressure within the cooker.

Figure 1

S O L U T I O N

Road Map To determine the force supported by the screws, we can use an FBD of
the lid alone, or we can use an FBD of the lid and a judiciously selected volume of air.
Because the surface of the lid over which the air makes contact has complex shape, the
latter approach will be considerably easier. The air will be treated as a gas, so that it is
assumed to have negligible weight.

Modeling We will assume that all six screws support the same force F . An FBD of
the lid and a volume of air is shown in Fig. 2 where we have neglected the weight of
the lid and air. To help provide clarification, the volume of air included in this FBD is

Figure 2
Free body diagram of the lid and a volume of
air.

shown in Fig. 3, and the uniform pressure distribution shown in the FBD acts on the flat
bottom surface of this volume of air.

Figure 3
A sketch of the volume of air included in the
FBD of Fig. 2.

Governing Equations & Computation In Fig. 4, the FBD of Fig. 2 is redrawn with
the pressure distribution replaced by the force

Figure 4
Free body diagram showing the force produced
by the pressure distribution.

P D p0�.8 in:/2 D 6032 lb; (1)

where the pressure is p0 D 30 lb=in:2, �.8 in:/2 is the area of the circular surface over
which the pressure acts, and the line of action of P passes through the centroid of the
pressure distribution.

To determine the force F supported by each of the six screws, we use the FBD of
Fig. 4 to sum forces in the y direction to obtainX

Fy D 0 W �6F C P D 0 ) F D 1010 lb: (2)

Discussion & Verification

� The force P determined in Eq. (1) and the bolt force F determined in Eq. (2)
are impressively large, and this underscores the need for safety when designing
and operating a pressure cooker (and pressure vessels in general).

� The screw force F determined here is due to the pressurization only. In addition
to this force, each of the screws supports a force due to the hand tightening, but
this value is probably small compared to Eq. (2). Also, the assumption to neglect
the weight of the lid is clearly acceptable in view of the results of Eq. (1).

� The pressure p0 D 30 lb=in:2 is the gage pressure. In the FBDs, atmospheric
pressure (approximate value at sea level is 14:7 lb=in:2) is not included, because
it has no net effect on equilibrium. That is, if atmospheric pressure were in-
cluded, it would completely surround the objects shown in the FBDs, and when
we wrote equilibrium equations such as

P
Fy D 0, its effects would fully can-

cel in these expressions.

�Canning is a process whereby food in sealed jars is placed in a pressure cooker with a small
amount of water that is raised to high pressure and temperature to kill harmful bacteria. After
heat treatment, the jars may be stored at room temperature without spoilage of the food.
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P R O B L E M S

General instructions. Unless otherwise stated, in the following problems you
may use integration, composite shapes, or a combination of these. The specific weight
and density of water are 0:0361 lb=in:3 and 103 kg=m3, respectively.

Problem 7.58

A shelf in a grocery store supports 100 bags of rice, each bag weighing 1 lb. Consider
the arrangements shown: (a) The bags are stacked at a uniform height, (b) the bags
are stacked twice as high on the right-hand side as on the left-hand side, (c) the bags
are stacked twice as high on the right-hand side as on the left-hand side with a linear
variation, and (d) the bags are stacked twice as high in the middle as at the two ends
with linear variations. For each of the arrangements, develop an expression (or multiple
expressions if needed) for the distributed force w as a function of position x.

Figure P7.58

Problem 7.59

A cantilever beam supports a wall built of 1000 bricks, each brick having 5 kg mass.
Consider the arrangements shown: (a) The wall has uniform height, (b) the wall is
twice as high on the left-hand side as on the right-hand side, (c) the wall is twice as
high on the left-hand side as on the right-hand side with a linear variation, and (d) the
wall is twice as high in the middle as at the two ends with linear variations. For each
of the arrangements, develop an expression (or multiple expressions if needed) for the
distributed force w as a function of position x.

Figure P7.59
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Problems 7.60 through 7.63

Determine the support reactions, using composite shapes to represent the distributed
load.

Problem 7.60 Loading (a) in Prob. 7.58 on p. 443.

Problem 7.61 Loading (d) in Prob. 7.58 on p. 443.

Problem 7.62 Loading (a) in Prob. 7.59 on p. 443.

Problem 7.63 Loading (d) in Prob. 7.59 on p. 443.

Problems 7.64 through 7.67

(a) Use integration (Eqs. (7.41) and (7.43) on p. 433) with the appropriate expres-
sion(s) for the distributed load w to determine the x position of the line of action
for the resultant force produced by the distributed load.

(b) Determine the support reactions using the results of Part (a).

(c) Determine the support reactions using composite shapes to represent the distributed
load.

Problem 7.64 Loading (b) in Prob. 7.58 on p. 443.

Problem 7.65 Loading (c) in Prob. 7.58 on p. 443.

Problem 7.66 Loading (b) in Prob. 7.59 on p. 443.

Problem 7.67 Loading (c) in Prob. 7.59 on p. 443.

Problem 7.68

Consider modeling the weights from books 8–11 from Example 7.11 on p. 439, using
the linear force distribution w D aC bx, as shown here. The constants a and b can be
determined by requiring the two force systems shown to be equivalent. That is,

4 in:Z
0

w dx D

11X
iD8

Wi and

4 in:Z
0

xw dx D

11X
iD8

MBi ;

where MBi is the moment about point B (the origin) of weight Wi .

(a) Using the weights and geometry of books 8–11 given in Table 1 of Example 7.11,
evaluate the above expressions and solve for a and b to show that w D 35

8
lb
in. ��

15
16

lb
in.2

�
x.

(b) Evaluate the distributed force from Part (a) at x D 0 and x D 4 in:, and compare
these to the values used in Example 7.11, namely, 4 lb=in: and 1 lb=in:, respec-
tively.

(c) Discuss why the distributed force from Part (a) is better than that used in Exam-
ple 7.11.

(d) Using the distributed force from Part (a), determine the support reactions for the
bookshelf and compare to those found in Example 7.11.

Figure P7.68
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Problem 7.69

(a) For the distributed loading shown, develop an expression (or multiple expressions
if needed) for the distributed force w as a function of position x.

(b) Use integration (Eqs. (7.41) and (7.43) on p. 433) with the results of Part (a) to
determine the total force produced by the distributed load and the x position of its
line of action.

(c) Determine the support reactions using the results of Part (b).

(d) Determine the support reactions using composite shapes for the distributed load.
Figure P7.69

Problem 7.70

A beam is loaded by a distributed force that begins at the left-hand end as an 800N=m
uniform load with dw=dx D 0 and decreases to zero at the right-hand end.

(a) Determine the constants a, b, and c so that the quadratic polynomial w D a C

bx C cx2 describes this loading.

(b) Determine the constants d and f so that the trigonometric functionw D d cos.f x/
describes this loading.

Figure P7.70 and P7.71

Problem 7.71

(a) Use integration (Eqs. (7.41) and (7.43) on p. 433) with the results of Part (a) of
Prob. 7.70 to determine the total force produced by the distributed load, the x
position of its line of action, and the support reactions.

(b) Use integration (Eqs. (7.41) and (7.43) on p. 433) with the results of Part (b) of
Prob. 7.70 to determine the total force produced by the distributed load, the x
position of its line of action, and the support reactions.

(c) Compare the results of Parts (a) and (b), and discuss if these should be the same or
if differences are expected.

Problems 7.72 through 7.77

Determine the support reactions for the loading shown.

Figure P7.72 Figure P7.73 Figure P7.74

Figure P7.75 Figure P7.76 Figure P7.77
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Problem 7.78

In Fig. P7.72 on p. 445, replace the pin and roller supports with a built-in support at C ,
and determine the support reactions.

Problem 7.79

In Fig. P7.73 on p. 445, replace the pin and roller supports with a built-in support at A,
and determine the support reactions.

Problem 7.80

In Fig. P7.74 on p. 445, reposition the roller support to the midspan of the beam, and
determine the support reactions.

Problem 7.81

In Fig. P7.75 on p. 445, replace the pin and roller supports with a built-in support at A,
and determine the support reactions.

Problem 7.82

Determine the support reactions for the cantilever beam. Express your answers in terms
of parameters such as w1, w2, a, and L.

Figure P7.82

Problem 7.83

Determine the support reactions for the simply supported beam. Express your answers
in terms of parameters such as w0, a, and L.

Figure P7.83
Problem 7.84

A blade of the main rotor of a hovering helicopter is subjected to the y direction
distributed forces shown, where values of the distributed force are known at points
A, B , and C . Determine the constants a, b, and c so that the quadratic polynomial
w D aC bx C cx2 describes this loading. Using this polynomial, determine the total
force produced by this distribution and the x position of its line of action.

Figure P7.84

Problem 7.85

Consider a straight uniform member with length L and weight W . Two force systems
for representing the weight of this member are shown. In system 1, the distributed force
is uniform with value w0 D W=L.

(a) Use Eq. (4.16) on p. 223 to determine Ay and By in terms of W so that the two
force systems are equivalent.

(b) Are the results for Part (a) in agreement with the load lumping scheme described
for trusses in Example 6.2 on p. 338?

(c) Without calculations, but perhaps by use of an appropriate sketch, show that the
results of Part (a) do not apply for a member that is not straight and/or has nonuni-
form weight distribution. Hint: Redraw Fig. P7.85 using a member that is not
straight or using a straight member with nonuniform weight distribution. Then ar-
gue that the results of Part (a) do not constitute an equivalent force system for this
situation.

Figure P7.85
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Problem 7.86

A uniform curved beam with circular shape and weight W has a built-in support at A.
Determine the support reactions. Express your answers in terms of parameters such as
W and R.

Figure P7.86

Problem 7.87

A uniform curved beam with circular shape and weightW is supported by a frictionless
bearing at A and a roller at B . Determine the support reactions. Express your answers
in terms of parameters such as W and R.

Figure P7.87

Problem 7.88

A cube of material with edge lengths d and specific weight 2� is suspended by a cable
and is submerged to a depth d in a fluid having specific weight � . Determine the force
T in the cable. Express your answer in terms of parameters such as d , � , etc.

Figure P7.88Problem 7.89

Figure P7.89

In Fig. P7.89(a), the concrete wall of a building has a small water-filled gap between
it and the adjacent soil. In Fig. P7.89(b), a concrete wall is used to retain water. If the
depth d of water is the same for both walls, which wall will be subjected to the larger
forces due to water pressure? Explain.
Note: Concept problems are about explanations, not computations.

Problems 7.90 and 7.91

Water in a channel is retained by a gate with 5 in: width (into the plane of the figure).
The gate is supported by a pin at B and a vertical cable at A, and the contact between
the gate and the bottom of the channel atA is frictionless. The vertical wallBC is fixed
in position. If the gate’s 50 lb weight is uniformly distributed, determine the cable force
T required to begin opening the gate.

Figure P7.90 Figure P7.91
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Problems 7.92 and 7.93

Water in a channel is retained by a gate with 10 cm width (into the plane of the figure).
The gate is supported by a pin at B and by frictionless contact with the bottom of the
channel at A. The gate is outfitted with a prewound torsional spring at B with stiffness
kt D 75N�m=rad. The vertical wall BC is fixed in position. If the gate has negligible
weight, determine the amount �0 the spring must be prewound so that the gate will
begin to open when d D 50 cm.

Figure P7.92 Figure P7.93

Problem 7.94

The cross section through a spherical tank is shown. The upper and lower portions of
the tank are attached using 72 bolts that are uniformly spaced around the perimeter
of the tank. The upper portion of the tank has a small dome that contains a gas. The
fluid in the tank has specific weight of 0:06 lb=in:3 and approximately spherical shape.
Assuming all the bolts support the same force, determine the force each bolt supports
due to the fluid and gas pressures if:

(a) The gas is not pressurized (i.e., it is at atmospheric pressure).

(b) The gas is pressurized to 5 psi.

Figure P7.94

Problem 7.95

The tank shown has a cylindrical midsection with hemispherical ends. Each of the
hemispherical ends is attached to the cylindrical midsection using 60 bolts that are
uniformly spaced around the perimeter of the tank. AtD, the tank has a circular access
plate that is attached using 12 bolts that are uniformly spaced. The tank is fully filled
with a fluid having density 900 kg=m3. Assume that each of the bolts at B supports the
same force, each of the bolts at C supports the same force, and each of the bolts at D
supports the same force. However, the forces supported by the bolts at B , C , and D
are probably different. Assume the piping that enters the tank at A is flexible and has
negligible weight. Determine the force each bolt supports due to the fluid pressure if
the fluid at A is at atmospheric pressure.Figure P7.95 and P7.96

Problem 7.96

Repeat Prob. 7.95 if the fluid at A is at 10 kN=m2 pressure.

Problem 7.97

The cross section through the valve of a fuel injector for an engine is shown, where the
tip of the valve has conical shape. If the fuel is at 500 kN=m2 pressure, determine the
force F that must be applied to keep the valve closed. Hint: The pressure due to weight
of the fuel is negligible compared to 500 kN=m2.

Figure P7.97
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Problem 7.98

Grain is contained in a silo. The walls of the silo are fixed, and the door ABCD can
be opened to allow the grain to pour out. Door ABCD is flat, with 8 in: depth (into the
plane of the figure). Idealize the grain to be a fluid with 0:025 lb=in:3 specific weight.
In the position shown, the hydraulic cylinder EG is horizontal. Neglect the weights of
the individual members. Determine the force the hydraulic cylinder EG must support
to keep the door in equilibrium. Report your answer, using a positive value for tension
in the hydraulic cylinder and a negative value for compression.

Figure P7.98
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7.5 Chapter Review

Important definitions, concepts, and equations of this chapter are summarized.
For equations and/or concepts that are not clear, you should refer to the origi-
nal equation and page numbers cited for additional details.

Centroid. The centroid is defined to be the average position of a distribu-
tion of shape. The equations for determining the centroid of lines, areas, and
volumes can be compactly summarized as follows. Consider the example of
the centroid of an area or a distribution of areas, as shown in Fig. 7.24. The
x position of the centroid of this area can be determined by using composite
shapes or integration as follows

Nx D

nP
iD1

x̃iAi

nP
iD1

Ai

D

R
x̃ dAR
dA

:

Eq. (7.19), p. 400

The expressions for the y position of the centroid are identical to Eq. (7.19)

Figure 7.24
The centroid C of area A is located at Nx and
Ny. Area A can be considered as consisting of
composite areas Ai , where the centroid of each
of these is located at x̃i and ỹi .

with all of the x’s replaced by y’s. Similarly, the expressions for the ´ position
of the centroid are identical to Eq. (7.19) with all of the x’s replaced by ´’s.
To determine the centroid of a line or a distribution of lines (straight and/or
curved), all of the A’s that appear in Eq. (7.19) are replaced by L’s. To deter-
mine the centroid of a volume or a distribution of volumes, all of the A’s that
appear in Eq. (7.19) are replaced by V ’s.

Center of Mass. The center of mass is defined to be the average position of
a distribution of mass. The equations for determining the center of mass are
identical to Eq. (7.19) with all of the A’s replaced by m’s; hence

Nx D

nP
iD1

x̃imi

nP
iD1

mi

D

R
x̃ dmR
dm

;

Eq. (7.20), p. 413

with similar expressions for Ny and Ń . Furthermore, the summations and inte-
grations in Eq. (7.20) may be over a combination of volumes, surfaces, and/or
wires, as shown in Eqs. (7.21) and (7.22) on p. 414.

Center of Gravity. The center of gravity is defined to be the average position
of a distribution of weight. For objects in a uniform gravity field, the equations
for determining the center of gravity are identical to Eq. (7.19) with all of the
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A’s replaced by w’s, hence

Nx D

nP
iD1

x̃iwi

nP
iD1

wi

D

R
x̃ dwR
dw

;

Eq. (7.26), p. 415

with similar expressions for Ny and Ń . Furthermore, the summations and inte-
grations in Eq. (7.26) may be over a combination of volumes, surfaces, and/or
wires, as shown in Eqs. (7.27) and (7.28) on p. 415.

Theorems of Pappus and Guldinus. A surface of revolution is produced
by rotating a generating curve, as shown in Fig. 7.25, by an angle � (in radians)
about an axis of revolution. From the theorems of Pappus and Guldinus, the

Figure 7.25
A surface of revolution is produced by rotat-
ing a generating curve by an angle � about an
axis of revolution. The generating curve has arc
length L and centroid C located a distance Nr
from an axis of revolution.

area of one side of the surface of revolution is

A D � NrL D �

nX
iD1

r̃iLi :

Eqs. (7.32) and (7.33), p. 425

The latter expression given above, Eq. (7.33), is useful when the generating
curve consists of simple composite shapes, as shown in Fig. 7.11 on p. 425.

A solid of revolution is produced by rotating a generating area, as shown
in Fig. 7.26, by an angle � about an axis of revolution. From the theorems of

Figure 7.26
A solid of revolution is produced by rotating a
generating area by an angle � about an axis of
revolution. The generating area A has its cen-
troid C located a distance Nr from the axis of
revolution.

Pappus and Guldinus, the volume of the solid of revolution shown in Fig. 7.26
is

V D � NrA D �

nX
iD1

r̃iAi :

Eqs. (7.35) and (7.36), p. 426

The latter expression given above, Eq. (7.36), is useful when the generating
area consists of simple composite shapes, as shown in Fig. 7.13 on p. 426.

Distributed Forces. Distributed forces are forces that are distributed along
a line, over a surface, or throughout a volume. A force distributed along a line
is called a line force, or a line load, and this has dimensions of force/length.
A force distributed over a surface is called a surface force, or a traction, and
this has dimensions of force/area. A force distributed throughout a volume is
called a volume force, or a body force, and this has dimensions of force/volume.
Line forces, surface forces, and volume forces, are all vectors. Line forces and
surface forces do not need to be perpendicular to the objects or structures they
are applied to, although often they will be.

Distributed Forces Applied to Beams. Beams are often subjected to dis-
tributed forces that are line loads. With w being the line load, with dimensions
of force/length, and x being a coordinate along the length of the beam, the
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total force F produced by the distributed load and the position Nx of its line of
action are

F D

Z
dF D

Z
w dx; Nx D

R
x̃ dFR
dF

D

R
x̃ w dxR
w dx

:

Eqs. (7.41) and (7.43), p. 433

Fluid and Gas Pressure. If a fluid is incompressible and at rest, as shown
in Fig. 7.27, then the pressure within the fluid is given by

p D p0 C �gd;

D p0 C �d;

Eq. (7.45), p. 434

where p0 is the gas pressure (constant) at the surface of the fluid. For many
Figure 7.27
A volume of incompressible stationary fluid
with density �. The surface of the fluid lies
in the xy plane and is subjected to a pressure
p0. Infinitesimally small cubes of fluid are sub-
jected to hydrostatic compressive pressure p.

purposes, only the portion of the pressure due to fluid loading is important,
and this pressure (p D �gd D �d ) is sometimes called the gage pressure.

The forces that a fluid and/or gas applies to a structure can, in principle,
always be determined by integration. However, the use of composite shapes
and/or a judicious FBD, as discussed in Section 7.4, will often be more straight-
forward. An important point is that fluid and gas pressures are always perpen-
dicular to the structure or surface over which they act.



Section 7.5 Chapter Review 453

R E V I E W P R O B L E M S

General instructions. For problems involving shapes or objects having one or
more axes or planes of symmetry, you may use inspection to determine some of the
coordinates of the centroid, center of mass, and/or center of gravity.

Problems 7.99 through 7.101

For the area shown, use composite shapes to determine the x and y positions of the
centroid.

Figure P7.99 Figure P7.100 Figure P7.101

Problem 7.102

For the area shown, use integration to determine the x and y positions of the centroid.

Figure P7.102

Problem 7.103

For the truncated circular cone shown, use composite shapes to determine the location
of the centroid.

Figure P7.103 and P7.104

Problem 7.104

For the truncated circular cone shown, use integration to determine the location of the
centroid.

Problem 7.105

The truncated circular cone shown has a truncated conical hole.

(a) Fully set up the integral, including the limits of integration, that will yield the
centroid of the object.

(b) Evaluate the integral determined in Part (a) using computer software such as Math-
ematica, Maple, etc.

Figure P7.105 and P7.106

Problem 7.106

The truncated circular cone shown has a truncated conical hole and is made of a ma-
terial with density 0:002 g=mm3. Let the conical hole be filled with a material with
density 0:003 g=mm3.

(a) Fully set up the integral, including the limits of integration, that will yield the
center of mass of the object.

(b) Evaluate the integral determined in Part (a) using computer software such as Math-
ematica, Maple, etc.
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Problem 7.107

The bullet-shaped object is a solid of revolution that is composed of materials with
densities �1 and �2. Set up the integral, including the limits of integration, that will
yield the x position of the center of mass.

Figure P7.107

Problem 7.108

A solid of revolution is produced by revolving the area shown 360ı about the x axis.
Use integration to determine the x coordinate of the centroid.

Figure P7.108 and P7.109

Problem 7.109

A solid of revolution is produced by revolving the area shown 360ı about the y axis.
Use integration to determine the y coordinate of the centroid.

Problems 7.110 and 7.111

For the solid of revolution described below:

(a) Fully set up the integral, including the limits of integration, that will yield the
centroid of the object.

(b) Evaluate the integral determined in Part (a) using computer software such as Math-
ematica, Maple, etc.

Problem 7.110 The solid of revolution is produced by revolving the area shown
about the x axis.

Figure P7.110 and P7.111

Problem 7.111 The solid of revolution is produced by revolving the area shown
about the y axis.

Problem 7.112

For the line shown:

(a) Set up the integrals for integration with respect to x, including the limits of inte-
gration, that will yield the x and y positions of the centroid.

(b) Evaluate the integrals in Part (a) using computer software such as Mathematica,
Maple, etc.

Figure P7.112

Problem 7.113

The area of Prob. 7.15 on p. 410 is revolved 360ı about the line x D �r to create a
solid of revolution. Determine the volume and surface area of the solid.

Problem 7.114

The area of Prob. 7.15 on p. 410 is revolved 360ı about the x axis to create a solid of
revolution. Determine the volume and surface area of the solid.
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Problem 7.115

A solar panel has the shape of a 90ı sector of a truncated right circular cone, and hence
it is a surface of revolution. Use the Pappus-Guldinus theorem to determine the outside
surface area of the panel.

Figure P7.115

Problem 7.116

A scoop for handling animal food is shown. The scoop’s shape is one-half of a truncated
circular cone. Use the Pappus-Guldinus theorem to determine the volume of food the
scoop will hold, assuming the food is “level.” Also, disregarding the handle, determine
the area of sheet metal, in cm2, required to fabricate the scoop.

Figure P7.116

Problems 7.117 through 7.119

Determine the support reactions for the loading shown.

Figure P7.117 Figure P7.118 Figure P7.119

Problem 7.120

In Fig. P7.117, reposition the pin support 6 ft to the right of point A, and determine the
support reactions.

Problem 7.121

In Fig. P7.118, replace the pin and roller supports with a built-in support at A, and
determine the support reactions.

Problem 7.122

In Fig. P7.119, reposition the roller support 2m to the left of point B , and determine
the support reactions.

Problem 7.123

A circular plate with 21 in: radius is subjected to the pressure distribution shown. By
treating the pressure distribution as a solid of revolution, use the theorems of Pappus
and Guldinus to determine the total force applied to the plate. Figure P7.123



456 Centroids and Distributed Force Systems Chapter 7

Problem 7.124

Water in a channel is retained by a gate with 0:5 ft width (into the plane of the figure).
The gate is supported by a pin at A and a roller at C . The vertical wall AD is built
into the bottom of the channel. If the gate has negligible weight, determine the support
reactions.

Figure P7.124 Figure P7.125

Problem 7.125

Water in a channel is retained by a cylindrical gate with 2m width. The gate is sup-
ported by a pin at B and a cable between A and C . If the gate has negligible weight,
determine the force supported by the cable and the reactions at B .

Problem 7.126

A uniform right circular cone C with 40mm radius at its base and 0:1N weight is
attached to a beam AB with negligible weight. The cone is partially submerged in
water. A block D with 0:2N weight is placed a distance d from the support at A.
Determine the value of d so that the system is in equilibrium in the position shown.
Report d such that a positive value means block D is to the left of A, and a negative
value means block D is to the right of A. Hint: The theorems of Pappus and Guldinus
may be useful.

Figure P7.126



8 Internal Forces

When a structure is subjected to external
forces, the various members of the structure
develop internal forces within them. In fact, it’s
because of these internal forces that the struc-
ture is able to support the external forces that
are applied to it. In earlier chapters of this
book, we have routinely determined the inter-
nal forces that cables and bars support. In this
chapter we discuss internal forces for more
complex structural members, such as beams.

8.1 Internal Forces in Structural Members

Why are internal forces important?

Internal forces are forces and moments that develop within structural members
and/or materials due to the external forces that are applied. Knowledge of
the internal forces that a particular member must support is essential before
the member can be designed. The design of a member includes: specification
of the material(s) it is constructed of, its shape and dimensions, methods of
support and/or attachment to other members, and so on. Obviously, as the
internal forces that a member must support become larger, the member must
be more substantial in size and/or be constructed of stronger material(s) so
that it has sufficient strength.

A structural member is said to be slender if the dimensions of its cross sec-
tion are small compared to its length. Slender members are very common, and
the methods of analysis of statics and mechanics of materials are very effective
for these. Many structural members are not slender, and determining internal
forces and design are usually more difficult and require more advanced theory

457
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and methods of analysis. Thus, the main focus of this chapter is determination
of internal forces in slender members.

Internal forces for slender members in two dimensions

Figure 8.1
Internal forces that develop on a particular cross
section of a slender member in two dimensions.

Consider the structure in two dimensions shown in Fig. 8.1(a), and imagine we
are interested in the internal forces that act on cross section A. We take a cut
through cross section A, thus separating the left-hand portion of the structure
from the right-hand portion. The forces that develop on this cross section are
called internal forces, as shown in Fig. 8.1(b), and these forces must be present
if the material immediately to the left of the cut is to remain bonded or attached
to the material immediately to the right of the cut. Another way to understand
the nature of these forces is by analogy with the reaction forces for a built-in
support: the material to the left of cut A may not translate in the horizontal
direction relative to the material to the right of the cut, thus a force N must
exist. Similarly the material to the left may not translate vertically relative to
material to the right, thus a force V must exist; and material to the left may not
rotate relative to material to the right, thus a moment M must exist. Observe
that the internal forces in Fig. 8.1(b) satisfy Newton’s third law.

Figure 8.2
In a structure made of deformable material, in-
ternal forcesN , V , andM produce the types of
deformation shown by the dashed outlines.

Remarks

� For several reasons, most of which are not clear until we study mechan-
ics of materials, it is most useful to determine internal forces referenced
to directions that are along and transverse to the axis of the member.
Thus, we will routinely select an xy system (or tn system for members
that are curved or have shape that is not straight), such as in Fig. 8.1(b),
where x is in the axial direction and y is in the transverse direction. Fur-
thermore, we will usually take the origin of the coordinate system (the
y D 0 position) to coincide with the centroid of the cross section.

� The internal forces shown in Fig. 8.1(b) are often categorized as follows:

– N is called the normal force or axial force. We will usually follow
the sign convention shown in Figs. 8.1(b) and 8.2(a) wherein a
positive value of N corresponds to tension. Normal force gives
rise to the axial deformation shown in Fig. 8.2(a).

– V is called the shear force. Although it’s an arbitrary choice, we
will usually follow the sign convention shown in Figs. 8.1(b) and
8.2(b). Shear force gives rise to the shear deformation shown in
Fig. 8.2(b).

– M is called the bending moment. Although it is an arbitrary choice,
we will usually follow the sign convention shown in Figs. 8.1(b)
and 8.2(c). Bending moment gives rise to the bending deformation
shown in Fig. 8.2(c).

� Later sections of this chapter focus on structures consisting of a single
straight member, and it will be straightforward (and important) to follow
the sign conventions shown in Figs. 8.1 and 8.2. In this section, our main
focus is determination of the absolute values of internal forces at various
locations in a structure, and many of the structures we consider have
multiple members and/or members that are not straight. Thus, we will
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sometimes adopt different sign conventions that are more convenient
(e.g., Example 8.3).

Internal forces for slender members in three dimensions

Figure 8.3
Internal forces that develop on a particular cross
section of a slender member in three dimen-
sions.

The internal forces for a slender member in three dimensions are shown in
Fig. 8.3 where it is seen that on every cross section, there exist six internal
forces, as follows: N is called the normal force or axial force, and it gives rise
to axial deformation, Vy and V´ are called shear forces and these give rise to
shear deformations, My and M´ are called bending moments and these give
rise to bending deformations, and Mx is called a torque and this gives rise
to twisting deformation, or torsional deformation. For convenience, the forces
and moments acting on the left-hand side of the cut are taken to be positive
in the positive coordinate directions, while the forces and moments on the
right-hand side of the cut are positive in the negative coordinate directions, as
required by Newton’s third law. Other sign conventions may be used provided
Newton’s third law is respected.

Figure 8.4. The Grand Canyon Skywalk is an observation platform on the grounds
of the Hualapai Indian Nation in Arizona. It extends 70 ft over the edge of the Grand
Canyon and is 4000 ft above the canyon’s floor. The platform has steel framing, its
deck is 3 in: thick glass, and it is designed to accommodate 120 people. Knowledge
of the internal forces due to loads from the materials, spectators, and other sources is
essential for the design of this structure.

Interesting Fact

Effects of internal forces on strength. All
of the internal forces a member supports
are important, and one of the main topics
of mechanics of materials is how to design
a member so that it can safely support all of
these. Nonetheless, for slender members,
the following generalizations are often true:

� Straight members are extremely ef-
fective at supporting axial tensile in-
ternal forces.

� Straight members are susceptible to
buckling, and often they can support
only low axial compressive internal
forces.

� Compared to the effects of other in-
ternal forces, shear internal forces
are often not of great concern. An
important exception is for materi-
als that are weak in shear, such
as wood and some fiber-reinforced
composite materials.

� Members are flexible in bending,
and thus bending moments are of
great importance.

� Members are flexible in torsion, and
thus twisting moments (torques) are
of great importance.

Determination of internal forces

First, we must decide where in a structure we wish to determine internal forces.
Note that, in general, the internal forces on every cross section of every mem-
ber of a structure are different, and usually one of our goals is to determine all
of these. Sometimes it is sufficient to determine only the maximum values of
the internal forces for each member. With some experience, you will often be
able to identify, by inspection, the cross section or sections that experience the
largest internal forces. For example, in a cantilever beam the internal forces
are usually highest at the built-in support, and in a simply supported beam the
internal moment is usually highest near the midspan of the beam.

Once a cross section of interest is identified, we proceed by taking a cut
through that cross section and drawing an FBD of a portion of the structure,
followed by writing and solving equilibrium equations. This process is then
repeated for other cross sections of interest. Other approaches are possible
(e.g., solution of differential equations), and some of these are discussed later
in this chapter.
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End of Sect ion Summary

In this section, internal forces in slender structural members were discussed.
For every cross section where the internal forces are to be determined, we
select a coordinate system in which one of the coordinates (often the x coor-
dinate) is in the axial direction of the member and the other coordinates are
perpendicular to the axis of the member. Furthermore, the origin of the coordi-
nate system is usually taken to coincide with the centroid of the cross section.

At each cross section of a member in two dimensions, there are three in-
ternal forces consisting of an axial force N , a shear force V , and a bending
moment M . At each cross section of a member in three dimensions (where x
is in the axial direction of the member), there are six internal forces consisting
of an axial force N , two shear forces Vy and V´, two bending moments My

and M´, and a torque Mx .
In this section, internal forces are determined by taking a cut through the

cross section of interest, drawing an FBD of a portion of the structure, followed
by writing and solving equilibrium equations.



Section 8.1 Internal Forces in Structural Members 461

E X A M P L E 8.1 Internal Forces for a Two-Dimensional Problem

A metal bottle cap opener is shown. If a vertical force of 10N at point A is required to
remove a bottle cap, determine the internal forces that develop on cross section D.

Figure 1

S O L U T I O N

Road Map We are especially interested in the internal forces on cross section D
because, among all the locations in the bottle opener, this location will have very high
internal forces. To explain further, imagine the bottle opener is made of metal that is too
thin or is used to open a particularly stubborn bottle. Intuitively, we expect the bottle
opener to severely bend and deform at cross section D. As engineers, our ultimate
objective is to design the bottle opener (i.e., specify the material it is made of and its
thickness and width) so that it is sufficiently strong for its intended use. Before this can
be done, the maximum internal forces in the bottle opener must be determined.

We will neglect the weight of the bottle opener since it is clearly small compared to
the other forces in the system. The forces acting on the bottle opener are obtained first.
Then, to determine the internal forces on cross section D, a cut will be taken through
that cross section, an FBD will be drawn, and equilibrium equations will be written and
solved.

Modeling The FBD for the bottle opener is shown in Fig. 2. Although there may be
horizontal force components at B and C , we will assume they are negligible compared
to the vertical components By and Cy .

Governing Equations & Computation Using the FBD shown in Fig. 2, we write
and solve the following equilibrium equations:

Figure 2
Free body diagram for the bottle opener.

X
MC D 0 W �By.12mm/C .10N/.84mm/ D 0 ) By D 70N; (1)X
Fy D 0 W Cy � By C 10N D 0 ) Cy D 60N: (2)

Modeling To determine the internal forces on cross sectionD, we take a cut through
that cross section on the FBD of Fig. 2 to draw the two FBDs shown in Fig. 3. Ob-
serve that the assignment of directions for the internal forces matches those shown in
Fig. 8.1(b).

Figure 3
Free body diagrams with a cut taken through
cross sectionD to determine the internal forces.

Governing Equations & Computation Either of the FBDs shown in Fig. 3 may
be used to determine the internal forces ND , VD , and MD , and we will select the
right-hand FBD, since it has simpler geometry and contains fewer forces. Using the tn
coordinate system shown, where t is oriented along the axis of the member and n is in
the transverse direction, we write and solve the following equations:X

Ft D 0 W �ND � .10N/.sin 30ı/ D 0 ) ND D �5:00N; (3)X
Fn D 0 W VD C .10N/.cos 30ı/ D 0 ) VD D �8:66N; (4)X
MD D 0 W �MD C .10N/.58mm/ D 0 ) MD D 580N�mm: (5)

Discussion & Verification With some foresight, we might have anticipated using
the right-hand FBD in Fig. 3, in which case the reaction forces By and Cy are not
needed and we could have avoided writing Eqs. (1) and (2). Using the left-hand FBD in
Fig. 3, you should verify that the same internal forces ND , VD , and MD are obtained.
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E X A M P L E 8.2 Internal Forces for a Two-Dimensional Problem

A hand saw for cutting firewood is shown. The blade of the saw is tensioned to 200 lb
using the wing nut at D. Neglecting the forces due to cutting, determine the internal
forces acting on cross section G.

Figure 1

S O L U T I O N

Road Map We will neglect the weights of individual members of the saw under the
assumption they are small. We also neglect the forces due to cutting, although these
forces may not be small, and it may be warranted to consider an analysis where these
are included. The forces acting on member ABCE are obtained first. To determine the
internal forces on cross section G, a cut will be taken through that cross section, an
FBD will be drawn, and equilibrium equations will be written and solved.

Modeling Separating member ABCE from the saw gives the FBD shown in Fig. 2.

Governing Equations & Computation Using the FBD shown in Fig. 2, we write
and solve the following equilibrium equations:

Figure 2
Free body diagram for member ABCE.

X
ME D 0 W �TCD.5 in:/C .200 lb/.7 in:/ D 0 ) TCD D 280 lb; (1)X
Fy D 0 W Ey D 0 ) Ey D 0; (2)X
Fx D 0 W TCD C 200 lbCEx D 0 ) Ex D �480 lb: (3)

Modeling To determine the internal forces on cross section G, we take a cut through
that cross section on the FBD of Fig. 2 to draw the two FBDs shown in Fig. 3. Ob-
serve that the assignment of directions for the internal forces matches those shown in
Fig. 8.1(b).

Figure 3
Free body diagrams with a cut taken through
cross section G to determine the internal forces.

Governing Equations & Computation Either of the FBDs shown in Fig. 3 may
be used to determine the internal forces NG , VG , and MG , and we will select the
upper FBD, since it has simpler geometry and contains fewer forces. Using the tn
coordinate system shown, where t is oriented along the axis of the member and n is in
the transverse direction, we write and solve the following equations:X

Ft D 0 W �NG C TCD.sin 10ı/ D 0 ) NG D 48:6 lb; (4)X
Fn D 0 W VG � TCD.cos 10ı/ D 0 ) VG D 276 lb; (5)X
MG D 0 W �MG � TCD.cos 10ı/.4 in:/ D 0 ) MG D �1100 in:�lb: (6)

Discussion & Verification The internal forces on cross section at G are high. How-
ever, there are other locations in memberABCE, as well as memberDEF , which also
will likely support high internal forces, and a complete analysis requires that these also
be considered. Regarding junction B , Fig. 4 identifies some additional cross sections
we should also consider (see Prob. 8.2).

Figure 4
Additional cross sections in the vicinity of B
where internal forces should be determined.
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E X A M P L E 8.3 Internal Forces for a Three-Dimensional Problem

MemberEFG is a shifting fork used in a transmission to move gearG along shaft CD.
It is actuated by the 10 and 20N forces at E, which act in the �´ and �x directions,
respectively, and gear G applies a 5N force to the fork in the x direction. The fork is
supported by a fixed shaft AB that has a thrust collar atH , and the fork is a loose fit on
the shaft at G so that there is only a ´ direction reaction. Determine the internal forces
acting on cross section J .

Figure 1

S O L U T I O N

Road Map Neglecting weight and friction, an FBD of the entire shifting fork will be
drawn, followed by writing and solving equilibrium equations to determine the neces-
sary support reactions. Observe in Fig. 1 that portion FG is cantilever-supported by
the remainder of the structure, and hence the internal forces at cross section J are ex-
pected to be large. To determine the internal forces on cross section J , a cut will be
taken through this cross section, an FBD will be drawn, and equilibrium equations will
be written and solved.

Modeling The FBD for the shifting fork EFG is shown in Fig. 2.

Governing Equations & Computation Using the FBD shown in Fig. 2, we write
and solve the following equilibrium equation for the reaction G´:

Figure 2
Free body diagram for the shifting fork.

X
Mx D 0 W .10N/.45mm/ �G´.50mm/ D 0 ) G´ D 9N: (1)

By writing additional equilibrium equations, the remaining reactions can be determined
(some additional dimensions in Fig. 1 may be needed). However, some foresight into
the FBD that will be used to determine the internal forces on cross section J shows that
the remaining reactions are not needed, and hence we will avoid determining them.

Modeling To determine the internal forces on cross section J , we take a cut through
that cross section on the FBD of Fig. 2 to draw the FBD shown in Fig. 3, where we
have placed the origin of the coordinate system at the centroid of cross section J . For
simplicity, we have assigned the directions for the internal forces so that all forces
and moments are positive in the positive coordinate directions. Rather than the FBD

of Fig. 3, we could have drawn an FBD of the left-hand portion of the shifting fork,
although this will clearly have many more forces and moments and hence is not as
judicious a choice as Fig. 3.

Figure 3
Free body diagrams with a cut taken through
the cross section at J to determine the internal
forces.

Governing Equations & Computation Using the FBD of Fig. 3, we write and solve
the following equations:X

Fx D 0 W VJx C 5N D 0 ) VJx D �5N; (2)X
Fy D 0 W NJy D 0 ) NJy D 0; (3)X
F´ D 0 W VJ´ � 9N D 0 ) VJ´ D 9N; (4)X
Mx D 0 W MJx � .9N/.40mm/ D 0 ) MJx D 360N�mm; (5)X
My D 0 W MJy � .5N/.15mm/ D 0 ) MJy D 75N�mm; (6)X
M´ D 0 W MJ´ � .5N/.40mm/ D 0 ) MJ´ D 200N�mm: (7)

Discussion & Verification Cross section K shown in Fig. 1 where portion EF is
built into the shifting fork is also a likely location of high internal forces, and Prob. 8.23
asks you to determine these.
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P R O B L E M S

General instructions In the problems of this section, report the axial internal
force, using positive and negative values for tension and compression, respectively,
while for shear and moment internal forces, the absolute values are acceptable.

Problem 8.1

A screwdriver is used to pry open the cover of a can containing paint. If a force
F D 75N is required to open the cover, and assuming the contact forces between
the screwdriver and can are vertical, determine the internal forces acting on cross sec-
tions A, B , and C of the screwdriver. Cross sections B and C are immediately to the
right and left, respectively, of where the screwdriver makes contact with the can.

Figure P8.1

Problem 8.2

Determine the internal forces acting on cross sectionsH and J in Fig. 4 of Example 8.2
on p. 462. Cross section H is located 6 in: from point A, measured along line AB .

Problem 8.3

Determine the internal forces acting on cross sections A and B of the bicycle seat stem.

Figure P8.3

Problems 8.4 and 8.5

Member ABC and brace BD are used to suspend an electric transmission line from a
utility pole. Determine the internal forces acting on:

Problem 8.4 Cross sections E and F , which are located immediately to the left of
point A and to the right of point B , respectively.

Problem 8.5 Cross sections G and H , which are located immediately to the left of
point B and to the right of point C , respectively.

Figure P8.4 and P8.5

Problems 8.6 and 8.7

The structure shown consists of a single member ABCDE with a pin support at A and
a roller support at E. Points B andD are at the midpoints of their respective segments.
Determine the internal forces acting on:

Problem 8.6 Cross sections F , G, H , and I , which are located immediately to the
right of A, the left of B , the right of B , and the left of C , respectively.

Problem 8.7 Cross sections J ,K, L, andM , which are located immediately to the
right of C , the left of D, the right of D, and the left of E, respectively.

Figure P8.6 and P8.7
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Problems 8.8 and 8.9

The structure of Probs. 8.6 and 8.7 is revised to consist of two members, ABC and
CDE, that are pinned to one another at C and have pin supports at A and E. Points B
and D are at the midpoints of their respective members. Determine the internal forces
acting on:

Problem 8.8 Cross sections F , G, H , and I , which are located immediately to the
right of A, the left of B , the right of B , and the left of C , respectively.

Problem 8.9 Cross sections J ,K, L, andM , which are located immediately to the
right of C , the left of D, the right of D, and the left of E, respectively. Figure P8.8 and P8.9

Problems 8.10 and 8.11

A hacksaw for cutting metal is shown. Assume contact between the frame ABC and
the handle assembly occurs at points B and C only, neglect friction, and neglect the
size of the pin and notch at point B . If the blade is tensioned to 100 lb, determine the
internal forces acting on:

Problem 8.10 Cross sectionsD, E, and F , where cross sectionD is located imme-
diately above point A.

Problem 8.11 Cross sections G, H , I , and J , where cross sections H and I are
located immediately to the right and left of point B , respectively, and cross section J
is immediately to the right of point C .

Figure P8.10 and P8.11

Problems 8.12 through 8.16

A weight W D 2 kN is supported by a cable that passes over frictionless pulleys at
D and F . The cable is attached to a winch at G, and cable segment DG is vertical.
MemberABC is built in atA, and membersABC ,DCEF , andBE are attached using
pins at points B , C , and E. Neglecting the weights of individual members, determine
the internal forces acting on:

Problem 8.12 Cross sections H and I , located immediately to the left of point F
and the right of point E, respectively.

Problem 8.13 Cross sections J and K, located immediately to the left of point E
and the right of point C , respectively.

Problem 8.14 Cross sections L and O , located immediately to the left of point C
and the right of point D, respectively.

Problem 8.15 Cross sectionsQ and P , located immediately below and above point
B , respectively.

Problem 8.16 Cross section R located at the midpoint of member BE. Also deter-
mine the internal forces (i.e., the reactions) at the built-in support at A.

W

G
A

B

C E
FD

K

Q

J HI

P

LO

R

1.6 0.9 2.8

1.2

2.6

All dimensions are in meters.
0.2 0.2

Figure P8.12–P8.16
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Problems 8.17 through 8.20

A machine for lifting heavy objects on an assembly line is shown. It consists of a
straight member ABC , a quarter-circular member CDE, and a hydraulic cylinder BD.
In the position shown, the hydraulic cylinder is vertical. IfW D 800 lb, and neglecting
the weight of the components of the machine, determine the internal forces acting on:

Problem 8.17 Cross sections F and G, located immediately to the left of point A
and to the right of point B , respectively.

Problem 8.18 Cross sections H and I , located immediately to the left of point B
and to the right of point C , respectively.

Problem 8.19 Cross sections J and K, located immediately above point C and
below and to the left of point D, respectively.

Problem 8.20 Cross sections L and M , located immediately to the right and above
point D and to the left of point E, respectively.Figure P8.17–P8.20

Problem 8.21

Two structural members are shown; one is straight and the other is semicircular. Neglect
the weight of the members.

(a) For the straight member, show that the internal forces acting on cross section C
are V D 0, N D �P , and M D 0.

(b) For the semicircular member, show that the internal forces acting on cross section
C are V D �P cos � , N D �P sin � , and M D �Pr sin � .

Figure P8.21 and P8.22

Problem 8.22

Both the straight and semicircular members shown in Fig. P8.22 are two-force mem-
bers, and hence either can be used as members of a truss. However, it is most common
that truss members are straight. Compare the answers to Prob. 8.21 (which are given in
the problem description) to argue why straight truss members are preferable to curved
truss members.
Note: Concept problems are about explanations, not computations.

Problems 8.23 and 8.24

Determine the internal forces acting on:

Problem 8.23 Cross section K in Fig. 1 of Example 8.3 on p. 463.

Problem 8.24 The cross section at A in Example 4.3 on p. 190.

Problems 8.25 through 8.28

One of the cranks of a child’s bicycle is shown. The entire crank lies in the xy plane.
Determine the internal forces acting on:

Problem 8.25 Cross section A.

Problem 8.26 Cross section B .

Problem 8.27 Cross section C .

Problem 8.28 Cross section D, which is located immediately next to the sprocket.Figure P8.25–P8.28
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8.2 Internal Forces in Straight Beams

In this section and the next, we focus on determination of the internal forces
in straight beams. In this section, we use equilibrium concepts to accomplish
this while in Section 8.3 we use differential equations.

Determination of V and M using equilibrium

Figure 8.5
Internal forces that develop on a particular cross
section of a straight beam in two dimensions.

Our goal in this section is the determination of the internal forces everywhere
throughout a straight beam, and we will accomplish this using the equilib-
rium approach. We begin by assigning an xy coordinate system, as shown in
Fig. 8.5(a), where x is along the axis of the beam. Usually, the x D 0 position
will be at one of the ends of the beam, and the y D 0 position is taken to
coincide with the centroid of the beam’s cross section. With this coordinate
system, we define positive distributed force w to act in the �y direction. The
cross section shown in Fig. 8.5(a) is located at position x, and the directions
for positive internal forces on this cross section are defined in Fig. 8.5(b).

Helpful Information

Forces in the x direction. In addition to
the forces shown in Fig. 8.5, it is possible
to have point forces and distributed forces
that act in the x direction. If this is the case,
then these forces must also be included
in all FBDs that are drawn (Prob. 8.55
explores this situation). Nonetheless,
beams are very often used in a horizontal
position with most of the forces being due
to gravity, and hence the situation depicted
in Fig. 8.5, while a special case, is very
common and is the focus in this chapter.
Further, since distributed loads usually
arise due to gravity, it is convenient to take
positive distributed load w to be downward
(�y direction).

In contrast to the previous section, where we found the internal forces at
only selected cross sections, here we are interested in determining the inter-
nal forces everywhere. Hence, in this section, we will draw multiple FBDs as
needed by taking cuts at arbitrary positions x, and we will use equilibrium
equations to determine the internal forces N , V , andM , which in general will
be functions of position x. There is considerable advantage to knowing the
internal forces as functions of position. For one, it allows for easy plotting
of internal forces, as discussed below. Furthermore, when you study mechan-
ics of materials, you will see that all aspects of the behavior of a beam are
governed by differential equations (some aspects of this are discussed in Sec-
tion 8.3). Thus, if the shear and/or moment distribution is known, then it will
be possible to determine behavior such as deflections of a deformable beam,
reactions (including reactions for statically indeterminate beams), and more.
All of these applications require a sign convention that must be rigorously fol-
lowed, and we will use the sign convention defined in Fig. 8.5. However, other
sign conventions are common, and if you consult other references such as text-
books, technical papers, or handbooks, you may see other sign conventions
used.

Shear and moment diagrams

Shear and moment diagrams are plots of the shear V and moment M as func-
tions of position x. These diagrams help us understand how the internal forces
change throughout a beam and show locations where these have large values.
This knowledge helps us to design a beam that has sufficient strength, and
drawing shear and moment diagrams is a routine part of the design process.
For some applications, plots of the axial force are also important, although in
this book our main focus is on the shear and moment.

End of Sect ion Summary

In this section the shear and moment at all locations in a straight beam are
determined. The equilibrium approach is used where cuts are taken at arbitrary
(variable) positions as needed, FBDs are drawn, and equilibrium equations are
written. Finally, the usefulness of shear and moment diagrams is discussed.
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E X A M P L E 8.4 Internal Forces in a Straight Beam with a Distributed Load

A simply supported beam with an overhang is subjected to a uniformly distributed load.
Determine the shear and moment throughout the beam, and plot these versus position.

Figure 1

S O L U T I O N

Road Map We begin by drawing an FBD of the entire beam and writing equilib-
rium equations to determine the reactions at A and B . To determine the internal forces
throughout the beam, we will take a cut through a cross section (subsequently called
cross sectionD), where this cross section has general (or variable) position in the beam.
We will draw FBDs as needed and apply equilibrium equations to determine the shear
and moment as functions of position.

Modeling The FBD for the entire beam is shown in Fig. 2, where the distributed force
has been replaced by an equivalent force consisting of a single 600 lb force placed at
the centroid of the distributed force’s shape (i.e., centroid of a rectangle).

Figure 2
Free body diagram for the beam to determine
the support reactions.

Common Pitfall

Equivalent forces. The 600 lb equivalent
force shown in Fig. 2 may be used only for
determination of the support reactions Ax ,
Ay , and By . For determinations of the in-
ternal forces in Figs. 3 and 4, the original
100 lb=ft distributed loading must be used.
Example 8.5 offers additional explanation.

Governing Equations & Computation Using the FBD shown in Fig. 2, we write
and solve the following equilibrium equations to obtain the reactions.X

MA D 0 W �.600 lb/.3 ft/C By.4 ft/ D 0 ) By D 450 lb; (1)X
Fy D 0 W �600 lbC Ay C By D 0 ) Ay D 150 lb; (2)X
Fx D 0 W Ax D 0 ) Ax D 0: (3)

Modeling To determine the internal forces throughout the beam, we consider cross
sectionD, whose location is variable throughout the beam. As was done in Section 8.1,
to determine the internal forces acting on cross section D, we take a cut that passes
through this cross section, followed by construction of FBDs. Thus, when cross section
D is located between points A and B , the two FBDs that result are shown in Fig. 3. A

Figure 3
Free body diagrams when cross sectionD is be-
tween points A and B; i.e., 0 � x � 4 ft.

few important points regarding Fig. 3 are as follows:

� The length of the beam in the left-hand FBD is x, hence the force on this portion
of the beam due to the distributed load is .100 lb=ft/x. Similarly, the length of
the beam in the right-hand FBD is 6 ft� x, hence the force on this portion of the
beam due to the distributed load is .100 lb=ft/.6 ft � x/.

� The directions for the internal forces on both the left-hand and right-hand FBDs

match the directions shown in Fig. 8.5(b) on p. 467.

Governing Equations & Computation Either of the FBDs shown in Fig. 3 may be
used to determine the internal forces acting on cross section D, and we will select the
left-hand FBD. With some experience, we could have anticipated using this FBD, and
we would have omitted drawing the FBD of the right-hand portion of the structure. We
write and solve the following equations.X

Fy D 0 W �V � .100 lb=ft/x C 150 lb D 0 (4)

) V D 150 lb � .100 lb=ft/x; (5)X
MD D 0 W M C .100 lb=ft/x

x

2
� .150 lb/x D 0 (6)

) M D .150 lb/x � .50 lb=ft/x2; (7)X
Fx D 0 W N D 0 ) N D 0: (8)
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The results obtained in Eqs. (5), (7), and (8) are valid as long as the FBD is valid, which
is all cross sections whose x coordinate lies in the region 0 � x � 4 ft.

Modeling When cross section D is located between points B and C , the FBDs that
result are shown in Fig. 4.

Figure 4
Free body diagrams when cross sectionD is be-
tween points B and C ; i.e., 4 ft � x � 6 ft.

Governing Equations & Computation Either of the FBDs shown in Fig. 4 may be
used to determine the internal forces acting on cross section D, and we will select the
right-hand FBD. We write and solve the following equations.X

Fy D 0 W V � .100 lb=ft/.6 ft � x/ D 0 (9)

) V D 600 lb � .100 lb=ft/x; (10)X
MD D 0 W �M � .100 lb=ft/.6 ft � x/

6 ft � x

2
D 0 (11)

) M D �1800 ft�lbC .600 lb/x � .50 lb=ft/x2; (12)X
Fx D 0 W N D 0 ) N D 0: (13)

The results obtained in Eqs. (10), (12), and (13) are valid as long as the FBD is valid,
which is for all cross sections whose x coordinate lies in the region 4 ft � x � 6 ft.

Helpful Information

V at x D 4 ft. The careful reader will no-
tice that Eq. (5) is valid only for 0 � x < 4 ft
and Eq. (10) is valid only for 4 ft < x � 6 ft,
because at x D 4 ft, V is undefined (it un-
dergoes a discontinuity as shown in Fig. 5).
Nonetheless, as a matter of practice, in this
chapter we will use � signs for the regions
of validity for V and M expressions with
the understanding that there will often be
a discontinuity in V and/or M at interval
endpoints.

Discussion & Verification The results for shear V and moment M are plotted in
Fig. 5, where Eqs. (5) and (7) are used for 0 � x � 4 ft, and Eqs. (10) and (12) are
used for 4 ft � x � 6 ft. These plots display some interesting features of internal

Figure 5
Shear and moment diagrams.

forces:

� The shear at x D 0 is equal to the support reaction Ay .

� The change in shear at x D 4 ft is equal to the support reaction By . That is, the
shear just to the right ofB (200 lb) minus the shear just to the left ofB (�250 lb)
is equal to By (450 lb).

� The shear at the right-hand end is zero, because this end is unsupported and has
no concentrated force applied.

� The moment at x D 0 is zero, because the support at that location has no mo-
ment reaction.

� The moment at the right-hand end is zero, because this end is unsupported and
has no concentrated moment applied.

� The largest moment throughout the beam is�200 ft�lb, which occurs at x D 4 ft.
In mechanics of materials, this value will play an extremely important role in the
design of the beam (i.e., determination of the material and cross-sectional shape
for the beam). The values of the shear force are sometimes also important, es-
pecially for materials that are weak in shear, such as wood and some composite
materials.

� The largest value of the moment betweenA andB may be of interest. This value
can be determined by evaluating Eq. (7), using trial and error with different
values of x in the neighborhood of about 1:5 ft. However, a local maximum
value of moment occurs where V D 0 (this is proved in Section 8.3).� Thus,
we could solve Eq. (5) for the value of x that makes V D 0 and then substitute
this value into Eq. (7) to obtain the moment. If you verify this for yourself, you
should find that V D 0 at x D 1:5 ft and M D 112:5 ft�lb at this location.

�A local maximum value of the moment can also occur at an interval endpoint where V ¤ 0,
such as at x D 4 ft in this example.
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E X A M P L E 8.5 A Simply Supported Beam with Distributed Load
and Point Load

Two simply supported beams with different loadings are shown.

Figure 1

(a) Determine the shear and moment as functions of position for the uniformly dis-
tributed loading w0 shown in Fig. 1(a).

(b) Determine the shear and moment as functions of position for the point load P
shown in Fig. 1(b).

(c) Let P D w0L. Plot the shear and moment determined in Parts (a) and (b) and
comment on the differences, if any, between these.

S O L U T I O N

Road Map For both Parts (a) and (b), we first determine the support reactions. We
then proceed to determine the shear and moment by taking cuts through cross sections
of the beam, drawing FBDs as needed, and applying equilibrium equations. Finally, for
Part (c) we let P D w0L and compare the results for the shear and moment.

Modeling For purposes of determining the support reactions for the beams in Parts
(a) and (b), FBDs for each beam are drawn in Fig. 2, where in Fig. 2(a) an equivalent
force of w0L has been used in place of the original distributed loading.

Figure 2
Free body diagrams to determine the support re-
actions for each beam.

Governing Equations & Computation By writing the equations
P
M D 0,P

Fy D 0, and
P
Fx D 0, you should verify that the support reactions for the uni-

formly loaded beam in Fig. 2(a) are Ax D 0 and Ay D By D w0L=2. Similarly, you
should verify that the support reactions for the beam with a point load in Fig. 2(b) are
Ax D 0 and Ay D By D P=2. In anticipation of Part (c), note that if P D w0L, the
two FBDs in Fig. 2 are identical and the support reactions are also identical.

Part (a)

Modeling For the beam with the distributed load in Fig. 1(a), we determine the in-
ternal forces by taking a cut through a cross section to draw the FBD shown in Fig. 3.

Figure 3
Free body diagram for the left-hand portion of
the uniformly loaded beam of Fig. 1(a).

Governing Equations & Computation Using the FBD shown in Fig. 3, we write
and solve the following equations.

X
Fy D 0 W �V � w0x C w0

L

2
D 0 ) V D w0

�
L

2
� x

�
; (1)

X
MD D 0 W M C wox

x

2
�
woL

2
x D 0 ) M D

w0
2

�
Lx � x2

�
; (2)

X
Fx D 0 W N D 0 ) N D 0: (3)

The results obtained in Eqs. (1) through (3) are valid as long as the FBD is valid, which
is for any cross section between ends A and B (i.e., 0 � x � L).

Part (b)

Modeling For the beam with a point load in Fig. 1(b), we determine the internal
forces by taking a cut through a cross section to draw the FBDs shown in Fig. 4.

Governing Equations & Computation Using the FBD shown in Fig. 4(a) for the
region 0 � x � L=2, we write and solve the following equations.

X
Fy D 0 W �V C

P

2
D 0 ) V D

P

2
; (4)
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X
MD D 0 W M �

P

2
x D 0 ) M D

P

2
x; (5)

X
Fx D 0 W N D 0 ) N D 0: (6)

Using the FBD shown in Fig. 4(b) for the region L=2 � x � L, we write and solve the

Figure 4
Free body diagrams for the beam with a point
load shown in Fig. 1(b). The first FBD is valid
for the region 0 � x � L=2, and the second is
valid for L=2 � x � L.

following equations

X
Fy D 0 W �V � P C

P

2
D 0 ) V D �

P

2
; (7)

X
MD D 0 W M C P

�
x �

L

2

�
�
P

2
x D 0 ) M D

P

2
.L � x/; (8)

X
Fx D 0 W N D 0 ) N D 0: (9)

Part (c)

Common Pitfall

When are equivalent force systems re-
ally equivalent? A common error when
determining internal forces is to replace
a distributed force such as w0 shown in
Fig. 1(a) by an equivalent force such as
P D w0L shown in Fig 1(b). This replace-
ment is valid only for purposes of determin-
ing forces that are external to the FBD, such
as support reactions. For determination of
internal forces, the original loading must be
used.

Discussion & Verification For the beam with uniformly distributed load, the shear
and moment given by Eqs. (1) and (2) are plotted in Fig. 5(a), and for the beam with
a point load, the shear and moment given by Eqs. (4), (5), (7), and (8) are plotted in
Fig. 5(b).

Figure 5. (a) Shear and moment diagrams for a simply supported beam with uniformly
distributed load. (b) Shear and moment diagrams for a simply supported beam with a
point load at midspan.

If P D w0L, then the loadings shown in Fig. 1 are equivalent according to the
definition given in Chapter 4 by Eq. (4.16) on p. 223, and as mentioned earlier in
this example, the FBDs in Fig. 2 are identical and the support reactions are identical.
However, the internal forces shown in Fig. 5 are clearly very different. Observe that
with P D w0L, all of the plots in Fig. 5 are drawn to scale, and among the many
differences, the maximum value of the moment for the beam with a concentrated load
is twice as large as that for the beam with uniform distributed loading.

Part (c) of this example demonstrates some of the subtleties and limitations of the
definition of equivalent force systems given in Chapter 4. To summarize, two force sys-
tems that are equivalent, according to the definition given by Eq. (4.16) on p. 223, will
produce the same external effects on a rigid structure (e.g., the support reactions will
be the same), but internal effects (e.g., internal forces such as the shear and moment)
are not necessarily the same.
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E X A M P L E 8.6 Superposition

For the cantilever beam shown, determine the shear and moment as functions of posi-
tion, and draw the shear and moment diagrams.

Figure 1

S O L U T I O N

Road Map We could follow the procedure used in earlier examples in this section,
wherein we would take a cut in Fig. 1 between points A and B , draw an FBD and apply
equations of equilibrium to determine the internal forces in that region, and then repeat
this for cuts between B and C , and between C and D. However, we will employ
an alternative solution using superposition where we break the original loading into
simpler load cases, as shown in Fig. 2. Each of the load cases is analyzed independently,
and then the total shear and moment are obtained by adding those for each of the load
cases.

Figure 2. Selection of three load cases to be used for superposition. The shear and moment for each load case, as found in Eqs. (1)–(3)
are shown. The total shear and moment, as given by Eqs. (4) and (5) are also shown.

Load case 1

Modeling For the 1 kN force applied at B , the shear and moment between A and B
are clearly zero. For the region between B and D, the FBD is shown in Fig. 3.

Governing Equations & Computation Using the FBD in Fig. 3, you should write
and solve the equilibrium equations

P
Fy D 0 and

P
M D 0 to obtain

Load
case 1:

(
V D 0; M D 0; for 0 � x � 2m;

V D �1 kN; M D 2 kN�m � .1 kN/x; for 2m � x � 6m:
(1)

Plots of V and M in Eq. (1) are shown in Fig. 2.

Figure 3
Free body diagram for load case 1.



Section 8.2 Internal Forces in Straight Beams 473

Load case 2

Modeling For the 2 kN�m moment applied at C , the shear and moment between A
and C are clearly zero. For the region between C and D, the FBD is shown in Fig. 4.

Figure 4
Free body diagram for load case 2.

Governing Equations & Computation Using the FBD in Fig. 4, you should write
and solve the equilibrium equations

P
Fy D 0 and

P
M D 0 to obtain

Load
case 2:

(
V D 0; M D 0; for 0 � x � 4m;

V D 0; M D 2 kN�m; for 4m � x � 6m:
(2)

Plots of V and M in Eq. (2) are shown in Fig. 2.

Load case 3

Modeling For the linearly incresing distributed load, we take a cut between points A
and D to draw the FBD shown in Fig. 5.

Figure 5
Free body diagram for load case 3.

Governing Equations & Computation To determine the force P in the FBD of
Fig. 5, first we write an expression for the distributed load as w D .0:05 kN=m2/x.
This expression is easily verified by noting thatw D 0when x D 0 andw D 0:3 kN=m
when x D 6m (for tips on developing expressions for linear functions, see the Helpful
Information margin note on p. 420). The forceP due to the distributed load is the “area”
of the triangular distributed force (i.e., 1/2 the “base” x multiplied by the “height”
.0:05 kN=m2/x), hence P D .0:025 kN=m2/x2.

Using the FBD in Fig. 5, you should write and solve the equilibrium equationsP
Fy D 0 and

P
M D 0 to obtain

Load
case 3:

�
V D �

�
0:025

kN

m2

�
x2; M D �

1

3

�
0:025

kN

m2

�
x3; for 0 � x � 6m:

(3)
Plots of V and M in Eq. (3) are shown in Fig. 2.

Superposition for total V and M

Discussion & Verification The total shear V and momentM are obtained by adding
the results given in Eqs. (1), (2), and (3), paying careful attention to use the appropriate
expressions for the various regions for x. Hence,

Total
shear:

8̂̂<
ˆ̂:
V D �

�
0:025

kN

m2

�
x2; for 0 � x � 2m;

V D �1 kN �

�
0:025

kN

m2

�
x2; for 2m � x � 6m;

(4)

Total
mo-
ment:

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

M D �
1

3

�
0:025

kN

m2

�
x3; for 0 � x � 2m;

M D 2 kN�m � .1 kN/x �
1

3

�
0:025

kN

m2

�
x3; for 2m � x � 4m;

M D 4 kN�m � .1 kN/x �
1

3

�
0:025

kN

m2

�
x3; for 4m � x � 6m:

(5)

The shear and moment diagrams for the total loading are obtained by summing the
shear and moment diagrams for each load case, as shown in Fig. 2.
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P R O B L E M S

Problem 8.29

For the simply supported beam shown, let a D 6 ft, b D 4 ft, and P D 1000 lb.
Determine the shear and moment as functions of position, and draw the shear and
moment diagrams.

Problem 8.30

Repeat Prob. 8.29, using a D 3m, b D 1m, and P D 10 kN. Determine the shear and
moment as functions of position, and draw the shear and moment diagrams.

Figure P8.29–P8.31
Problem 8.31

Determine the shear and moment as functions of position. Express your answers in
terms of parameters such as P , a, b, etc. Draw the shear and moment diagrams. Hint:
The answers to this problem are given in the statement of Prob. 8.52.

Problem 8.32

A simply supported beam with two equal forces applied equidistant from the supports
is called four-point bending. This loading arrangement is commonly used for testing
beams in a laboratory.

(a) Determine the shear and moment as functions of position. Express your answers
in terms of parameters such as P , L, etc. Draw the shear and moment diagrams.

(b) Comment on any interesting features the shear and moment display in the region
between points B and C .

Figure P8.32

Problems 8.33 and 8.34

A simply supported beam with a 2000 ft�lb moment is shown. Determine the shear and
moment as functions of position, and draw the shear and moment diagrams.

Figure P8.33 Figure P8.34

Problem 8.35

A diver stands on the end of a diving board. If the diver’s mass is 70 kg, determine the
shear and moment as functions of position, and draw the shear and moment diagrams.

Figure P8.35
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Problems 8.36 through 8.39

For the cantilever beam shown, determine the shear and moment as functions of posi-
tion, and draw the shear and moment diagrams.

Figure P8.36 Figure P8.37 Figure P8.38 Figure P8.39

Problem 8.40

A simply supported beam has the linear distributed load shown. Determine the shear
and moment as functions of position, and draw the shear and moment diagrams.

Figure P8.40

Problem 8.41

A beam with an overhang is subjected to the uniformly distributed load shown. Deter-
mine the shear and moment as functions of position, and draw the shear and moment
diagrams.

Figure P8.41

Problem 8.42

Replace the distributed load of Prob. 8.41 by a single force so that the two force systems
are equivalent. Determine the shear and moment as functions of position (it should be
possible to do this by inspection). Even though the loadings are equivalent, do you
expect the results for this problem to be the same as those for Prob. 8.41?
Note: Concept problems are about explanations, not computations.

Problem 8.43

One of the beams that supports a balcony is shown. To design a beam for this purpose,
it is common to use a uniformly distributed load that includes the dead loads (e.g.,
weight of materials) and live loads (e.g., weight of a large but reasonable number of
people distributed over the balcony). If the uniformly distributed load is 2500N=m, de-
termine the shear and moment as functions of position, and draw the shear and moment
diagrams. Idealize the supports at B and C to be a roller and pin, respectively.

Figure P8.43
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Problems 8.44 through 8.47

In Example 4.11 on p. 228, numerous equivalent force systems for a cantilever beam
were developed. For each of the force systems cited below, determine the shear and
moment as functions of position, and draw the shear and moment diagrams:

Problem 8.44 Figure 1 on p. 228.

Problem 8.45 Figure 2 on p. 228.

Problem 8.46 Figure 3 on p. 228.

Problem 8.47 Figure 4 on p. 228 with d D 2:67mm.

Problem 8.48

Without solving Probs. 8.44 through 8.47, comment on the agreement you expect be-
tween the shear and moment distributions for each of these load cases. Are there par-
ticular points in the beam where you know the shear and moment must be the same for
all of these loadings?
Note: Concept problems are about explanations, not computations.

Problems 8.49 and 8.50

Consider the simply supported beam shown with a uniformly distributed load and a
force at midspan. Use superposition of the results from Example 8.5 on p. 470 to deter-
mine the shear and moment as functions of position, and draw the shear and moment
diagrams.

Figure P8.49 Figure P8.50

Problem 8.51

A wing of a jet is crudely modeled as a beam with the loadings shown. Use superposi-
tion of the results from Example 8.6 on p. 472 to determine the shear and moment in
the wing as functions of position, and draw the shear and moment diagrams.

Figure P8.51
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Problem 8.52

A simply supported beam is subjected to the 900 and 1200N forces shown. Use su-
perposition to determine the shear and moment as functions of position, and draw the
shear and moment diagrams. Hint: The answers to Prob. 8.31 on p. 474, given below,
are helpful for this problem.

V D
Pb

aC b
; M D

Pb

aC b
x; for 0 � x � a;

V D �
Pa

aC b
; M D Pa

�
1 �

x

aC b

�
; for a � x � aC b: Figure P8.52

Problem 8.53

A person uses a wrench to apply a force FA and a momentMA to the end of a cantilever
beam. The weight of the beam is represented by the uniform distributed load w0.

(a) For FA ¤ 0, MA D 0, and w0 D 0, determine the shear and moment as functions
of position. Express your answers in terms of FA.

(b) For FA D 0, MA ¤ 0, and w0 D 0, determine the shear and moment as functions
of position. Express your answers in terms of MA.

(c) For FA D 0, MA D 0, and w0 ¤ 0, determine the shear and moment as functions
of position. Express your answers in terms of w0.

(d) If FA D 20 lb, MA D 200 in:�lb, w0 D 0:5 lb=in:, and L D 30 in:, use superpo-
sition of the results of Parts (a) through (c) to determine the shear and moment as
functions of position, and draw the shear and moment diagrams.

Figure P8.53

Problem 8.54

A cross section through a railroad bed is shown. The rails are supported by ties that
are made of wood or sometimes concrete, and the ties rest on ballast, which is usually
crushed stone. Assuming the ballast applies a uniformly distributed load to the ties,
determine the shear and moment in a tie due to the 10 kip forces and the distributed
load from the ballast as functions of position. Draw the shear and moment diagrams.

Figure P8.54

Problem 8.55

One of the beams of a staircase is to support a 200 lb=ft uniformly distributed vertical
force. Determine the axial force, shear, and moment as functions of position and draw
the normal force, shear, and moment diagrams.

Figure P8.55
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8.3 Relations Among Shear, Moment, and
Distributed Force

In this section we develop differential equations that relate the distributed
force, shear, and moment for a straight beam with transverse loads. These
relations are useful in statics and are also useful in mechanics of materials
where they are supplemented with additional differential equations that de-
scribe other aspects of the behavior of beams.

Relations among V; M; and w

Figure 8.6
(a) A straight beam subjected to a distributed
force w. (b) An FBD of a small length �x of
the beam.

Consider the straight beam shown in Fig. 8.6(a); the supports for the beam
and/or other forces that might be applied to it are not important for our pur-
poses here, other than we assume the beam is in equilibrium. We take cuts
through two cross sections of this beam, one at position x and the other at
x C �x, and the FBD that results is shown in Fig. 8.6(b). The internal forces
on the cross section at x are the normal (axial) force N , shear force V , and
moment M . The shear and moment on the cross section at x C �x may be
different, and these are V C�V and M C�M . If �x is small, then the dis-
tributed force w in Fig. 8.6(b) is approximately uniform and the total force is
therefore w�x.

The small piece of beam in the FBD of Fig. 8.6(b) is in equilibrium, hence
we may write X

Fy D 0 W V � .V C�V / � w�x D 0: (8.1)

Rearranging the above expression and dividing by the length �x provide

�V

�x
D �w: (8.2)

Taking the limit of Eq. (8.2) as �x ! 0 provides

dV

dx
D �w: (8.3)

In words, Eq. (8.3) says, “The change in shear divided by the change in length
of the beam at position x is equal to the negative of the distributed force at that
location.”

Helpful Information

Drawing shear and moment diagrams.
Equations (8.3) and (8.6) are useful for
drawing shear and moment diagrams. In
words, Eq. (8.3) says, “The slope of the
shear diagram is equal to the negative of
the distributed force’s value,” and Eq. (8.6)
says, “The slope of the moment diagram
is equal to the value of the shear.” Exam-
ple 8.9 on p. 486 illustrates the usefulness
of this.

Summing moments about point A in Fig. 8.6(b) providesX
MA D 0 W �M CM C�M � V �x C w�x

�x

2
D 0: (8.4)

Rearranging the above expression and dividing by the length �x provide

�M

�x
D V � w

�x

2
: (8.5)

Taking the limit of Eq. (8.5) as �x ! 0 provides

dM

dx
D V: (8.6)

In words, Eq. (8.6) says, “The change in moment divided by the change in
length of the beam at position x is equal to the shear at that location.”
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Determination of V and M using integration

Equations (8.3) and (8.6) are differential equations that can be solved to obtain
the shear V and moment M; given the distributed force w. We call this the
integration approach, and it is developed by multiplying both sides of Eq. (8.3)
by dx to write

dV D �w dx: (8.7)

Integrating both sides of the above expression provides

VZ
VP

dV D �

xZ
xP

w dx; (8.8)

where the limits of integration� for the right-hand integral are chosen to be
xP to x, and thus the limits of integration for the left-hand integral are VP
to V , where VP is the shear at position xP and V is the shear at position x.
Evaluating the integral on the left-hand side of Eq. (8.8) and adding VP to both
sides provides

V D VP �

xZ
xP

w dx: (8.9)

Similarly, Eq. (8.6) may be written as

dM D V dx: (8.10)

which upon integration gives

M DMP C

xZ
xP

V dx: (8.11)

Thus, if the distributed force w is known as a function of position, then
by integration using Eq. (8.9), the shear as a function of position is obtained.
Once the shear is known, then by integration using Eq. (8.11) the moment as
a function of position is obtained.

Remarks

� When using Eqs. (8.9) and (8.11), we select the location of point P ,
whose coordinate is xP . Point P will be a convenient location where
the shear VP and moment MP are known or can be easily determined.

� Often, point P in Eqs. (8.9) and (8.11) will be taken to be at one of
the ends of the beam, because these are locations where it will often
be straightforward to determine the shear VP and moment MP . For ex-
ample, consider the common situation of a horizontal beam of length

�Alternatively, we may use indefinite integrals, in which case Eq. (8.8) would be written asR
dV D �

R
w dx. Evaluation of the integral on the left-hand side provides V D �

R
w dx.

Note that when the integral on the right-hand side is evaluated, a constant of integration is pro-
duced, which by comparison with Eq. (8.9) is seen to have the physical interpretation of being
the shear at some location in the beam.
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L with the origin of the coordinate system at the left-hand end. Taking
point P at the left-hand end means xP D 0, while taking point P at the
right-hand end means xP D L. Example 8.8 on p. 484 illustrates the
use of both of these choices.

� For some problems, it may be effective to take point P to be somewhere
between the ends of the beam.

� In all of the integrals written in this section, we could replace the limit
of integration x by the coordinate of a point Q, which is xQ. Then
Eqs. (8.9) and (8.11) become

VQ D VP �

xQZ
xP

w dx ;

„ ƒ‚ …
area underw vs.
x plot between
xP and xQ

and MQ DMP C

xQZ
xP

V dx :

„ ƒ‚ …
area under V vs.
x plot between
xP and xQ

(8.12)

The integrals in the above expressions represent, respectively, the area
under the w vs. x plot and the area under the V vs. x plot, between
xP and xQ. These expressions provide a graphical method for drawing
shear and moment diagrams, as illustrated in Example 8.9 on p. 486.

� Another way to interpret Eqs. (8.9) and (8.11) is that they describe the
change of shear �V and the change of moment �M between positions
xP and x. Hence, Eqs. (8.9) and (8.11) can be rewritten as

�V D �

xZ
xP

w dx and �M D

xZ
xP

V dx: (8.13)

As discussed in connection with Eq. (8.12), you may also elect to take
x D xQ, in which case �V and �M are the change in shear and mo-
ment, respectively, between points P and Q. These expressions can be
useful for drawing shear and moment diagrams.

Which approach should I use?

Helpful Information

Combining approaches. You may choose
to use a combination of equilibrium and
integration approaches to determine the
shear and moment in beams. For example,
consider the following beam and loading:

Rather than use the equilibrium approach
exclusively or the integration approach ex-
clusively (both of which are effective for this
problem), you could choose to use the equi-
librium approach to determine the shear,
followed by use of integration to obtain the
moment.

In this chapter we have discussed two methods for determining shear and mo-
ment as functions of position:

1. Equilibrium approach, discussed in Section 8.2, where cuts are taken as
needed, FBDs are drawn, and equilibrium equations are written and solved.

2. Integration approach, where the expression for the distributed force w
is integrated to obtain the shear, which is then integrated to obtain the
moment.

The equilibrium approach is very robust. It is straightforward for uniform dis-
tributed forces, is a bit more tedious for linear distributed forces, and becomes
unwieldy when the distributed force is more complicated. The integration ap-
proach is elegant, but sometimes has subtleties. It is straightforward when
there is a single function that describes a distributed force that acts over the full
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length of the beam and when the supports and/or point forces and moments are
at the ends of the beam. Subtleties arise when there are multiple functions that
describe the distributed force, when a beam has point forces and moments be-
tween its ends, and when a beam has supports between its ends; the examples
in this section point out some of these subtleties. Very often, a combination of
the equilibrium and integration approaches will be effective.

Sometimes, we will only require the shear and moment diagrams, and we
will not need to know the shear and moment as functions of position. For
such situations we may elect to use the equilibrium approach of Section 8.1
to determine the shear and moment at specific points within a beam, and then
we use Eq. (8.3) to relate the slopes of the shear diagram to the values of the
distributed force, and Eq. (8.6) to relate the slopes of the moment diagram to
the values of the shear.

Figure 8.7
A straight beam with a variety of loadings and
supports.

Figure 8.8
An FBD for an infinitesimally small length of
beam at point C in Fig. 8.7. FC is the concen-
trated force. VC� and MC� are the shear and
moment just to the left of C . VCC and MCC
are the shear and moment just to the right of C .

Figure 8.9
An FBD for an infinitesimally small length of
beam at point D in Fig. 8.7. Dy is the support
reaction. VD� and MD� are the shear and mo-
ment just to the left of D. VDC and MDC are
the shear and moment just to the right of D.

Tips and shortcuts for drawing shear and
moment diagrams

In the remainder of this section, we discuss some of the characteristics of shear
and moment distributions. Many of these characteristics you have probably
noticed in the examples and problems of Section 8.2, while the expressions
derived in this section provide further insights. Knowledge of these character-
istics will provide you with additional tools that will be helpful for drawing
shear and moment diagrams and for detecting errors.

Equations (8.9) and (8.11) on p. 479 show the following:

� In regions of a beam where the distributed force is zero, the shear is
constant and the moment is linear.

� In regions of a beam where the distributed force is constant (i.e., uni-
form), the shear is linear and the moment is quadratic.

� In regions of a beam where the distributed force is linear, the shear is
quadratic and the moment is cubic.

The following remarks pertain to Fig. 8.7:

� Point A is an unsupported end of a beam with no concentrated force and
no moment applied. At A, the shear and moment are zero. This is true
regardless of the presence of a distributed force w.

� At point B , a distributed force ends. The shear and moment just to the
right ofB are the same as those just to the left ofB . The same comments
apply to points where a distributed force begins.

� A concentrated force FC acting in the negative y direction is applied at
point C . The shear just to the right of C is lower than the shear just to
the left of C by amount FC . The moment just to the right of C is the
same as that just to the left of C . The FBD and equilibrium equations
shown in Fig. 8.8 justify the validity of these remarks.

� A roller support is positioned at point D. The shear just to the right of
D is higher than the shear just to the left ofD by amountDy , whereDy
is the reaction the roller applies to the beam with positive Dy acting in
the positive y direction. The moment just to the right of D is the same
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as that just to the left of D. The FBD and equilibrium equations shown
in Fig. 8.9 justify the validity of these remarks.

� A concentrated momentME acting counterclockwise is applied at point
E. The shear just to the right of E is the same as that just to the left of
E. The moment just to the right of E is lower than the moment just to
the left ofE by amountME . The FBD and equilibrium equations shown
in Fig. 8.10 justify the validity of these remarks.

Figure 8.10
A FBD for an infinitesimally small length of
beam at point E in Fig. 8.7.ME is the moment
applied at E. VE� and ME� are the shear and
moment just to the left of E. VEC and MEC
are the shear and moment just to the right of E.

Design considerations

The design of a beam includes: specification of the material(s) it is constructed
of, its shape and dimensions, methods of support and/or attachment to other
members, and so on. When possible or convenient, beams that are commer-
cially manufactured are used, such as the examples shown in Fig. 8.11. Some
of the benefits of commercially manufactured beams are economy and rapid
availability. When we use commercially manufactured beams, our task is to
determine the material, size, and shape of beams that are needed. Commer-
cially manufactured beams are available in a variety of materials, such as var-
ious grades of steel and aluminum, and a variety of shapes, such as I beam,
L channel, U channel, and so on. Prefabricated reinforced concrete beams are
also available. Often a beam will need to be constructed to our specifications.
While cost may be higher and it may take longer to fabricate, performance
may be better.

Figure 8.11
A steel yard showing commercially manufac-
tured beams with an assortment of shapes.

Beams are usually designed to satisfy a variety of criteria, such as these:

� Acceptable strength. A beam must be strong enough to support the
forces applied to it without failing.

� Acceptable deformations. A beam should not deflect excessively.

� Acceptable fatigue life. A beam should be able to withstand the number
of load cycles that will be applied to it over its life span.

There are often additional criteria such as cost, manufacturability, corrosion
resistance, high-temperature resistance, and so on.

End of Sect ion Summary

In this section, differential equations that relate the shear, moment, and dis-
tributed force were derived for straight beams. Equation (8.3) relates the shear
to the distributed force by dV=dx D �w, and Eq. (8.6) relates the moment
to the shear by dM=dx D V . These relations are useful for drawing shear
and moment diagrams. Also, the solutions to these differential equations were
given in Eq. (8.9) where the shear is obtained by integrating the distributed
force, and in Eq. (8.11) where the moment is obtained by integrating the shear.
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E X A M P L E 8.7 Integration to Determine Shear and Moment

A simply supported beam of length L with a uniformly distributed force w0 is shown.
Use integration to determine the shear and moment as functions of position.

Figure 1

S O L U T I O N

Road Map This problem was previously solved using the equilibrium approach in
Part (a) of Example 8.5 on p. 470. Here we develop the solution using integration.

To determine the shear and moment as functions of position using Eqs. (8.9) and
(8.11) on p. 479, the shear VP and moment MP at some convenient point P must be
known, and for this example, either of points A or B is such a location. We will use A,
and comments are provided at the end of the solution regarding the use of B .

Modeling To determine the shear and moment at A, the reactions at that location are
needed. Thus, we draw the FBD for the entire beam as shown in Fig. 2.

Figure 2
Free body diagram for the entire beam. By writ-
ing equilibrium equations, the support reactions
are found to be Ax D 0 and Ay D By D

w0L=2.

Governing Equations & Computation By writing and solving the equilibrium equa-
tions for the FBD in Fig. 2, the vertical support reaction at A is Ay D w0L=2.

Modeling To determine the shear VA and moment MA at point A of the beam, we
take a cut just to the right of A to draw the FBD shown in Fig. 3.

Figure 3
Free body diagram obtained by taking a cut just
to the right of point A. Because the length of
this portion of beam is zero, the force due to
the distributed load is zero.

Governing Equations & Computation Using the FBD in Fig. 3, we write and solve
the equilibrium equations,X

Fy D 0 W
w0L

2
� VA D 0 ) VA D

w0L

2
; (1)X

MA D 0 W MA D 0 ) MA D 0: (2)

Noting that VA D w0L=2 and w D w0 (a constant), we see Eq. (8.9) provides

V D VA �

xZ
xAD0

w0 dx ) V D
w0L

2
� .w0/x: (3)

Noting that MA D 0 and V D w0L=2 � .w0/x, we see Eq. (8.11) provides

M DMA C

xZ
xAD0

�
w0L

2
� .w0/x

�
dx ) M D

w0L

2
x � w0

x2

2
: (4)

Discussion & Verification

� As expected, since the distributed force is uniform, the shear is linear and the
moment is quadratic. Also, Eqs. (3) and (4) agree with the results of Part (a) in
Example 8.5.

� Rather than take point P to be the left-hand end of the beam in Eqs. (8.9) and
(8.11), we could use the right-hand end. To do this, we draw the FBD shown in
Fig. 4, and we write equilibrium equations to determine VB D �woL=2 and
MB D 0. In Eqs. (3) and (4), the lower limits become xB D L, and VA andMA
are replaced by VB and MB . The same results for V and M are obtained.

� As a partial check of our solutions, you should evaluate Eqs. (3) and (4) at x D 0
to verify that they yield the proper results for VA and MA. Another check is to
determine the shear and moment at another point on the beam, such as point B
in Fig. 4, to verify that the correct results are obtained there.

Figure 4
Free body diagram obtained by taking a cut just
to the left of point B . Because the length of this
portion of beam is zero, the force due to the dis-
tributed load is zero.
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E X A M P L E 8.8 Integration to Determine Shear and Moment—a Subtlety

Reconsider the beam and loading of Example 8.4 on p. 468, where a simply supported
beam with an overhang is subjected to a uniformly distributed load. Use integration to
determine the shear and moment as functions of position.

Figure 1

S O L U T I O N

Road Map This problem was previously solved using the equilibrium approach in
Example 8.4 on p. 468. Here we develop the solution using integration, and we point
out a subtlety that arises when a support is between the ends of the beam.

In Fig.1 the distributed loading is uniform throughout the beam with value w D
100 lb=ft. We will determine the shear V and moment M , using Eqs. (8.9) and (8.11)
with point P taken to be at end A of the beam. The results for V and M will be valid
only for 0 � x � 4 ft, as we know that the shear undergoes a discontinuity (i.e., jump
in value) at the roller at B , and clearly this discontinuity is not contained in the results
from Eq. (8.9). To determine V and M in the remainder of the beam, we will reapply
Eqs. (8.9) and (8.11) with point P taken to be at end C of the beam, and the results
will be valid for 4 ft � x � 6 ft.

Modeling The FBD for the entire beam was shown in Fig. 2 of Example 8.4 on p. 468,
and the support reactions were determined to be Ay D 150 lb and By D 450 lb. In this
solution, we will need the shear and moment at points A and C , and to this end we
draw the FBDs shown in Fig. 2.

Figure 2
Free body diagrams obtained by taking cuts
immediately adjacent to the ends of the beam.
(a) A cut just the the right of point A. (b) A
cut just to the left of C . Because the lengths of
these portions of beam are infinitesimally small,
the force due to the distributed load is zero.

Governing Equations & Computation Using the FBD of end A of the beam shown
in Fig. 2(a), we write the equilibrium equations.X

Fy D 0 W 150 lb � VA D 0 ) VA D 150 lb; (1)X
MA D 0 W MA D 0 ) MA D 0: (2)

Similarly, using the FBD of end C of the beam shown in Fig. 2(b), we write the equi-
librium equations.X

Fy D 0 W VC D 0 ) VC D 0; (3)X
MC D 0 W �MC D 0 ) MC D 0: (4)

Common Pitfall

Determining V and M by integration.
A common error in problems such as this
example is to develop the solution up to
Eq. (6) and then mistakenly believe that the
results for V and M are valid throughout
the entire beam.

To obtain the shear and moment for the left-hand portion of the beam, we take
point P to be at end A. Noting that VA D 150 lb and w D 100 lb=ft, Eq. (8.9) provides

V D VA �

xZ
xAD0

�
100

lb

ft

�
dx ) V D 150 lb �

�
100

lb

ft

�
x: (5)

Noting that MA D 0 and V is given in Eq. (5), Eq. (8.11) provides

M DMA C

xZ
xAD0

�
150 lb �

�
100

lb

ft

�
x

�
dx ) M D .150 lb/x �

�
50

lb

ft

�
x2:

(6)
The shear and moment determined in Eqs. (5) and (6) are valid for 0 � x � 4 ft.
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To obtain the shear and moment for the right-hand portion of the beam, we take
point P to be at end C . Noting that VC D 0 and w D 100 lb=ft, Eq. (8.9) provides�

V D VC �

xZ
xCD6 ft

�
100

lb

ft

�
dx ) V D 600 lb �

�
100

lb

ft

�
x: (7)

Noting that MC D 0 and V is given in Eq. (7), Eq. (8.11) provides

M DMC C

xZ
xCD6 ft

�
600 lb �

�
100

lb

ft

�
x

�
dx (8)

) M D �1800 ft�lbC .600 lb/x �

�
50

lb

ft

�
x2: (9)

The shear and moment determined in Eqs. (7) and (9) are valid for 4 ft � x � 6 ft.

Discussion & Verification

� The results for shear and moment agree with those obtained in Example 8.4.
Of course, the shear and moment diagrams will also be the same, and these are
shown again in Fig. 3 for purposes of the following discussion.

Figure 3
Shear and moment diagrams.

� Because the distributed force is uniform over the full length of the beam, the
shear is linear, as expected. However, Eqs. (5) and (7) are different linear func-
tions, although they share the same slope. Because dV=dx D �w (i.e., the
slope of the shear is equal to the negative of the distributed load), the slopes of
Eqs. (5) and (7) are both �100 lb=ft.

� Since the shear is linear, the moment is quadratic. However, Eqs. (6) and (9) are
different quadratic functions.

� Observe in the moment diagram in Fig. 3 that the moment displays a local
maximum at a position between 1 and 2 ft. To determine exactly where this
occurs, and the value of the moment at that location, we use the expression
dM=dx D V as follows. At this local maximum, dM=dx D 0, which means
that V D 0 at this location. Thus, we set Eq. (5) equal to zero and solve for x
to obtain 1:5 ft. We then substitute x D 1:5 ft into Eq. (6) to obtain the moment
112:5 ft�lb.

� The shear V is undefined when x is exactly equal to 4 ft (point B). However,
we know that the support reaction By at x D 4 ft is responsible for the jump
that V undergoes from just to the left of B to just to the right of B . Because
there is no discrete moment applied at x D 4 ft, there is no discontinuity in the
moment at that location. However, because the slope of M is equal to V and V
has a discontinuity at x D 4 ft, the slope of M changes at x D 4 ft; hence, the
moment curve shows a kink at that location.

�You should carry out the integrations in Eqs. (7) and (8) and carefully evaluate the limits of inte-
gration, to verify the results that are reported. Incorrect evaluation of such limits of integration
is a common source of error.
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E X A M P L E 8.9 Constructing Shear and Moment Diagrams

Beam ABCD supports a wall built of concrete block. The concrete blocks have a total
weight of 26 kN, and the wall is 3 times as high on the right-hand side as on the left.
Draw the shear and moment diagrams.

Figure 1

S O L U T I O N

Figure 2
Free body diagram of the entire beam. Equa-
tion (1) is used to determine thatw0 D 2 kN=m,
and then equilibrium equations

P
M D 0 andP

Fy D 0 are written and solved to determine
that the support reactions are By D 7 kN and
Cy D 19 kN.

Road Map We will begin by using the description of the wall’s geometry to deter-
mine the distributed force the concrete blocks apply to the beam. We will then use
Eq. (8.12) on p. 480 to directly construct the shear and moment diagrams without ex-
plicitly determining the shear and moment as functions of position.

Modeling Given the description of the wall’s geometry, we may conclude that the
distributed force from the concrete block is as shown in Fig. 2, where we let the value
of the distributed force at end A be w0, and then the value at end D is 3w0. Since the
total force from the distributed loading must equal the 26 kN weight of the concrete
blocks, we may solve for w0 by using�

w0.10m/C 1
2 .3m/.2w0/ D 26 kN ) w0 D 2 kN=m: (1)

With this result, the support reactions may then be determined, and you should verify
that these are Bx D 0, By D 7 kN, and Cy D 19 kN.

Governing Equations & Computation We will directly construct the shear and mo-
ment diagrams without finding V and M as functions of position. Equation (8.12) is
repeated here as

VQ D VP �

xQZ
xP

w dx

„ ƒ‚ …
area underw vs.
x plot between
xP and xQ

and MQ DMP C

xQZ
xP

V dx:

„ ƒ‚ …
area under V vs.
x plot between
xP and xQ

(2)

where we select points P and Q. Our strategy will be to begin by taking point P
to be at the left-hand end of the beam (point A), where the shear and moment are
easily found. We will then sequentially work toward the right-hand end of the beam,
evaluating areas for the w vs. x diagram and constructing the shear diagram in the
process. Once the shear diagram is complete, we will repeat this process to construct
the moment diagram.

Shear diagram

By inspection, the shear at A is zero, because end A is unsupported and has no concen-
trated force applied. Hence,

VA D 0; (3)

VB� D VA �

�
2

kN

m

�
.3m/ D �6 kN; (4)

VBC D .VB�/C By D �6 kNC 7 kN D 1 kN; (5)

VC� D .VBC/ �

�
2

kN

m

�
.4m/ D �7 kN; (6)

�While it is obvious that Eq. (1) is valid, we are in fact applying the first expression in Eq. (4.16)
on p. 223 for construction of an equivalent force system.
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VCC D .VC� /C Cy D �7 kNC 19 kN D 12 kN; (7)

VD D 0: (8)

In this example, the shear at A was determined by inspection. If you are unsure that
VA D 0 (or if end A had a concentrated force or a support), you draw an appropri-
ate FBD of end A, similar to Fig. 3 on p. 483, to determine the shear at this location.
Equation (2) is used to write Eqs. (4) and (6), and you should verify the areas that are
computed using the w vs. x diagram shown in Fig. 2. Equations (5) and (7) are appli-
cations of the results shown in Fig. 8.9 on p. 481. Equation (8) is written by inspection,
although a useful check of accuracy would be to use Eq. (2) for

VD D .VCC/ �

�
2 kN=mC 6 kN=m

2
.3m/

�
D 0: (9)

The shear diagram is shown in Fig. 3 and is constructed as follows. We first plot
the values of the shear from Eqs. (3) through (8). Since w is constant from A to B and
from B to C , the shear is linear in those regions; so two straight lines are drawn. As a
check on our solutions, you should compute the slopes for the shear between A and B ,
and B and C , to verify that both are �2 kN=m. Since w is linear between C andD, the
shear is quadratic in that region. We use the expression dV=dx D �w to determine
that the slope just to the right of C is �2 kN=m, and the slope at D is �6 kN=m.

Figure 3
Shear and moment diagrams.

Moment diagram

By inspection, the moment at A is zero, because end A is unsupported and has no
concentrated moment applied. Also, values of the moment will be the same on each
side of the supports at B and C , so there is no need to distinguish between these.
Hence,

MA D 0; (10)

MB DMA C

�
1

2
.3m/.�6 kN/

�
D �9 kN�m; (11)

MC DMB C

�
1 kNC .�7 kN/

2
.4m/

�
D �21 kN�m; (12)

MD D 0: (13)

Equations (10) and (13) were written by inspection, while Eq. (2) was used to write
Eqs. (11) and (12), and you should verify the areas that are computed using the V vs.
x diagram shown in Fig. 3.

The moment diagram is shown in Fig. 3 and is constructed as follows. We first
plot the values of the moment from Eqs. (10) through (13). Since V is linear from A

to B and from B to C , the shear is quadratic in these regions, and between C and D
the shear is quadratic so the moment is cubic. We use the expression dM=dx D V to
determine the slopes of the moment diagram, given the values of the shear, and this
allows us to draw the moment diagram with the correct slopes and curvatures.

Discussion & Verification Numerous checks have been used and suggested in the
course of developing this solution. Observe that the moment diagram has a local maxi-
mum at about x � 3:5m, and this location corresponds to V D 0, as expected.
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P R O B L E M S

General instructions Use the integration approach for the following problems.
Shear and moment diagrams should show the maximum values of the shear and mo-
ment and the locations where these occur.

Problems 8.56 through 8.61

Determine the shear and moment as functions of position, and draw the shear and
moment diagrams.

Figure P8.56 Figure P8.57 Figure P8.58

Figure P8.59 Figure P8.60 Figure P8.61

Problem 8.62

A simply supported beam has a distributed force that varies linearly fromw0 at the left-
hand end to �w0 at the right-hand end. Determine the shear and moment as functions
of position, and draw the shear and moment diagrams.Figure P8.62

Problem 8.63

The beam is shaped so that its cross section is deeper near midspan than near the
ends. As a consequence, its weight distribution is w D .0:8 kN=m/Œ1C sin.�x=10m/�.
Determine the shear and moment as functions of position due to the beam’s weight
distribution, and draw the shear and moment diagrams.

Figure P8.63

Problems 8.64 through 8.66

For the beam and loading shown, determine the shear and moment as functions of
position, and draw the shear and moment diagrams.

Figure P8.64 Figure P8.65 Figure P8.66
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Problem 8.67

Beam ABCD is used to support a machine tool. The beam weighs 60 lb=ft of length,
and the machine weighs 1200 lb with center of gravity at point E. Assuming the ma-
chine applies only vertical forces to the beam at points B and C , determine the shear
and moment within beam ABCD as functions of position, and draw the shear and mo-
ment diagrams.

Figure P8.67

Problem 8.68

Beam ABCD is used to support an automobile so that it may be serviced. The beam
weighs 1 kN=m of length, and the automobile weighs 10 kN with center of gravity at
point E. Assuming the automobile’s tires apply only vertical forces to the beam at
points B and C , determine the shear and moment as functions of position, and draw
the shear and moment diagrams.

A Dx

y

B

1.3 m 2.7 m2.7 m

C

1.5 m

2.5 m

EE

Figure P8.68

Problems 8.69 through 8.73

Draw the shear and moment diagrams for the beam and loading shown. Determination
of the shear and moment as functions of position is not required.

Figure P8.69 Figure P8.70

Figure P8.71 Figure P8.72 Figure P8.73

Problem 8.74

Draw the shear and moment diagrams for the bookshelf shown in Fig. 1 of Exam-
ple 7.11 on p. 439. Determination of the shear and moment as functions of position is
not required.
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Problem 8.75

Three beams are shown, along with four possible shear diagrams and four possible
moment diagrams. All forces and moments act in the directions shown. Without cal-
culation, complete the table provided by selecting the appropriate shear and moment
diagrams that correspond to each beam. Your answers may use a shear and/or moment
diagram more than once. As an example, the answers for Beam 1 are provided in the
table.

Figure P8.75
Problem 8.76

Three beams are shown, along with four possible shear diagrams and four possible mo-
ment diagrams. The distributed force acts in the direction shown. Without calculation,
complete the table provided by selecting the appropriate shear and moment diagrams
that correspond to each beam. Your answers may use a shear and/or moment diagram
more than once.

Figure P8.76
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8.4 Chapter Review

Important definitions, concepts, and equations of this chapter are summarized.
For equations and/or concepts that are not clear, you should refer to the origi-
nal equation and page numbers cited for additional details.

Figure 8.12
Internal forces that develop on a particular cross
section of a slender member in two dimensions.

Figure 8.13
Internal forces that develop on a particular cross
section of a slender member in three dimen-
sions.

Internal forces. Internal forces are forces and moments that develop within
structural members and/or materials due to the external forces that are applied.
A structural member is said to be slender if the dimensions of its cross sec-
tion are small compared to its length. The methods of analysis discussed in
this chapter are appropriate and effective for slender members. In two dimen-
sions, the internal forces consist of two forces and one moment, as shown in
Fig. 8.12, where N is called the normal force or axial force, V is called the
shear force, and M is called the bending moment. In three dimensions, the in-
ternal forces consist of three forces and three moments, as shown in Fig. 8.13,
where N is the normal force or axial force, Vy and V´ are shear forces, My

and M´ are bending moments, and Mx is called the torque. When we find the
internal forces in straight beams in two dimensions, it is necessary to follow a
consistent sign convention as shown in Fig. 8.12.

Methods for determining internal forces. Two methods for determining
internal forces were discussed in this chapter: the equilibrium approach (used
in Sections 8.1 and 8.2) and the integration approach (used in Section 8.3).
In the equilibrium approach, cuts are taken as needed, FBDs are drawn, and
equilibrium equations are written to obtain the internal forces either at spe-
cific locations in the structure or as functions of position. In the integration
approach, differential equations (as summarized below) are solved to obtain
the internal forces as functions of position. Shear and moment diagrams are
plots of the shear and moment as functions of position.

Relations among V , M , and w. By drawing an FBD of a small portion of
a straight beam (as shown in Fig. 8.6 on p. 478) using the sign convention
shown in Fig. 8.6, the shear, moment, and distributed force are related by

dV

dx
D �w and

dM

dx
D V:

Eqs. (8.3) and (8.6), p. 478

In words, Eq. (8.3) says, “The change in shear divided by the change in length
of the beam at position x is equal to the negative of the distributed force at that
location,” and Eq. (8.6) says, “The change in moment divided by the change
in length of the beam at position x is equal to the shear at that location.”

Determination of V and M using integration. Equations (8.3) and (8.6)
are differential equations that can be rearranged and integrated to obtain

V D VP �

xZ
xP

w dx and M DMP C

xZ
xP

V dx:

Eqs. (8.9) and (8.11), p. 479
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If the distributed forcew is known as a function of position, then by integration
using Eq. (8.9), the shear as a function of position is obtained. Once the shear
is known, then by integration using Eq. (8.11), the moment as a function of
position is obtained.

Useful forms of Eqs. (8.9) and (8.11), especially for purposes of drawing
shear and moment diagrams, are

VQ D VP �

xQZ
xP

w dx

„ ƒ‚ …
area underw vs.
x plot between
xP and xQ

and MQ DMP C

xQZ
xP

V dx :

„ ƒ‚ …
area under V vs.
x plot between
xP and xQ

Eq. (8.12), p. 480

Design considerations. Beams are usually designed to satisfy a variety
of criteria, such as acceptable strength, acceptable deformations, acceptable
fatigue life, low cost, manufacturability, and so on.
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R E V I E W P R O B L E M S

Problem 8.77

A beam is supported by a roller atA and a device at C that allows vertical motion of the
beam while preventing horizontal motion and rotation. Use the equilibrium approach
to determine the shear and moment as functions of position and draw the shear and
moment diagrams.

Figure P8.77
Problems 8.78 and 8.79

Members ABC and CDE are pinned to one another at C and have pin supports at A
and E. Determine the internal forces acting on:

Problem 8.78 Cross sections F and G, which are located immediately to the right
of A and the left of B , respectively.

Problem 8.79 Cross sections H and I , which are located immediately to the right
of B and the left of C , respectively. Figure P8.78 and P8.79

Problem 8.80

To provide generous leg room, a quarter-circular member AB is used to support a
wall-mounted desk CD. Neglecting the weight of the members, determine the internal
forces acting on cross sections E, F , and G, which are located immediately above
point A, at the midpoint of member AB , and immediately to the right of point B ,
respectively.

Figure P8.80

Problem 8.81

A historically important shipwreck is to be recovered, and a number of fragile wooden
beams must be lifted. Specify the dimension d (in terms of length L) where the two
lifting slings should be placed so that the maximum absolute value of the moment is as
small as possible. Assume the beams are straight with uniform weight distribution, and
the cables attached to the slings are vertical. Hint: The optimal value of d will give the
same absolute value of the moment at the slings as at the midpoint of the beam.

Figure P8.81

Problems 8.82 and 8.83

Use the equilibrium approach to determine the shear and moment as functions of posi-
tion and draw the shear and moment diagrams.

Figure P8.82 Figure P8.83

Problem 8.84

Repeat Prob. 8.82 using the integration approach.
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Problem 8.85

Repeat Prob. 8.83 using the integration approach.

Problems 8.86 through 8.88

The device shown is used in a factory to support a tool that applies a 60N vertical force
at D. It has the feature that portion CD can slide to the right when the tool is needed,
and can slide to the left when the tool is to be stored, such that 50mm � d � 200mm.
Determine the shear and moment in beam AB as functions of position and draw the
shear and moment diagrams. Neglect the size of the rollers at B and C .

Problem 8.86 d D 200mm.

Problem 8.87 d D 100mm.

Problem 8.88 d D 50mm.

Figure P8.86–P8.88

Problem 8.89

(a) For the cantilever beam shown in Fig. P8.89(a), determine the shear and moment
as functions of position. Express your answers in terms of parameters such as P ,
a, and b.

(b) For the cantilever beam with the three forces shown in Fig. P8.89(b), use super-
position of the results of Part (a) to determine shear and moment as functions of
position and draw the shear and moment diagrams.

Figure P8.89

Problems 8.90 and 8.91

Draw the shear and moment diagrams for the beam and loading shown. Determination
of the shear and moment as functions of position is not required.

Figure P8.90

Figure P8.91

Problem 8.92

(a) Use the equilibrium approach to determine the shear as a function of position in
the region 0 � x � 3m.

(b) Use the integration approach with the results of Part (a) to determine the moment
in the region 0 � x � 3m.

(c) Values for the shear and moment just to right of B and at C are shown in the shear
and moment diagrams provided. By inspection, complete these diagrams for the
region 3m � x � 6m. Accurately draw the shapes of the curves and label the
slopes at x D 3m and x D 6m.

Figure P8.92
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Problem 8.93

(a) Use the equilibrium approach to determine the shear as a function of position in
the region 6 ft � x � 12 ft.

(b) Use the integration approach with the results of Part (a) to determine the moment
in the region 6 ft � x � 12 ft.

(c) Values for the shear and moment at A and just to the left of B are shown in the
shear and moment diagrams provided. By inspection, complete these diagrams for
the region 0 � x � 6 ft. Accurately draw the shapes of the curves and label the
slopes at x D 0 and x D 6 ft.

Figure P8.93

Problem 8.94

(a) Use the equilibrium approach to determine the moment as a function of position
in the region 0 � x � 6 ft.

(b) Use the integration approach to determine the shear in the region 6 ft � x � 12 ft.

(c) Values for the shear and moment just to right of B and at C are shown in the shear
and moment diagrams provided. By inspection, complete these diagrams for the
region 6 ft � x � 12 ft. Accurately draw the shapes of the curves and label the
slopes at x D 6 ft and x D 12 ft.

Figure P8.94
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Problem 8.95

(a) Use the equilibrium approach to determine the moment as a function of position
in the region 0 � x � 3m.

(b) Use the integration approach to determine the shear in the region 6m � x � 9m.

(c) Values for the shear and moment just to the right of B and left of C are shown in
the shear and moment diagrams provided. By inspection, complete these diagrams
for the region 3m � x � 6m. Accurately draw the shapes of the curves and label
the slopes at x D 3m and x D 6m.

Figure P8.95

Problem 8.96

(a) Use the equilibrium approach to determine the moment as a function of position
in the region 6m � x � 12m.

(b) Use the integration approach to determine the shear in the region 0 � x � 6m.

(c) Values for the shear and moment at A, B , and C are shown in the shear and mo-
ment diagrams provided (the shear just to the left and right of B is 4 and �11 kN,
respectively). By inspection, complete these diagrams. Accurately draw the shapes
of the curves, and label the slopes at x D 0, x D 6m, and x D 12m.

Figure P8.96



9 Friction

When two objects are in contact, friction forces
generally develop between them. This chapter
presents models for quantifying friction forces
and discusses methods for analyzing problems
with friction and sliding.

9.1 Basic Concepts

When two objects are in contact, there is often a tendency for them to slide
relative to one another. When this is the case, friction forces that resist the
sliding motion develop on the contact surfaces between the objects. A number
of factors influence how large the friction forces can be, and the field of study
that addresses this topic is called tribology, which is derived from the Greek
word tribos, which means rubbing.

Interesting Fact

Contact surfaces. “Putting two solids
together is rather like turning Switzerland
upside down and standing it on Austria—
the area of intimate contact will be small.”
These words were used by the pioneering
tribologist F. P. Bowden in a BBC broadcast
in 1950. Virtually all contact surfaces, de-
spite any apparent degree of smoothness,
are inherently rough at small length scales.

A brief history of tribology

Leonardo da Vinci (1452–1519) used a scientific approach in his studies of
friction and recognized that friction force and normal force were proportional.
In 1699, Guillaume Amontons (1663–1705), a French architect turned engi-
neer, presented a paper to the French Academy where he reported on friction
tests using various combinations of iron, copper, lead, and wood, lubricated
with pork fat (suet). It is rather remarkable that he found the friction force F
during sliding and the normal force N were related by F � N=3, and very
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importantly, that the friction force was independent of the apparent area of con-
tact. In 1781, Charles Augustin de Coulomb (1736–1806), a French physicist
and engineer who also did ground-breaking work in electricity and magnetism,
confirmed the findings of Amontons and distinguished between static and ki-
netic friction. While Coulomb’s work is notable, he did not improve substan-
tially on the findings of Amontons. Nonetheless, the friction model discussed
in this chapter is usually called Coulomb’s law , although it is occasionally
referred to as Amontons’ law or the Amontons-Coulomb law.�

Figure 9.1
A portrait of Coulomb painted by Hippolyte
Lecomte.

A simple experiment

The basic features of friction between contacting bodies, and a model to quan-
tify this phenomenon, can be developed by considering the example shown in
Fig. 9.2(a), where an empty coffee cup with weight W rests on a table. Imag-
ine using your fingers to apply a slowly increasing horizontal force P to the
cup, starting from a value of zero, so as to slide the cup to the right. Between
the cup and table, in addition to the normal force N , a friction force F de-
velops, as shown in the FBD in Fig. 9.2(b). The relationship between P and
the friction force F that you are likely to observe is shown in Fig. 9.2(c). In
region AB of this figure, the cup undergoes no motion (this is often called
stick), hence static equilibrium prevails and by writing

P
Fx D 0 we observe

that P D F . At point B , we say that motion is impending, meaning that slip
is about to occur. For values of P beyond point B , the interface between the
cup and table is not capable of supporting friction forces that are high enough
to provide equilibrium. In this regime, P > F , sliding occurs, the cup accel-
erates, and Newton’s law

P
Fx D max must be used where the acceleration

in the x direction is nonzero. If we repeat this experiment using a cup filled
with enough coffee to double the weight of the original empty cup, we will
find that the force at which sliding starts is approximately doubled.

Figure 9.2
(a) An empty coffee cup with weight W and
center of gravity at point G subjected to a hor-
izontal force P . (b) Free body diagram. (c) Re-
lationship between P and the friction force F
that is likely to be observed. Notice that point
E, the location where the contact forces N and
F act, is generally not directly below G; writ-
ing

P
M D 0 will determine where this point

is located.

Typically, and as shown in Fig. 9.2(c), the friction force Fs at which sliding
starts is somewhat higher than the friction force Fk for sustained sliding, and
these values are called the static friction force and the kinetic friction force.
Figure 9.2(c) shows an instantaneous decrease of the friction force from Fs to
Fk ; in reality this decrease is rapid but is not instantaneous.

Figure 9.3 offers a simple theory for why Fs > Fk . Contact surfaces are
inherently rough, and actual contact occurs at a relatively small number of
prominent asperities, two of which are shown in Fig. 9.3, where the x direction
is oriented along the mean plane of the interface. Before sliding, the force
supported by the two asperities shown is ERs and� ERs , and shortly after sliding
starts, these forces change to ERk and � ERk . Notice that after a small amount
of sliding, the asperities of one surface have slid up and over those of the
other surface. Hence, the x component of ERk relative to its y component is
lower than that just before sliding. In essence, this model presumes that prior
to sliding the asperities of one surface rest in the troughs of the other surface,
and that during gross sliding the asperities are more likely to make contact
closer to their summits. Reasons why the asperities of one surface settle into
the troughs of the other surface before sliding include microvibrations and
viscous deformation (i.e., time-dependent flow) of the asperities.

�Additional historical perspectives, as well as an excellent study of the field of tribology, are
given by K. C. Ludema, Friction, Wear and Lubrication, CRC Press, Boca Raton, 1996.
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Coulomb’s law of friction

Figure 9.3
A model that explains why the static force of
friction is larger than the kinetic force of fric-
tion.

A model that describes the relationship between the normal force and friction
force between two contacting surfaces is called Coulomb’s law , as follows

jF j � �sN before sliding (<) and for impending motion (D);

jF j D �kN after sliding begins;

(9.1)

(9.2)

where

N is the normal force between the two surfaces, defined to be
positive in compression, hence N � 0 always;

F is the friction force between the two surfaces, with direction
that always opposes relative motion between the surfaces;

�s (Greek letter mu) is called the coefficient of static friction ;
�k is called the coefficient of kinetic friction .

Coulomb’s law is independent of the apparent area of contact and the sliding
velocity. Neither of these assumptions is precisely true, but for many applica-
tions they are reasonable. The absolute value of the friction force is used in
Eqs. (9.1) and (9.2) for the following reason. Imagine when drawing the FBD
in Fig. 9.2(b) we took F to be positive in the opposite direction shown. Pre-
suming the cup is in equilibrium as we push on it, writing

P
Fx D 0 gives

F < 0, which is perfectly fine. As P increases, F also increases in a negative
sense, until its absolute value reaches �sN at which time motion is impend-
ing. In statics and many other subjects that follow, we draw FBDs so that by
inspection or careful thought, the friction forces are drawn in proper directions
to oppose sliding; when this is the case, all friction forces will have positive
values and we will therefore omit the absolute value sign in Coulomb’s law.

Concept Alert

Coulomb’s law of friction. Coulomb’s law
of friction consists of two items:

� Equation (9.3), which states jF j �
�N , and

� The direction of friction forces al-
ways opposes the direction of rela-
tive motion between contacting sur-
faces.

The latter of these items will be accounted
for when drawing FBDs, and in complicated
problems this may require some careful
thought.

We will usually write Coulomb’s law given in Eqs. (9.1) and (9.2) in the
compact form

jF j � �N; (9.3)

where it is understood that the coefficient of static friction is used prior to
sliding and when motion is impending, and the coefficient of kinetic friction
is used once motion starts along with the = sign. Because of the lack of reliable
values of coefficients of friction, as discussed below, we often assume �s D
�k . Indeed, even very sophisticated engineering analyses frequently use this
assumption. As discussed above, the absolute value sign in Eq. (9.3) will be
omitted if friction forces in FBDs have the proper directions to resist sliding
motion.

Helpful Information

Static equilibrium. As we progress
through this chapter, we should be espe-
cially mindful of the constraints underlying
our work: static equilibrium requires the
acceleration of a body, which is a vector, to
be zero. Thus, our analyses are restricted
to problems in which a body is at rest
(i.e., there is no motion), or to problems
where sliding is at constant speed and in
a uniform direction with no rotation of the
body.

Coefficients of friction

The friction force between two contacting surfaces is controlled by an enor-
mous number of factors including compressive force, the combination of con-
tacting materials, surface roughness, the processing used to create the surfaces,
lubricants, the environments the surfaces are in and have previously been in,
sliding history, chemistry, temperature, humidity, and many others. Consider
the example of steel-on-steel contact, such as occurs between the teeth of gears
in a machine. In reality, the contact is not between pure steel and pure steel.
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Rather, each steel surface has a very thin layer of material containing absorbed
chemicals from the manufacturing process (e.g., cutting lubricants and polish-
ing compounds), oil that might lubricate the gears, and oxidation materials
from simply being present in a natural air environment. In very large part, it
is the properties of these thin surface layers that control friction. This is gener-
ally fortuitous, as the friction between atomically clean surfaces is very high,
and the thin surface layers described here substantially reduce friction. In view
of this, it is rather remarkable that Eq. (9.3) characterizes friction as well as
it does. Nonetheless, Eq. (9.3) is empirical, meaning it mimics nature, but it
does not describe nature. The important message in this discussion is that the
coefficient of friction is not an inherent property of a material or a combina-
tion of contacting materials. The primary mission of the field of tribology is
to establish how the coefficient of friction depends on various parameters, and
to develop laws for friction that are more comprehensive and accurate than
Coulomb’s law.

Helpful Information

What value of � should I use? Tables
of general values of coefficients of friction,
such as reported in Table 9.1 and in
handbooks, should be viewed as rough
guidelines. When a substantial investment
is to be made in a design or product,
when reliability must be high, or when
performance depends strongly on friction,
more precise knowledge of the coefficient
of friction for your application should
be obtained by testing. When possible,
prototype devices under actual service
conditions should be tested, and if this is
not possible, laboratory tests with simpler
geometry specimens under simulated
service conditions should be performed.

Table 9.1 reports coefficients of kinetic friction (unless otherwise indi-
cated) for some combinations of contacting materials. Notice that the range
of values is large, reflecting the large number of dependencies on different
variables. Values outside these ranges occur under some circumstances. Coef-
ficients of static friction are generally equal to or larger than the coefficients of
kinetic friction. In addition to the factors cited earlier, the coefficient of static
friction is affected by the time of rest, and under some circumstances it may
be 20–30% higher than the coefficient of kinetic friction. The coefficient of
friction for alloys is generally lower than the coefficients of friction for the
constituent materials (e.g., compare mild steel on self with iron on self).

Table 9.1. Coefficients of friction for various combinations of contacting materials.
Unless otherwise stated, values reported are coefficients of kinetic friction for clean
and unlubricated surfaces in a normal air environment at 20ıC.

Coefficient of frictiona

Material On self On mild steel

aluminum 0:8–1:2 0:5–0:6
iron 0:8–1:5 0:8–1:5
leaded bronze – 0:2–0:4
gray cast iron 0:8–1:0 0:3–0:5
mild steel 0:7–0:9 –
rock (�s) 0:4–0:8 –
diamond 0:1–0:2 –
hard surface with liquid lubricant 0:02–0:05 –
hard surface with solid lubricant 0:05–0:15 –

tire rubber on pavement (�s) 0:4–1:4
soft rubber on glass (�s) 4–10

a Data taken from B. Bushan, Introduction to Tribology, John Wiley & Sons, New
York, 2002; K. C. Ludema, Friction, Wear and Lubrication, CRC Press, Boca Ra-
ton, 1996; R. E. Goodman, Introduction to Rock Mechanics, John Wiley & Sons,
New York, 1980.
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Dry contact versus liquid lubrication

Coulomb’s law is best suited for dry contact. When surfaces have a liquid lu-
bricant, hydrodynamic effects occur where a portion (often sizable) of the nor-
mal force between two surfaces is supported by fluid pressure, and Coulomb’s
law cannot be used. Nonetheless, if a very small amount of liquid lubricant
is present between two contacting surfaces, it is common to use Coulomb’s
law, where the effects of the lubricant are approximately accounted for by the
coefficient of friction. The situation of very modest lubrication is often called
boundary lubrication.

Angle of friction

In some engineering disciplines, such as geotechnical engineering, it is more
common to characterize friction between surfaces by using the angle of fric-
tion rather than the coefficient of friction. The angle of friction is defined to
be

� D tan�1 �; (9.4)

where � is either the static or kinetic coefficient of friction, and the value
of � is the angle of static or kinetic friction, respectively. For example, if a
particular combination of contacting materials is known to have �s D 0:35,
then from Eq. (9.4), its angle of static friction is �s D 19:3ı. The angle of
friction has a straightforward physical interpretation as described in Fig. 9.4.
Problem 9.6 describes another interpretation of the angle of friction, including
a method for experimental determination.

Figure 9.4. Physical interpretation of the angle of friction. (a) R is the resultant of the
normal forceN and friction force F acting on a surface. (b) The angle of static friction
measured from the normal direction of the surface defines a cone. For an initially non-
sliding interface, no sliding occurs if the resultant force lies within the cone (as shown),
and impending slip occurs when the resultant force lies on the cone. (c) During sliding,
the resultant force lies on the cone defined by the angle of kinetic friction.

Problems with multiple contact surfaces

In this section and the next, we consider problems having multiple contact sur-
faces. However, in this section we restrict our attention to the more straightfor-
ward class of problems where if one surface slides, then all surfaces must slide
simultaneously. In Section 9.2, we consider more complex problems where
only a subset of the surfaces slide. The category a particular problem belongs
to will be straightforward to determine by considering the geometry of motion
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that is possible for that problem. In more precise nomenclature, the subject
of geometry of motion is a called kinematics, and we will refer to it as such.
Kinematics is discussed in detail in dynamics. For our work here, only the
most elementary kinematics concepts are introduced as needed.

Wedges

Figure 9.5
Examples of wedges. (a) An axe used for
splitting firewood is a wedge. (b) A screw
is a wedge wrapped in the shape of a helix.
(c) A Gildemeister NEF 330 metal cutting lathe
is leveled using Bilz precision leveling wedges.

A wedge is a device that is useful for producing potentially large forces in the
direction transverse to the faces of the wedge. Figure 9.5 shows some exam-
ples of wedges, and Examples 9.3 and 9.5 illustrate methods of analysis. A
design criterion for a wedge is often that it remain in position once the inser-
tion force is removed. For example, consider a wedge used to level one corner
of a refrigerator. After the wedge is inserted, it is obviously undesirable if it
slips out of position of its own accord. The performance of a wedge is depen-
dent on its geometry and the coefficients of friction for its contact surfaces.

Coulomb’s law of friction in three dimensions

Figure 9.6
Coulomb’s law of friction applied to isotropic
friction in three dimensions.

Coulomb’s law of friction as given by Eq. (9.3) is applicable to friction in
three dimensions provided the friction force F is defined to be the resultant
of the two tangential forces that generally act on a surface. This model is
called isotropic friction, because the coefficient of friction is the same for all
possible sliding directions. Consider the example shown in Fig. 9.6 where a
block with the contact surface lying in the xy plane is subjected to various
forces and moments such as P1, P2, M1, etc. In the FBD shown in Fig. 9.6,
N is the normal force, Fx and Fy are the friction forces acting in the x and y
directions, and F is the resultant friction force. Coulomb’s law becomes

F D
q
.Fx/

2 C .Fy/
2 � �N; (9.5)

where the absolute value sign is not needed since F is nonnegative.
Isotropic friction may not be adequate for some problems. For example, let

one or both of the surfaces in Fig. 9.6 be finished by grinding where x is the
direction of grinding.� Such a surface likely has a lower coefficient of friction
for sliding in the x direction than for sliding in the y direction, and a more
sophisticated version of Coulomb’s law that allows for anisotropic friction is
needed.

Design considerations

The main difficulty in designs where friction is a key element is the poor pre-
dictability of frictional behavior. Coulomb’s law has limited accuracy because
it does not incorporate many of the phenomena that are known to influence
friction, and tables of general values of coefficients of friction, such as found
in handbooks, are only approximate. Even if testing is done to obtain a coeffi-
cient of friction for a particular application, over the life of a device, or even
over the span of a duty cycle, the coefficient of friction may change. For exam-
ple, sliding surfaces may become smoother or rougher due to wear, they may
be affected by chemicals or wear debris, and so on. Details of how contact

�Grinding is a machining process used on metal and other surfaces to provide a very high-quality
finish with precise tolerances.
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surfaces are handled can produce unexpected changes in frictional behavior.
For example, when people touch a contact surface, materials such as sweat
and body oils are deposited, and this can significantly, and unexpectedly, alter
friction. Designs that depend on precise frictional response are often problem-
atic, while designs whose performance is insensitive to moderate changes in
frictional behavior are preferable.

End of Sect ion Summary

In this section, Coulomb’s law of friction is discussed. Some of the key points
are as follows:

� Coulomb’s law consists of two items: the friction force F and normal
force N are related by jF j � �N and F must oppose the direction
of sliding. As discussed in connection with Eqs. (9.1) and (9.2), the
coefficient of static friction �s is used before sliding and for impending
motion, and the coefficient of kinetic friction �k is used after sliding
begins.

� We will usually draw FBDs so that the friction forces are in proper direc-
tions to resist sliding motion. When this is the case, all friction forces
will have positive values and the absolute value sign in Coulomb’s law
will be omitted.
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E X A M P L E 9.1 Effects of Sliding Direction

A steel ramp is used by a worker in a factory to move a cardboard box. If a box weighs
40 lb with center of gravity at point G, the force applied by the worker is parallel to
the ramp, and the coefficient of friction between the box and ramp is �s D �k D 0:3,
determine the force the worker must apply to slide the box:

(a) Up the ramp

(b) Down the ramp.

Figure 1 S O L U T I O N

Road Map We assume motion of the box is due to sliding and not tipping (Exam-
ple 9.2 discusses tipping analysis and Prob. 9.5 verifies the assumption made here). We
first consider the box sliding up the ramp. We draw an FBD, write equations of equilib-
rium, and apply Coulomb’s law to obtain the solution. This procedure is then repeated
for sliding down the ramp.

Part (a)

Modeling The FBD for the box is shown in Fig. 2. Very importantly, the direction of
the friction force F opposes motion of the box up the ramp.

Figure 2
Free body diagram for the box sliding up the
ramp. Point A is the location where the contact
forces N and F act. Note that the actual forces
between the box and ramp are distributed over
the full contact area of the box, and N and F
at point A are equivalent forces that represent
these.

Governing Equations

Equilibrium Equations Using the FBD from Fig. 2, the equilibrium equations areX
Fy D 0 W N � .40 lb/.cos 20ı/ D 0 ) N D 37:59 lb; (1)X
Fx D 0 W F C .40 lb/.sin 20ı/ � P D 0: (2)

These two equations contain three unknowns, although we were able to solve the first
of these for the normal force N .

Force Laws Assuming that sliding is occurring, Coulomb’s law, Eq. (9.3) on p. 499,
becomes

F D �N D .0:3/N; (3)

where the direction of F is properly accounted for in the FBD of Fig. 2.

Computation Solving Eqs. (2) and (3) provides

) F D 11:3 lb and P D 25:0 lb: (4)

Part (b)

The solution procedure for sliding down the ramp is the same as that for Part (a) except
that the direction of the friction force F in the FBD must be changed. The revised FBD

is shown in Fig. 3. The governing equations are identical to Eqs. (1)–(3) except that F
in Eq. (2) is replaced by �F . The solutions of these equations are

Figure 3
Free body diagram for the box sliding down
the ramp. Notice that the direction of the fric-
tion force in this FBD is opposite that shown
in Fig. 2 and the location B where the contact
forces act is different than point A.

) N D 37:59 lb; F D 11:3 lb; and P D 2:40 lb: (5)

Discussion & Verification If 2:40 lb � P � 25:0 lb, the box remains at rest (no
sliding), and when equality prevails in this expression, motion is impending. It is pos-
sible to apply P greater than 25:0 lb, in which case the box slides up the ramp while
accelerating. Similar remarks apply for sliding down the ramp.
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E X A M P L E 9.2 Sliding Motion versus Tipping Motion

A 2m-long concrete traffic barrier is used to provide safety for workers, pedestrians,
and motorists during highway construction. If h D 45 cm, determine the force P that
will cause motion of the barrier, and specify if the motion is due to sliding or tip-
ping. The concrete has 0:024N=cm3 specific weight, and the interface between the
barrier and pavement has static and kinetic coefficients of friction of 0.45 and 0.40,
respectively.

Figure 1

S O L U T I O N

Road Map We will assume the barrier is initially at rest when the force P is applied,
and we will restrict our attention to sliding and tipping that is planar, which is reason-
able if P is applied near the middle of the barrier (i.e., about 1m from either end). We
will consider motion due to sliding first, followed by motion due to tipping. For each
of these, an FBD will be drawn and equations of equilibrium will be written. For the
sliding analysis, Coulomb’s law will be applied.

Motion due to sliding

Modeling The FBD for the barrier is shown in Fig. 2 where the direction of the fric-
tion force F opposes the direction of sliding. The weight W of the barrier is the prod-
uct of specific weight and volume. You should verify that the volume of the barrier is
6:48�105 cm3. Thus, the weight is

Figure 2
Free body diagram for sliding of the traffic
barrier.

W D .0:024N=cm3/.6:48�105 cm3/ D 15:55 kN: (1)

Governing Equations

Equilibrium Equations Using the FBD from Fig. 2, the equilibrium equations areX
Fy D 0 W N �W D 0 ) N D 15:55 kN; (2)X
Fx D 0 W P � F D 0: (3)

Force Laws Assuming that sliding is impending, Coulomb’s law, Eq. (9.3), becomes

F D �N D .0:45/N; (4)

where the coefficient of static friction is used and the direction of F is properly ac-
counted for in the FBD of Fig. 2.

Computation Solving Eqs. (3) and (4) provides

) F D 7:00 kN and P D 7:00 kN: (5)

Motion due to tipping

Modeling Tipping occurs when the contact forces N and F are positioned at the
right-hand edge of the base, point A, as shown in the FBD in Fig. 3.

Figure 3
Free body diagram for tipping of the traffic
barrier.

Governing Equations & Computation Summing moments about point A in Fig. 3
will avoid having to determine N and F . Thus,X

MA D 0 W W.27 cm/ � P.45 cm/ D 0 ) P D 9:33 kN: (6)

Discussion & Verification Motion will be impending when P reaches the smaller
of Eqs. (5) and (6). Thus, when P D 7:00 kN, motion due to sliding is impending. If
P is increased an infinitesimal amount beyond this value, the friction force F in the
FBD of Fig. 2 will decrease because the coefficient of kinetic friction is less than the
coefficient of static friction. Hence, if P > 7:00 kN, gross sliding motion occurs, with
no tipping, and the barrier will accelerate.
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E X A M P L E 9.3 Wedges and Multiple Contact Surfaces

Two nylon blocksA andB are used to level one corner of a heavy refrigerator. The floor
C and guides D and E are fixed. Block A supports a 200 lb force from the refrigerator
and is a loose fit between guidesD and E. The coefficient of static friction between all
contact surfaces is 0.2.

(a) Determine the force P needed to raise block A.

(b) When P D 0, determine if the system is at rest.

Figure 1 S O L U T I O N

Road Map We will neglect the weights of the blocks, will assume the system is
initially at rest, and will analyze motion due to sliding only (i.e., we assume the blocks
will not tip). Because block A is a loose fit between guides D and E, it will make
contact with D or E, but not both at the same time. In Part (a), block B slides to the
right while block A is raised: there are three surfaces in contact and the kinematics are
such that if one of these surfaces slides, then they all must slide. In Part (b), if this is a
good design, there will be no sliding when P D 0. If sliding does occur,B will move to
the left and A will be lowered, and the FBDs from Part (a) will be revised accordingly.

Part (a)

Modeling The FBD for the two blocks is shown in Fig. 2 where the directions of the
friction forces oppose the directions of sliding.

B

Figure 2
Free body diagrams for raising block A.

Governing Equations

Equilibrium Equations Using the FBD from Fig. 2, the equilibrium equations are

Block A:
X

Fx D 0 W N2.sin 10ı/C F2.cos 10ı/ �N3 D 0; (1)X
Fy D 0 W N2.cos 10ı/ � F2.sin 10ı/ � F3 � 200 lb D 0: (2)

Block B:
X

Fx D 0 W P � F1 �N2.sin 10ı/ � F2.cos 10ı/ D 0; (3)X
Fy D 0 W N1 �N2.cos 10ı/C F2.sin 10ı/ D 0: (4)

Note that Eqs. (1)–(4) contain seven unknowns.

Force Laws Assuming that sliding is impending, and noting that if one surface slides
then all surfaces must slide, Coulomb’s law, Eq. (9.3) on p. 499, for each sliding surface
provides

F1 D �N1 D .0:2/N1; F2 D �N2 D .0:2/N2; F3 D �N1 D .0:2/N3; (5)

where the coefficient of static friction is used and the directions of F1, F2, and F3 have
been properly accounted for in the FBDs of Fig. 2.

Helpful Information

Mechanical advantage. Notice that the
force P D 128:0 lb needed to raise block
A, given by Eq. (9), is less than the 200 lb
force being lifted. This feature is some-
times called mechanical advantage. The
mechanical advantage of a wedge can be
increased by decreasing the angle of the
wedge (e.g., reducing the 10ı angle shown
in Fig. 1), or by using materials with a lower
coefficient of friction.

Computation There are now seven equations and seven unknowns. These equations
are easily solved, and you should verify that the solutions are

) N1 D 217 lb; F1 D 43:4 lb; (6)

N2 D 228 lb; F2 D 45:7 lb; (7)

N3 D 84:6 lb; F3 D 16:9 lb; (8)

and P D 128 lb: (9)
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Part (b)

Modeling We assume the system is in equilibrium with no sliding, and at the end of
the solution we must verify this assumption. The FBDs are shown in Fig. 3, with the
following comments. Because we assume there is no sliding, we may not use F1 D
�N1, F2 D �N2, and F3 D �N3; rather, we are assuming F1 < �N1, and so on.
Thus, N1, F1, N2, F2, N3, and F3 are six independent unknowns. While we assume
there is no sliding, the directions of F1, F2, and F3 are nonetheless correctly shown
for block B sliding to the left and block A moving down.

B

Figure 3
Free body diagrams with P D 0.

Governing Equations & Computation The FBDs in Fig. 3 contain six unknowns,
and there are only four equilibrium equations available; hence this problem is statically
indeterminate.� We proceed by assuming that block A does not contact either of the
guides, which is reasonable if there is no sliding. Thus, N3 D F3 D 0. By inspection
of Fig. 3, the equation

P
Fx D 0 for blocks A and B taken together (note that the

forces N2 and F2 become internal to the FBD and hence they do not appear in this
equilibrium equation) provides F1 D 0 and writing

P
Fy D 0 provides N1 D 200 lb.

Finally, the equilibrium equations for block A alone in Fig. 3 (with N3 D F3 D 0) are

Block A:
X

Fx D 0 W N2.sin 10ı/ � F2.cos 10ı/ D 0; (10)X
Fy D 0 W N2.cos 10ı/C F2.sin 10ı/ � 200 lb D 0; (11)

) N2 D 197 lb; and F2 D 34:7 lb: (12)

Values for all six unknowns have been obtained (i.e., N1 D 200 lb, F1 D 0, N2 D
197 lb, F2 D 34:7 lb, N3 D F3 D 0), and we must now verify that these satisfy
Coulomb’s law. Clearly, surface 1 does not slide, and surface 3 is not in contact. For
surface 2, Coulomb’s law states that sliding is impending when F2 D �N2 D 39:4 lb.
Since this value is larger than the result for F2 obtained in Eq. (12), we conclude
that surface 2 does not slide. Hence, the solution we obtained satisfies all equilibrium
equations and Coulomb’s law; therefore our initial assumptions were correct, and we
may conclude that the system will be at rest when P D 0.

Alternate solution. As an alternative solution, we can demonstrate that a nonzero
force is required to slide block B to the left. The solution procedure of Part (a) is
repeated and the FBDs in Fig. 4 are used with the following comments. Force Q is
defined to be positive in the �x direction. At the outset of this solution, it may not
be clear whether block A contacts guide D or E, and in the course of this solution
you will find that contact is made at E, whose contact forces are defined to be N4 and
F4. Observe that the directions of all friction forces oppose the directions of sliding.
Problem 9.13 asks you to carry out this solution, and you should determine that Q D
44:4 lb will cause block A to be lowered. From this we may infer there is no motion
when Q D 0, and hence when P D 0.

B

Figure 4
Free body diagrams for lowering block A.

Discussion & Verification Impending upward motion of block A occurs when P D
128:0 lb, and the system is at rest when P D 0. Hence, this design is acceptable from
the point of view that the wedge will not slip out of place when the insertion force P
is removed.

�While one moment equilibrium equation could be written for each of blocks A and B , three
additional unknowns in the form of the locations of the contact force systems must also be
introduced; hence the problem would remain statically indeterminate.
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P R O B L E M S

Problems 9.1 and 9.2

Figure P9.1 and P9.2

A worker applies the force described below to push a box that weighs 40 lb with center
of gravity at point G. The surface between the box and ramp has coefficient of friction
�s D �k D 0:25. Determine the normal force and friction force between the box and
ramp, and determine if the box will slide up the ramp, down the ramp, or remain at
rest.

Problem 9.1 The worker applies a 30 lb force parallel to the ramp.

Problem 9.2 The worker applies a 35 lb force that is horizontal.

Problem 9.3

The structure consists of two uniform members AB and BC , each weighing 2 kN. The
members are pinned to each other at B , and the structure is supported by a pin at C and
a surface at A having coefficient of static friction 1.2. Determine the largest positive
value P the structure can support.

Figure P9.3 Figure P9.4

Problem 9.4

Water (� D 62:4 lb=ft3) is retained by a uniform thin semicircular dam having 1 ft
radius and 3 ft depth into the plane of the figure. The dam weighs 60 lb and is supported
by a cableAC and by frictional contact with the bottom of the channel atB . Determine
the minimum coefficient of friction so that the dam does not slip at B .

Problem 9.5

By writing
P
M D 0 about some convenient point, verify that the distances from the

lower left-hand corner of the box (pointD) to pointsA andB in Example 9.1 on p. 504
are 5.18 and 11:2 in:, respectively. In view of these results, is motion of the box in fact
due to sliding (as assumed in Example 9.1) or is it due to tipping? Explain.

Problem 9.6

Figure P9.6

The apparatus shown can be used to experimentally determine the angle of static fric-
tion, and hence the coefficient of static friction, for many combinations of contacting
materials. A block of material C rests on a beam AB . Starting with � D 0ı, point B is
slowly lowered until block C begins to slide. Assuming block C does not tip, show that
the value of � when sliding starts is equal to the angle of friction �, given by Eq. (9.4)
on p. 501.
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Problem 9.7

Figure P9.7

A tool chest has 800N weight that acts through the midpoint of the chest. The chest is
supported by feet at A and rollers at B . The surface has a coefficient of friction of 0.3.
Determine the value of the horizontal force P necessary to cause motion of the chest
to the right, and determine if the motion is sliding or tipping.

Problem 9.8

Determine the value of h in Example 9.2 on p. 505 so that sliding and tipping motion
of the traffic barrier are simultaneously impending.

Problem 9.9

The machine shown is used to move boxes. Bar ABC slides horizontally in the bear-
ing of the fixed machine housing. Points B , C , and D are pins, and point C has a
frictionless roller. The flywheel E rotates clockwise under the action of moment ME .
The horizontal surface on which the box rests has coefficients of friction �s D 0:3

and �k D 0:25, and all other contact surfaces are frictionless. If the box weighs 900N,
determine the moment ME that must be applied to the flywheel to initiate motion of
the box, and determine if the motion is sliding or tipping.

Figure P9.9

Problem 9.10

Figure P9.10

A long concrete gravity dam retains water in a reservoir. The surface between the dam
and earth has coefficients of friction �s D 0:8 and �k D 0:7. When the reservoir
is completely full (i.e., h D 8m), determine if the dam is safe from both overturning
(tipping) and sliding along its base. The specific weights of concrete is �c D 25 kN=m3

and the density of water is �w D 10
3 kg=m3.

Problem 9.11

Repeat Prob. 9.10 if the reservoir is on the left-hand side of the dam.

Problem 9.12

Figure P9.12

The owner of a small concrete gravity dam is considering attaching steel plate to the
face of the dam so that a greater depth of water can be retained. The surface between
the dam and earth has coefficients of friction �s D 0:6 and �k D 0:55. Determine if
the dam is safe from both overturning (tipping) and sliding along its base. The specific
weights of concrete and water are �c D 150 lb=ft3 and �w D 62:4 lb=ft3, respectively.
Neglect the weight of the steel plate.
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Problem 9.13

Carry out the alternate solution described in Example 9.3 on p. 507.

Problem 9.14

Figure P9.14

The photograph shows two U.S. Coast Guard icebreakers in an ice field, and a simple
model for an ice breaking operation. If the coefficients of static and kinetic friction for
contact between the ship’s bow and ice are 0.08 and 0.06, respectively, and if the ship
produces a thrust of 106 lb, determine the normal and friction forces acting on each
side of the ship’s bow as it moves through the ice field with constant velocity. Assume
the ship makes contact with the ice only on its bow, and neglect all forces between the
ship’s hull and water except for the thrust.

Problem 9.15

Figure P9.15

A wedge is used to level a structure. All contact surfaces have coefficients of static and
kinetic friction of 0.3 and 0.25, respectively, and W D 500N. Assume the dimensions
of the wedge are small. Determine the value of P to cause impending motion of the
wedge:

(a) To the left.

(b) To the right.

Problems 9.16 and 9.17

Figure P9.16 and P9.17

Blocks A and B each have 2 kg mass. All contact surfaces have the same coefficient of
friction. Determine the force P needed to cause impending motion of block B to the
left if the coefficient of static friction is

Problem 9.16 0.4.

Problem 9.17 0.3.

Problem 9.18

Figure P9.18 and P9.19

An 8 ft long ladder has seven rungs. The rungs are spaced 1 ft apart, and the top and
bottom rungs are 1 ft from their respective ends of the ladder. The top of the ladder
has a roller. Neglect the weight of the ladder and assume the worker’s hand applies no
force to the ladder.

(a) If the worker weighs 140 lb and stands on the middle rung, determine the minimum
value of the coefficient of friction so that the ladder does not slide.

(b) If the worker weighs 140 lb and stands on a different rung, does your answer to
Part (a) change? Explain.

(c) If the worker weighs more than 140 lb and stands on the middle rung, does your
answer to Part (a) change? Explain.

Problem 9.19

In Prob. 9.18, the roller at B is removed and the surfaces at A and B both have the
same coefficient of friction. If the worker weighs 140 lb and stands on the middle rung,
determine the minimum value of the coefficient of friction so that the ladder does not
slide. Hint: The use of mathematical software is helpful, but is not required.
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Problem 9.20

A table saw for cutting wood is shown. The blade rotates counterclockwise, and the
operator pushes the wood into the blade using a stick to help keep his or her hand
away from the blade. Despite this safety precaution, it is possible for the wood to be
propelled by the blade with great force and speed into the operator, causing injury.
To help prevent this accident, the saw is outfitted with an antikickback device, which
weighs 0:3 lb with center of gravity at point B . Neglecting friction between the wood
and saw table, determine the minimum coefficient of friction between the wood and
the antikickback device so that the wood workpiece will not kick back.

Figure P9.20

Problem 9.21

Figure P9.21

Bar ABC has square cross section and can slide in the square hole that is in collar D.
Collar D is supported by fixed vertical post E that is built in at its base. The collar
D can translate in the ´ direction and rotate about the ´ axis without friction; other
translations and rotations are constrained. End C of the square cross section bar rests
on a horizontal surface having coefficients of friction �s D 0:6 and �k D 0:5. If
bar ABC is initially motionless, determine the positive value of P that will cause
impending motion. For this value of P , also determine the reactions between barABC
and the collar D.
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D E S I G N P R O B L E M S

General Instructions. In all problems, write a brief technical report following the
guidelines of Appendix A, where you summarize all pertinent information in a well-
organized fashion. It should be written using proper, simple English that is easy to
read by another engineer. Where appropriate, sketches along with critical dimensions
should be included. Discuss the objectives and constraints considered in your design,
the process used to arrive at your final design, safety issues if appropriate, and so on.
The main discussion should be typed, and figures, if needed, can be computer-drawn
or neatly hand-drawn. Include a neat copy of all supporting calculations in an appendix
that you can refer to in the main discussion of your report. A length of a few pages,
plus appendix, should be sufficient.

Design Problem 9.1

Figure DP9.1

Design a detent mechanism for precision positioning control. This mechanism consists
of a spring-loaded plunger (detent) with a spherical end that is normally positioned
at the bottom of the spaced notches on the track. The track is fixed in space, and the
detent housing can undergo horizontal translational motion only. It is desired that the
detent housing move to the next available notch when the force P is approximately 2N.
Specify the spring stiffness (in N/mm), the spring’s unstretched length, and dimensions
h and d where d is the length of the spring cavity when the detent is at the bottom
of a notch. The coefficient of friction between the detent and the track is 0.3, and
friction between the detent and the housing can be assumed to be negligible because of
sufficient lubrication.

Design Problem 9.2

Figure DP9.2

Design a safety device for use on fixed steel ladders. The device consists of a cam, a
plate, and several roller bearings attached to the plate. The device slips onto the rail
of the ladder, and is attached via a short cable to a harness worn by the person using
the ladder. It has the feature that if the person were to accidentally fall, the device
automatically would lock in position on the ladder, and limit the distance the person
will fall, whereas a small upward force on the cam will allow it to slide to a new
position on the ladder. All materials are steel. The pins at E and D are equipped with
roller bearings. The cam has a circular surface that contacts the flange of the ladder
at C and is hinged to the plate at point A. Specify the dimension d . Note that small
values of d produce large contact forces, but also lead to more rapid wear of the cam
and bearings. If d is too large, it may not provide sufficient frictional resistance. Thus,
you should specify a value of d with these competing factors in mind.
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9.2 Problems with Multiple Contact Surfaces

This section addresses friction problems that have multiple contact surfaces
where, in general, only a subset of the surfaces slide while the others do not.
Such problems are challenging because we usually do not know at the outset
of a solution which of the surfaces will slip. Note that it is only for surfaces
that slide or have impending motion that we may write F D �N , and for
surfaces that do not slide, F < �N . Recall that in Section 9.1, some problems
with multiple contact surfaces were considered, but these problems were of a
simpler category because they had the feature that if one surface slides, then
all surfaces were required to slide. The subject of geometry of motion is called
kinematics, and the problems considered in this section have more complicated
kinematics than those in Section 9.1.

The basic concepts needed to address the problems of this section were all
covered in Section 9.1. The new ingredient needed here is an understanding
that only a subset of the contact surfaces will slide.

Determination of sliding directions

When you draw FBDs, it is necessary to know the directions in which sliding
may occur so that friction forces can be given the proper directions. Determi-
nation of sliding directions is sometimes challenging, and simple kinematics
usually help clarify this, as demonstrated in the following example.

Consider the use of a wrench to twist a pipe as shown in Fig. 9.7(a). In

Figure 9.7
(a) A wrench is used to twist a pipe C . The
wrench consists of jaw BD and handle-jaw
ADE, with a pin at D. (b) Partially complete
FBDs where the directions of the friction forces
are uncertain, as indicated by the “ ? ” symbols
and dashed arrowheads. The force P and mo-
ment MC on the pipe are reactions from the
pipe’s support that equilibrate the force P ap-
plied to handle E of the wrench. (c) Complete
FBDs. Note: The FBDs can be further simpli-
fied by noticing that member BD is a two-force
member.

Fig. 9.7(b), we begin drawing FBDs; most of the forces in these FBDs are
straightforward to assign, but the directions of the friction forces are, at this
point, probably uncertain. As an example of how you might determine these
directions, imagine that pipe C in Fig. 9.7(a) is fixed and let there be no slip at
B . If handle E were to move down, then clearly jaw A also moves down and
hence there is sliding at that location. The friction force F1 the pipe applies to
the jaw at A must be upward, and by Newton’s third law, the friction force the
jaw applies to the pipe is in the opposite direction. We now repeat this thought
process by letting there be no slip at A. If handle E were to move down, then
clearly jaw B moves up and hence there is sliding at that location. The friction
force F2 the pipe applies to the jaw at B must be downward, and the friction
force the jaw applies to the pipe is in the opposite direction. The final FBDs are
shown in Fig. 9.7(c). Once the FBDs are drawn, we proceed with the analysis
by writing equilibrium equations, applying Coulomb’s law, etc., to determine
whether surface A or surface B will slide; Prob. 9.32 asks you to do this.

End of Sect ion Summary

This section considers problems with multiple contact surfaces where only a
subset of the surfaces slide. Some of the key points are:

� At the outset of an analysis, it is often uncertain which surfaces will
slide. Note that F D �N may be used only for those surfaces that slide
or have impending slip, while F < �N applies for those that do not
slide.

� Simple kinematics help clarify the directions for sliding so that friction
forces can be given the correct directions in FBDs.
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E X A M P L E 9.4 Multiple Contact Surfaces

A makeshift crane consists of a cable AB , a steel bar AC , concrete blocks B and C ,
and a pulley system. While the crane is primitive, it is inexpensive and portable and may
be especially useful in impoverished counties for lifting heavy objects on and off trucks
and carts. Concrete blocks B and C weigh 8 and 5 kN, respectively, and the coefficient
of friction between the blocks and the soil on which they rest is 0.5. Determine the
weight W of the heaviest object D that may be lifted, and specify whether block B or
C slides.

Figure 1 S O L U T I O N

Road Map We will neglect the weights of the cable, bar, and pulley system and will
assume that blocks B and C do not tip. Because of the pulley system, the force applied
by the person is small relative to the weight being lifted,� and we will therefore neglect
the force the person applies to the cable. It is not likely that both blocks B and C will
slide at the same time, and it is not clear which of these will reach its sliding threshold
first. Our strategy will be to determine the forces supported by the cable and bar in
terms of the weight W of object D. We will then proceed to analyze the equilibrium
of block B , and then block C , to determine which of these slides, and the weight W
necessary to cause this.

Modeling The FBDs for point A and blocks B and C are shown in Fig. 2 where the
cable force TAB is positive in tension and the bar force PAC is positive in compression.
Note that if block B slides, it will move to the right and if block C slides, it will move
to the left, and the friction forces in these FBDs oppose these motions.

Figure 2
Free body diagrams in which the force the per-
son applies to the pulley system is assumed to
be small.

Common Pitfall

Overuse of F D �N . A common error in
problems with friction is to use F D �N

for all contact surfaces. While this is some-
times true (as in the example problems of
Section 9.1), in general this is not the case.
In Fig. 2 above, taking F1 D �N1 and
F2 D �N2 is incorrect because it implies
that both blocks have impending motion at
the same time, and further, the equilibrium
equations cannot be satisfied. At the end of
this solution we see that when W reaches
its maximum value, F1 D �N1 and F2 <
�N2.

Governing Equations & Computation

Equilibrium Equations Using the FBDs in Fig. 2, equilibrium equations are written
and solved as follows

Point A:
X

Fx D 0 W �TAB
12
13 C PAC

4
5 D 0; (1)X

Fy D 0 W �TAB
5
13 C PAC

3
5 �W D 0; (2)

) TAB D
13
4 W and PAC D

15
4 W: (3)

Block B:
X

Fx D 0 W TAB
12
13 � F1 D 0; (4)X

Fy D 0 W �8 kNC TAB
5
13 CN1 D 0; (5)

) F1 D 3W and N1 D 8 kN � 5
4W: (6)

Block C:
X

Fx D 0 W �PAC
4
5 C F2 D 0; (7)X

Fy D 0 W �5 kN � PAC
3
5 CN2 D 0; (8)

) F2 D 3W and N2 D 5 kNC 9
4W: (9)

Note that if point A and blocks B and C are in equilibrium, then all the preceding
expressions are valid, regardless of whether block B or block C slides.

�Exactly what force the person applies relative to the weight being lifted depends on details of
the pulley system, which are not described here.
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Force Laws We now apply Coulomb’s law to determine the value of W needed to
cause each of the blocks to slide.

If block B slides: F1 D �N1 (10)

3W D .0:5/
�
8 kN � 5

4W
�

(11)

) W D 1:10 kN: (12)

If block C slides: F2 D �N2 (13)

3W D .0:5/
�
5 kNC 9

4W
�

(14)

) W D 1:33 kN: (15)

When W reaches the smaller of the values given by Eqs. (12) and (15), sliding is
impending. Hence, the largest value of weight that may be lifted is

Wmax D 1:10 kN; (16)

and when this occurs, sliding of block B is impending.

Discussion & Verification An analysis that includes the force the person applies
to the cable will give more precise results than those obtained here. To carry out this
analysis, details of the pulley system must be known, and the angle at which the person
applies the force must be known, or more likely, a range of reasonable values should
be considered.
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E X A M P L E 9.5 Multiple Contact Surfaces

A 5ı steel wedge C is used to level a 10 ft long uniform steel I beam AB weighing
400 lb. The ends of the beam are supported by concrete walls D and E. Determine
the force needed to drive the wedge to the left, and describe the motion of the beam
that results (i.e., determine if end B of the beam is lifted or if the entire beam slides to
the left). The coefficients of static friction are 0.4 for steel-on-steel contact and 0.3 for
steel-on-concrete contact.

Figure 1

S O L U T I O N

Road Map We will neglect the weight of the wedge. There are three potential sliding
surfaces in this problem. While sliding must occur between the bottom of the wedge
and the stationary wall at D, it is unclear which of the remaining two contacts slides.
In the first part of our solution we determine the force needed to slide the beam and
wedge together to the left. In the second part, we determine the force needed to slide
only the wedge. The smaller of these values is the force that causes motion to occur.

Sliding of beam and wedge together

Modeling The FBD for the beam and wedge together is shown in Fig. 2 where the
direction of the friction forces opposes sliding of the beam to the left. When writing
equilibrium equations, we will assume the lines of action of F1, F2, and P are the
same, which is reasonable if the dimensions of the wedge are small. We also assume
that the support reaction at A is positioned at the end of the beam.

Figure 2
Free body diagram for the beam and wedge slid-
ing together to the left.

Governing Equations

Equilibrium Equations Using the FBD in Fig. 2, the equilibrium equations areX
MA D 0 W N1.10 ft/ � .400 lb/.5 ft/ D 0 ) N1 D 200 lb; (1)X
Fy D 0 W N1 CN2 � 400 lb D 0 ) N2 D 200 lb; (2)X
Fx D 0 W F1 C F2 � P D 0: (3)

These three equations contain five unknowns, although we were able to solve for N1
and N2.

Force Laws Assuming sliding occurs at surfaces 1 and 2, Coulomb’s law becomes

F1 D �cN1 D .0:3/.200 lb/ D 60 lb; (4)

F2 D �cN2 D .0:3/.200 lb/ D 60 lb; (5)

where �c is the coefficient of static friction for steel-on-concrete.

Computation Solving Eq. (3) for P provides

) P D 120 lb: (6)

Sliding of wedge only

Modeling Here we consider the wedge sliding to the left while end B of the beam is
lifted. Note that the FBD in Fig. 2 is still valid and the equilibrium equations (Eqs. (1)–
(3)) are still valid, hence N1 D 200 lb and N2 D 200 lb. To continue, we may use an
FBD of beam AB or wedge C , and we choose the latter as shown in Fig. 3.
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Governing Equations

Equilibrium Equations Using the FBD shown in Fig. 3, the equilibrium equations
are

Figure 3
Free body diagram for the wedge sliding to the
left.

X
Fx D 0 W F1 CN3.sin 5ı/C F3.cos 5ı/ � P D 0; (7)X
Fy D 0 W N1 �N3.cos 5ı/C F3.sin 5ı/ D 0: (8)

Because N1 is known from our earlier work, these two equations contain four un-
knowns.

Force Laws Assuming sliding occurs at surfaces 1 and 3, Coulomb’s law becomes

F1 D �cN1 D .0:3/.200 lb/ D 60 lb; (9)

F3 D �sN3 D .0:4/N3; (10)

where �c and �s are the coefficients of static friction for steel-on-concrete and steel-
on-steel, respectively, and the directions of F1 and F3 have been assigned in the FBD

of Fig. 3 to oppose sliding motion of the wedge to the left.

Computation Solving Eqs. (7)–(10), with N1 D 200 lb, provides

) N3 D 208 lb; F3 D 83:2 lb; and P D 161 lb: (11)

Discussion & Verification Sliding occurs when P reaches the smaller of Eqs. (6)
and (11). Thus, when P D 120 lb, the beam and wedge slide together to the left. Un-
fortunately, this is not the desired effect. Some possible remedies that might result in
end B of the beam being lifted are as follows:

� An additional weight could be temporarily added to the left-hand end of the
beam while the wedge is inserted. For example, a worker could stand on end
A. This will increase the normal force at end A, and hence increase the friction
force there.

� A lubricant could be applied to the contact between the beam and wedge so that
the coefficient of friction there is lowered.

� All the results obtained here are for static equilibrium. It may be possible to
drive the wedge dynamically, such as by tapping it into position with a hammer.
Analysis of this requires dynamics.
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P R O B L E M S

Problem 9.22

Figure P9.22

Three books rest on a table. Books A, B , and C weigh 2, 3, and 4 lb, respectively.
Determine the horizontal force applied to book A that causes impending motion of any
of the books to the right, and determine which books move.

Problem 9.23

Block A and spool B weigh 8 and 6 lb, respectively. The spool has a string wrapped
around it to which a force P is applied. The coefficient of static friction between the
spool and the contact surfaces at A and C is 0.25. Determine the value of P that
causes impending motion, and determine if slip occurs at A, or C , or both locations
simultaneously.

Figure P9.23 Figure P9.24–P9.26

Problems 9.24 through 9.26

Bars AB and CD are uniform and each weighs 7 lb. The coefficient of static friction
at surfaces A and B is the same.

Problem 9.24 If P D Q D 0, determine the minimum coefficient of static friction
so that the system has no motion.

Problem 9.25 If Q D 0 and the coefficient of static friction for all surfaces is 0.6,
determine the value of P that causes impending motion of bar AB to the right.

Problem 9.26 If P D 0 and the coefficient of static friction for all surfaces is 0.6,
determine the value of Q that causes impending motion of bar AB to the left.

Problems 9.27 and 9.28

Figure P9.27 and P9.28

Blocks A and B each have 2 kg mass. All contact surfaces have the same coefficient of
friction. Determine the force P needed to cause impending motion of block B to the
right if the coefficient of static friction is

Problem 9.27 0.4.

Problem 9.28 0.3.
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Problem 9.29

Figure P9.29

BlocksA and B weigh 10 and 15N, respectively. Point C is at the midpoint of member
BD, and both members AC and BD have negligible weight. The coefficient of static
friction for all contact surfaces is 0.3. Determine the positive value of P that causes
impending motion, and determine which of blocks A or B slides and the direction of
motion.

Problem 9.30

Figure P9.30 and P9.31

The structure consists of two uniform members AB and BC, each weighing 2 kN. The
members are pinned to one another at B , and the structure is supported by surfaces at
A and C having coefficients of static friction of 1.2 and 0.5, respectively. Determine
the largest positive value P the structure can support.

Problem 9.31

The structure consists of two uniform members AB and BC, each weighing 2 kN and
P � 0. Determine the minimum coefficient of static friction needed at surface A and
the minimum coefficient of static friction needed at surface C so that neither surface
slips for any value of P (this is called self-locking).

Problem 9.32

Figure P9.32

A wrench is used to twist a pipe C . The wrench consists of jaw BD and handle-jaw
ADE, with a pin at D. The coefficient of static friction �s for all contact surfaces
is the same. Determine the minimum value of �s so that there is no slip at A or B
regardless of the value of force P (this is called self-locking).

Problems 9.33 and 9.34

A truck with 1500 kg mass and center of gravity at point C is used to pull a dumpster
with 1700 kg mass and center of gravity at point G. The coefficient of static friction
between the tires and pavement is 1.1, and between the dumpster and pavement is 0.5.
Assume the truck’s engine has sufficient power and the dumpster does not tip. Hint:
The use of mathematical software is helpful, but not required. Determine if the truck is
able to pull the dumpster if:

Problem 9.33 The truck has rear-wheel drive.

Problem 9.34 The truck has four-wheel drive and end E of the cable is moved to
point H .

Figure P9.33 and P9.34
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D E S I G N P R O B L E M S

General Instructions. In all problems, write a brief technical report following the
guidelines of Appendix A, where you summarize all pertinent information in a well-
organized fashion. It should be written using proper, simple English that is easy to
read by another engineer. Where appropriate, sketches along with critical dimensions
should be included. Discuss the objectives and constraints considered in your design,
the process used to arrive at your final design, safety issues if appropriate, and so on.
The main discussion should be typed, and figures, if needed, can be computer-drawn
or neatly hand-drawn. Include a neat copy of all supporting calculations in an appendix
that you can refer to in the main discussion of your report. A length of a few pages,
plus appendix, should be sufficient.

Design Problem 9.3

Figure DP9.3

Design a message holder that is to be mounted on a door or wall for holding paper
notes. It is made of a 20mm diameter circular aluminum bar and an extruded aluminum
bracket. Both aluminum pieces have an anodized finish. Specify the angle � so the
holder is self-locking. That is, the note cannot be pulled out of the holder without
manually lifting the circular bar. A large value of � is probably desirable so that the
circular bar may be easily lifted.

Design Problem 9.4

Figure DP9.4

A large concrete surface is to be removed by sawing it into rectangular pieces.� In each
rectangular piece, three holes of depth d are drilled perpendicular to the slab’s surface
with the positioning shown relative to the slab’s center of gravity G. In each hole a
steel plug is inserted, and the slab is lifted via cables. Design this lifting scheme by
specifying the depth d the holes should have and the height h so that the plugs will
self-lock when the slab is lifted. Assume the concrete slab is at least 4 in: thick.

�A perhaps more conventional method of removal is to pulverize the slab using a tractor-mounted
impact hammer. However, this method produces waste that is difficult to recycle. The scheme
described here provides for waste that has useful salvage value. For example, such slabs are
often used to line waterfronts for erosion control.
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9.3 Belts and Cables Contacting Cylindrical
Surfaces

In this section we use Coulomb’s law to develop a theory for the tensile force
in belts and cables sliding on cylindrical surfaces.

Figure 9.8
Engine for a Lotus Sport Exige 240R sports
car. This engine has 4 cylinders and produces
243 hp. The belt wraps around 7 pulleys and is
needed to operate a variety of essential engine
accessories such as the power steering pump
and alternator. The belt and pulleys must be de-
signed so there is no slip.

Equilibrium analysis

Consider the situation of a flexible belt or cable in contact with a cylindrical
surface, as shown in Fig. 9.9. At points A and B where the belt meets the
cylindrical surface, the values of the tensile force in the belt are T1 and T2,
respectively. We will use the convention that T2 � T1. Thus T1 is the force
on the low-tension side, and T2 is the force on the high-tension side. Between
points A and B the tensile force T is variable such that T1 � T � T2. In
Fig. 9.9 the cylinder is fixed, and if slip occurs, the belt will move in the
direction of T2.�

Figure 9.9
A flexible belt or cable wrapped around a
fixed cylindrical surface.

Figure 9.10
Free body diagram of a small seg-
ment of belt.

An angular coordinate � is defined in Fig. 9.9 where � D 0 corresponds
to point A on the low-tension side, and � D ˇ corresponds to point B on
the high-tension side. Angle ˇ is called the angle of wrap. Consider a small
segment of the belt obtained by taking cuts through the belt at points D and
E in Fig. 9.9. The FBD for this segment of the belt is shown in Fig. 9.10, and
the equilibrium equations areX

Fx D 0 W �.T C�T / cos.��=2/C T cos.��=2/C�F D 0; (9.6)X
Fy D 0 W �.T C�T / sin.��=2/ � T sin.��=2/C�N D 0: (9.7)

In these expressions, T is the tensile force at position � (pointD), and TC�T
is the tensile force at position � C �� (point E). The normal force between
the belt and cylindrical surface is�N , and the friction force is�F with direc-
tion that opposes the direction of relative slip. Assuming the belt slides on the
surface or has impending slip, Coulomb’s law provides �F D ��N where

�The FBD in Fig. 9.10 and all of the expressions derived in this section are valid if Fig. 9.9
is revised so that the belt is fixed on the high-tension side and the cylinder rotates clockwise.
Indeed, the FBD and all expressions are valid if both the belt and cylinder have motion provided
the direction of slip or impending slip of the belt relative to the cylinder is in the direction of
T2.
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� is the coefficient of kinetic friction in the case of slip and � is the coeffi-
cient of static friction in the case of impending slip. Because �� is small and
is measured in radians, sin�� � �� and cos�� � 1. Using these expres-
sions, dividing Eqs. (9.6) and (9.7) by �� , taking the limit as �� ! 0, and
simplifying provide

dT

d�
D �T: (9.8)

This expression is a differential equation that describes how the tensile force T
changes with position � . It can be solved by multiplying both sides by d�=T
and integrating to write

T2Z
T1

1

T
dT D

ˇZ
0

�d�: (9.9)

Assuming the coefficient of friction is uniform over the entire surface, the
above integrals can be evaluated to obtain

ln
T2

T1
D �ˇ: (9.10)

Taking the base e exponent (e D 2:71828 : : :) of both sides and solving for T2
provide

T2 D T1 e
�ˇ ; T2 � T1; (9.11)

where

Common Pitfall

Overuse of T2 D T1e
�ˇ . This expression

relates belt tensions only when there is slip
or impending slip. Prior to slip and impend-
ing slip, this expression cannot be used.

T1 is the force in the low-tension side of the belt during slip or
impending slip;

T2 is the force in the high-tension side of the belt during slip or
impending slip;

� is the coefficient of static or kinetic friction; and
ˇ is the angle of wrap (ˇ � 0, measured in radians).

You should be mindful of the assumptions underlying Eq. (9.11): the surface
must be cylindrical, friction is governed by Coulomb’s law where the coeffi-
cient of friction is uniform, and the belt and drum are in the process of sliding
relative to each other or sliding is impending. If sliding is not imminent, the
most we can say is .T2/max > T2 � T1 where .T2/max D T1e

�ˇ .

Problem solving Solving problems with belt friction can occasionally be
challenging. To use Eq. (9.11), you must be able to identify the high-tension
and low-tension sides of a belt. In other words, you must be able to determine
the direction of relative slip. Example 9.6 discusses some intuitive and funda-
mental methods to determine the high-tension and low-tension sides of a belt.
Problems with multiple contact surfaces can be challenging, and the remarks
made earlier in this chapter also apply here. Depending on the kinematics of a
problem, only a portion of the contacts may slip, and Eq. (9.11) may be used
only for those belt-cylinder contacts that slip or have impending slip.
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End of Sect ion Summary

In this section, Coulomb’s law was used to develop the relationship T2 D
T1e

�ˇ between values of the tensile forces on the high-tension side (T2) and
low-tension side (T1) of a belt or cable in contact with a cylindrical surface
under conditions of slip or impending slip. Prior to slip and impending slip,
such as may occur in problems with multiple contact surfaces, this expression
cannot be used.
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E X A M P L E 9.6 Belt Friction

An accessory belt for an engine is shown. Pulley A is attached to the engine’s crank-
shaft and rotates clockwise. The belt tensioner consists of a frictionless idler pulley
at B that is mounted to a horizontal bar D that slides in a frictionless track with a
horizontal force P . Pulley C operates a hydraulic pump that requires 200N�m. The
coefficients of static friction for pulleys A and C are 0.4 and 0.6, respectively, and the
radii of pulleys A and C are 110 and 80mm, respectively. Determine the minimum
value of P so the belt does not slip.

Figure 1

S O L U T I O N

Road Map We will first identify the portions of the belt having uniform values of
force. We then draw FBDs of selected pulleys and apply equilibrium equations to ob-
tain some of the requirements the belt forces must satisfy. For example, the 200N�m
moment required of pulley C must be produced by the net moment of the belt forces
about this pulley’s bearing. Slip may occur between the belt and pulley A, or the belt
and pulley C , and both of these possibilities must be considered to determine which
occurs.

Figure 2
Regions of the belt having uniform values of
force TABC and TAC . The force is variable in
portions of the belt shown by the dashed lines.

Figure 3
Free body diagrams for the pulleys.

Modeling In Fig. 2 we identify portions of the belt that have uniform tensile force.
Note that because pulley B is frictionless, the force in the entire left-hand portion of
the belt from where the belt breaks contact with pulley A to where it makes contact
with pulley C has the same value, TABC . The force in the right-hand portion of the
belt is TAC . In regions of the belt shown by dashed lines in Fig. 2, the force changes
value, although the exact details of this are not needed. The FBDs for the pulleys are
shown in Fig. 3.

Governing Equations

Equilibrium Equations Using the FBDs from Fig. 3, the equilibrium equations are

Pulley B:
X

Fx D 0 W TABC .cos 45ı/C TABC .cos 60ı/ � P D 0; (1)

) TABC D .0:8284/P; (2)

Pulley C:
X

MC D 0 W TABC .0:08m/C 200N�m � TAC .0:08m/ D 0; (3)

) TAC D TABC C 2500N: (4)

Combining Eqs. (2) and (4) provides

TAC D .0:8284/P C 2500N: (5)

Equations (2) and (5) contain three unknowns TABC , TAC , and P and thus cannot yet
be solved.

Force Laws Before using Eq. (9.11) on p. 522 for belt friction, we must first identify
the high-tension and low-tension belt forces. There are a variety of intuitive and fun-
damental ways to do this. You should study the problem description and Figs. 1 and 2
now to see if you can determine by inspection that TAC > TABC .

Some explanations for why TAC > TABC follow:

� Pulley A is powered by momentMA, which is supplied by the crankshaft of the
engine. Hence, due to MA, the right-hand portion of the belt (TAC ) is pulled
toward the left-hand side (TABC ), hence TAC > TABC .

� You could examine Eq. (4) to determine TAC > TABC .
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� Starting with the FBD of pulley A, shown in Fig. 3 and again in Fig. 4(a), we
remove the belt from the pulley to draw the two FBDs shown in Fig. 4(b) and
(c). In Fig. 4(b), the friction forces, which are distributed over the contact re-
gion between the pulley and belt, must be in a direction so that the pulley is in
moment equilibrium. Knowing the direction of the friction forces in Fig. 4(b),
the friction forces applied to the belt, shown in Fig. 4(c), must be in the oppo-
site direction. Consideration of moment equilibrium

P
MA D 0 for the FBD in

Fig. 4(c) shows that TAC > TABC .

Figure 4
Free body diagrams for pulley A to help deter-
mine the high-tension and low-tension portions
of the belt. (a) Free body diagram for pulley A
and the belt together. (b) Free body diagram for
only the pulley, showing the friction and nor-
mal forces the belt applies to the pulley. (c) Free
body diagram for only the belt, showing the fric-
tion and normal forces the pulley applies to the
belt.

We now apply Eq. (9.11) for belt friction to determine the value of P needed to
cause each of the pulleys to slip.

If pulley A slips: TAC D TABC e
�AˇA (6)

.0:8284/P C 2500N D .0:8284/Pe.0:4/.155
ı/.� rad=180ı/ (7)

) P D 1547N: (8)

Common Pitfall

Measure ˇ in radians. A common error
when using the expression T2 D T1 e

�ˇ

is to forget to express the angle of wrap ˇ
in radians.

If pulley C slips: TAC D TABC e
�CˇC (9)

.0:8284/P C 2500N D .0:8284/Pe.0:6/.130
ı/.� rad=180ı/ (10)

) P D 1040N: (11)

Comparing Eqs. (8) and (11), we observe that if P is larger than 1547N, then neither
of the pulleys will slip. When P D 1547N, slip is impending at pulley A. Hence, the
smallest value of P to prevent slip is

Pmin D 1547N; (12)

and when this occurs, slip is impending at pulley A.

Discussion & Verification

� If it is not clear that slip first occurs when P is the larger of Eqs. (8) and (11),
consider the situation in which P is very large so that neither of the pulleys
slips. Then as P decreases, slip will occur when the larger of Eqs. (8) and (11)
is achieved.

� To provide a reasonable margin of safety against slip, we will want to use a
value of P greater than 1547N. Some of the sources of uncertainty are as fol-
lows. Pulley B may have nonnegligible friction, in which case slip at pulley A
may occur at a slightly higher value of P . Probably the the greatest source of
uncertainty is the possibility that the coefficients of friction might be lower at
some time during the belt’s life, such as might occur if the belt comes in contact
with a small amount of lubricant or other fluid from the engine.

� The FBD of pulley A was not used in this solution. However, if it is necessary to
determine the momentMA the crankshaft applies to this pulley, or the reactions
Ax and Ay , then this FBD would be used to write the appropriate equilibrium
equations.
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P R O B L E M S

Problem 9.35

Figure P9.35

Two objects are connected by a weightless cord that is wrapped around a fixed cylindri-
cal surface. The coefficient of static friction between the cord and surface is 0.3. One
of the objects weighs 100 lb, and the other has weight W . If the system is initially at
rest, determine the range of values for W for which there is no motion.

Problem 9.36

Figure P9.36 and P9.37

A 10N weight is supported by a weightless cable where portion AB of the cable is
horizontal. The coefficients of static and kinetic friction are 0.5.

(a) Determine the value of P so that downward motion of the 10N weight is impend-
ing.

(b) If P D 3N, determine the force in portion CD of the cable. Is the system in
equilibrium or is there motion? Explain.

Problem 9.37

A 10N weight is supported by a weightless cable where portion AB of the cable is
horizontal. A test is conducted where it is found that P D 4N will cause impending
motion of the 10N weight at D.

(a) Determine the coefficient of static friction between the cable and cylindrical sur-
face.

(b) Determine the tension in portion BC of the cable as a function of angular position
� . Plot this function.

Problem 9.38

A

B C

D

75°

Figure P9.38 and P9.39

A hoist for lifting lightweight building materials is shown. The pulley at B is friction-
less, and the pulley at C is driven by an electric motor rotating counterclockwise at
a speed high enough to always cause slip between the cable and pulley C . The cable
makes contact with one-fourth of the surface of pulley C , and the coefficients of static
and kinetic friction are 0.25 and 0.2, respectively. If the cable has negligible weight and
the building materials and platform at D have a combined weight of 100 lb, determine
the force the worker must apply to the cable to

(a) Raise the building materials at a uniform speed.

(b) Lower the building materials at a uniform speed.

(c) Hold the building materials in a fixed, suspended position.

Problem 9.39

In Prob. 9.38, if the cable were given an additional full wrap around the pulley at C
and if the worker can apply a force of 50 lb to the cable, determine the largest weight
that may be lifted at D.
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Problems 9.40 through 9.43

A brake for reducing the speed of a rotating drum is shown. The braking moment is
defined as the resultant moment the belt produces about the drum’s bearing, point A.
Determine the braking moment if the coefficient of kinetic friction is 0.35 and

Problem 9.40 The drum rotates clockwise and P D 90N.

Problem 9.41 The drum rotates counterclockwise and P D 90N.

Problem 9.42 The drum rotates clockwise and P D 20 lb.

Problem 9.43 The drum rotates counterclockwise and P D 20 lb.

Figure P9.40 and P9.41 Figure P9.42 and P9.43

Problem 9.44

Figure P9.44

A springAB with 2N=mm stiffness is attached to a cable atB . The cable wraps around
two cylindrical surfaces, and cable segments BC, DE, and GH are horizontal. All con-
tact surfaces have coefficients of static and kinetic friction of 0.1 and 0.09, respectively.
The spring is initially unstretched.

(a) Determine the value of P needed to stretch the spring by 4mm.

(b) Once the spring is stretched by 4mm, determine the value to which P must be
reduced so that the spring begins to contract.

Problem 9.45

Figure P9.45
Pulley A of the treadmill is driven by a motor that can supply a moment MA D
200 in:�lb. Pulley B is frictionless, and its bearing slides in a frictionless slot where
force P tensions the belt. Both pulleys A and B have 1:5 in: radius, and the coefficient
of static friction between pulley A and the belt is 0.3. Determine the smallest value of
P so there is no slip between pulley A and the belt.

Problem 9.46

Figure P9.46

The winch is driven by an electric motor at A. The motor weighs 50 lb with center
of gravity at the center of pulley A. The platform supporting the motor has negligible
weight and is hinged at D. The motor turns the pulley at B via a belt between A and
B . Pulley B has a spool upon which the rope BCG is wrapped. The coefficient of static
friction at A is 0.3 and at B is 0.2. Assuming the motor has sufficient power, determine
the largest weight W that may be lifted if there is no slip between the belt and pulleys
A and B . Hint: The use of mathematical software is helpful, but not required.
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Problem 9.47

Figure P9.47 and P9.48

Surfaces A, B , and C are cylindrical with the coefficients of static friction shown.
Object B can undergo vertical motion only. Determine the weight of object B that
causes it to have impending downward motion, and describe which of surfaces A, B ,
and/or C will have impending slip.

Problem 9.48

In Prob. 9.47, determine the weight of objectB that causes it to have impending upward
motion, and describe which of surfaces A, B , and/or C will have impending slip.

Problem 9.49

Figure P9.49

An accessory belt for an engine is shown. Pulley A is attached to the engine’s crank-
shaft and rotates clockwise. The belt tensioner consists of a frictionless pulley at B
that is mounted to a horizontal bar G that slides in a frictionless track with a horizontal
force P . Pulley C operates an alternator that requires 100N�m, and pulley D operates
a hydraulic pump that requires 300N�m. Pulley E is frictionless. The coefficients of
static friction for pulleys A, C , and D are 0.5 and the radii of the pulleys are shown.
Determine the minimum value of P so the belt does not slip. Hint: The use of mathe-
matical software is helpful, but not required.
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9.4 Chapter Review

Important definitions, concepts, and equations of this chapter are summarized.
For equations and/or concepts that are not clear, you should refer to the origi-
nal equation and page numbers cited for additional details.

Coulomb’s law of friction. Coulomb’s law of friction states

jF j � �sN before sliding (<) and for impending motion (D);

jF j D �kN after sliding begins;

Eqs. (9.1) and (9.2), p. 499

where:

N is the normal force between the two surfaces, defined to be
positive in compression, hence N � 0 always;

F is the friction force between the two surfaces, with direction
that opposes relative motion between the surfaces;

�s (Greek letter mu) is called the coefficient of static friction ;
�k is called the coefficient of kinetic friction .

We will usually write Coulomb’s law given in Eqs. (9.1) and (9.2) in the com-
pact form

jF j � �N;

Eq. (9.3), p. 499

where it is understood that the coefficient of static friction is used prior to
sliding and when motion is impending, and the coefficient of kinetic friction
is used once motion starts along with theD sign.

Draw FBDs so that the friction forces are in proper directions to resist
sliding motion. When this is the case, all friction forces have positive values
and the absolute value sign in Coulomb’s law can be omitted.

Angle of friction. The angle of friction is defined to be

� D tan�1 �;

Eq. (9.4), p. 501

where � is either the static or kinetic coefficient of friction and the value of �
is the angle of static or kinetic friction, respectively.

Coulomb’s law of friction in three dimensions. Coulomb’s law of friction
(isotropic) in three dimensions is

F D
q
.Fx/

2 C .Fy/
2 � �N;

Eq. (9.5), p. 502

where Fx and Fy are the friction forces in two mutually perpendicular direc-
tions along the surface and F is the resultant of these.
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Belts and cables contacting cylindrical surfaces. For slip or impending
slip between a flexible belt or cable in contact with a cylindrical surface, as
shown in Fig. 9.11, the forces on the high-tension and low-tension sides of the
belt are related by

Figure 9.11
A flexible belt or cable wrapped around a fixed
cylindrical surface.

T2 D T1 e
�ˇ T2 � T1

Eq. (9.11), p. 522

where

T1 is the force in the low-tension side of the belt during slip or
impending slip;

T2 is the force in the high-tension side of the belt during slip or
impending slip;

� is the coefficient of static or kinetic friction;
ˇ is the angle of wrap (ˇ � 0, measured in radians).

Although Fig. 9.11 shows the cylinder as being fixed and the belt sliding or
having impending slip in the direction of T2, Eq. (9.11) is also valid if the belt
is fixed on the high-tension side and the cylinder rotates; or both the belt and
cylinder may have motion, in which case the direction of slip or impending
slip of the belt relative to the cylinder is in the direction of T2.
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R E V I E W P R O B L E M S

Problem 9.50

Figure P9.50

A simple bracket for supporting a can of paint or other items used during construction
consists of a member ABC and two short bars that are rigidly connected to it. The
bracket is slipped onto a wooden post and is held in place by friction. Determine the
minimum coefficient of static friction so that the bracket does not slip regardless of the
weight supported (this is called self-locking).

Problem 9.51

Member CD is used to apply a horizontal force P to a uniform cylinder having radius
r and weight W . The contact surfaces at A and B have the same coefficient of static
friction �s . Neglecting the weight of member CD, determine the force P necessary to
cause impending motion of the cylinder. Express your answer in terms of parameters
such as W , r , �s .

Figure P9.51

Problem 9.52

Figure P9.52

For a 3m thick section of dam and water, determine the normal force and friction force
between the dam and foundation, specify the distance from point A to the location of
this force system, and determine the minimum value of the coefficient of friction so the
dam does not slide. The density of the dam is 2400 kg=m3, and the density of water is
1000 kg=m3.

Problems 9.53 and 9.54

Figure P9.53 and P9.54

A roll of paper C with 8N weight is supported by edges A and B . A horizontal force
P is applied to pull a sheet of paper from the roll. Determine the value of P that
causes motion, and determine if the motion is rolling or tipping. The coefficient of
static friction between the roll of paper and edges A and B is

Problem 9.53 0.1.

Problem 9.54 0.3.

Problem 9.55

Figure P9.55

A car weighing 4000 lb rests on a slope with coefficient of static friction of 0.4. The car
is disabled with its parking brake applied so that none of its wheels will turn or roll. A
tow truck applies a y direction force P to the car. Determine the value of P that causes
impending motion of the car, and determine the unit vector that describes the direction
in which the car will begin to slide.



532 Friction Chapter 9

Problem 9.56

Figure P9.56

To move a lathe weighing 1200 lb with center of gravity at point D, a machinist uses
a steel pry bar as shown. The legs of the lathe are iron and the floor is concrete. The
coefficient of static friction for steel on iron is 0.3, and steel or iron on concrete is 0.35.
If the force P applied to the pry bar at A is vertical, determine the value of P necessary
to cause impending motion and describe the motion.

Problem 9.57

Figure P9.57

The device shown allows for easy elevation adjustments of block A on the fixed ramp
E. When the user applies a sufficient upward vertical force to the cable at C , block A
is lowered. When the user applies a sufficient downward vertical force to the cable at
C , block A is raised. The coefficients of static and kinetic friction between block A
and the ramp, and between the cable and cylindrical surface at B , are 0.1. Block A has
40N weight, the cable has negligible weight, cable segment AB is parallel to the ramp,
segment BCD is vertical, and assume block A does not tip. Determine the weight WD
of the counterweight at D so that the value of the upward force the user must apply
to cause motion is the same as the value of the downward force the user must apply
to cause motion. Also, determine the value of the force the user must apply to cause
motion.

Problem 9.58

Figure P9.58

An electric motor at A is used to power an air compressor that requires a 200 in:�lb
moment at pulley B to operate. When the motor is turned off, the entire belt is at a
uniform tensile force T0. When the motor is turned on, pulley A rotates clockwise and
the tensile forces in the upper and lower portions of the belt change to T0 � �T and
T0C�T , respectively. The lower portion of the belt is horizontal, and the pulley radii
and coefficients of static friction are shown. Determine the initial belt tension T0 so
that neither pulley slips.

Problem 9.59

In Prob. 9.58, it was stated that when the motor is off, the tensile force in the belt is T0,
and when the motor is on, the tensile forces in the upper and lower portions of the belt
change to T0��T and T0C�T , respectively. Offer justification for why the increase
in force in the high-tension portion of the belt is equal to the decrease in force in the
low-tension portion of the belt. Hint: Idealize the upper and lower portions of the belt
as springs, and consider the deformations they undergo when the motor is on.
Note: Concept problems are about explanations, not computations.



10 Moments of Inertia

This chapter discusses area moments of in-
ertia and mass moments of inertia. Area mo-
ments of inertia are measures of how an area
is distributed about particular axes. Mass mo-
ments of inertia are measures of how mass
is distributed about particular axes. Moments
of inertia are used extensively in mechanics of
materials, dynamics, and subjects that follow.

10.1 Area Moments of Inertia

Area moments of inertia are measures of how an area is distributed about par-
ticular axes. Before delving into the precise definitions of these, we first dis-
cuss two examples to help you understand why such a measure is useful and
what this measure quantifies. The first example addresses exam scores, and
the second addresses behavior of beams.

An example—test scores

Figure 10.1
Frequency distributions for two exams. Both ex-
ams have the same average Nx D 70% and the
same number of students. The first exam has
more students farther from the average than for
the second exam, hence the variance and stan-
dard deviation, both of which are measures of a
distribution, are greater for the first exam.

Imagine you took two exams in a class, and on both exams the class average
was 70% and your score was 85%. While you obviously did very well on these
exams, at first glance it would appear that your performance and standing
relative to your peers were identical. A study of the frequency distribution of
scores for the two exams in Fig. 10.1 shows that in fact your performance
on the second exam was even better than on the first because on the second
exam there were fewer students who had scores higher than yours. Because the
same number of students took both exams, the area under each distribution is

533
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the same. Also, the class average is the centroid of each distribution, thus Nx D
70%. Common measures of distributions used in statistics are the variance
v and standard deviation s, and these are related by s D

p
v. Because the

distribution of the first exam has more students farther from the average than
for the second exam, the variance and standard deviation for the first exam are
greater than those for the second. Although we do not show this, the definition
of the variance is identical to the area moment of inertia discussed in this
section, and the standard deviation is similar to the radius of gyration.

An example—beam loading

Figure 10.2 shows two tip-loaded cantilever beams. Both beams are con-
structed by nailing or gluing three identical planks of wood together. Thus,
both beams have the same length and cross-sectional area. When the beams
are subjected to the same load P , the beam with the rectangular cross section
in Fig. 10.2(a) deflects more than the beam with the I-shaped cross section
(called an I beam) in Fig. 10.2(b). Although knowledge of mechanics of mate-
rials, along with moments of inertia from this section, is required to prove this,
if each plank of wood has, for example, 2 in: by 6 in: dimensions, the rectan-
gular cross section beam deflects almost 4 times as much as the I beam! The
essential reason the I beam is so much stiffer is that more of its cross-sectional
area is farther from the x axis than for the rectangular cross section. The area
moment of inertia quantifies the distribution of area. Although proof of this re-
quires mechanics of materials, the deflections of a beam are inversely related
to the moment of inertia of its cross section.

Figure 10.2
Two tip-loaded cantilever beams, each con-
structed by nailing or gluing three identical
planks of wood together. Despite having the
same length and cross-sectional area, beam
(a) with the rectangular cross section will de-
flect substantially more than beam (b) with the
I-shaped cross section.

Definition of area moments of inertia

Figure 10.3
An area A with centroid C . x̃ and ỹ are the x
and y positions, respectively, of the centroid of
area element dA. r̃ is the distance from pointO
to area element dA.

The area moments of inertia for the area shown in Fig. 10.3 are defined to be

Ix D

Z
ỹ2 dA;

Iy D

Z
x̃2 dA;

JO D

Z
r̃2 dA D Ix C Iy ;

Ixy D

Z
x̃ỹ dA;

(10.1)

(10.2)

(10.3)

(10.4)

where

Concept Alert

Area Moments of inertia. Area moments
of inertia are measures of how an area is
distributed about particular axes. Area mo-
ments of inertia depend on the geometry
of an area (size and shape) and the axes
you select. Area moments of inertia are in-
dependent of forces, materials, and so on.

x̃, ỹ, and r̃ are defined in Fig. 10.3. Note that the definitions of
these are identical to those used in Chapter 7. For example,
x̃ is the distance (i.e., moment arm) from the y axis to the
centroid of area element dA.

Ix is the area moment of inertia about the x axis.

Iy is the area moment of inertia about the y axis.

JO is the polar moment of inertia of the area about point O .

Ixy is the product of inertia of the area about point O .
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Remarks

� When referring to area moments of inertia, we often omit the word area
when it is obvious from the context that we are dealing with area mo-
ments of inertia as opposed to mass moments of inertia, which are dis-
cussed later in this chapter.

� All of the moments of inertia in Eqs. (10.1)–(10.4) measure the second
moment of the area distribution. That is, to determine Ix , Iy , and JO
in Eqs. (10.1)–(10.3), the moment arms ỹ, x̃, and r̃ , respectively, are
squared. For Ixy in Eq. (10.4), the product of two different moment
arms is used. Area moments of inertia are sometimes called second mo-
ments of an area.

� In Eqs. (10.1)–(10.4), x̃, ỹ, and r̃ have dimensions of length, and dA
has dimensions of area. Hence, all of the area moments of inertia have
dimensions of .length/4, such as in:4 or mm4.

� Two expressions for the polar moment of inertia JO are given in
Eq. (10.3). The first is the fundamental definition, while the second is
a simplification that is obtained as follows. From Fig. 10.3, it is seen
that r̃2 D x̃2 C ỹ2. Substituting this expression into the definition of
JO in Eq. (10.3) and combining with Eqs. (10.1) and (10.2) show that
JO D Ix C Iy . Thus, if Ix and Iy are known for a particular shape, JO
may be easily determined as the sum of these rather than by evaluating
the integral expression in Eq. (10.3).

� When the x and y axes pass through the centroid of a shape (point
C in Fig. 10.3), we sometimes define the axes as x0 and y0 and we
refer to the moments of inertia as centroidal moments of inertia with the
designations Ix0 , Iy0 , etc. In mechanics of materials, moments of inertia
about centroidal axes are especially important.

� For any area with finite size, Ix , Iy , and JO are always positive. The
product of inertia Ixy may be positive, zero, or negative, as discussed
below.

� Evaluation of moments of inertia using composite shapes is possible,
but this approach requires the parallel axis theorem, which is discussed
in Section 10.2.

What are area moments of inertia used for?

It is useful to discuss why there are four area moments of inertia, what is
different about them, and what they are used for.

Figure 10.4
A cantilever beam with rectangular cross sec-
tion before and after a tip load P is applied in
the �y direction.

Moment of inertia Ix . In Fig. 10.4, a cantilever beam is shown before and
after a tip load P is applied, where P acts in the �y direction. Due to P , the
tip of the beam deflects in the �y direction by the distance ı, and the cross
section at the tip of the beam also rotates about the x axis. In fact, every cross
section of the beam also deflects in the �y direction and rotates about the x
axis, although with lower values as cross sections become closer to the built-
in support where there is no deflection or rotation. Because each cross section
rotates about the x axis, the dispersion of the cross section’s area about the x
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axis is important, and while you must accept this statement on faith until you
study mechanics of materials, the moment of inertia about the x axis, Ix , plays
an important role in how large the beam’s deflections are.

Moment of inertia Iy . If Fig. 10.4 is revised so that the tip load P acts in the
x direction, then deflections of the beam are in the x direction, cross sections
rotate about the y axis, and the moment of inertia about the y axis, Iy , plays
an important role.

Figure 10.5
A cantilever beam (or shaft) with circular cross
section before and after a tip moment M´ is ap-
plied about the ´ axis.

Polar moment of inertia JO . In Fig. 10.5, a cantilever beam is shown be-
fore and after a tip momentM´ acting about the ´ axis is applied (for this load-
ing, it is customary to call the structure a shaft rather than a beam). Before the
moment is applied, a line AB is drawn on the shaft. After M´ is applied, the
tip of the shaft rotates about the ´ axis by angle � (called the angle of twist)
and point A moves to A0. In fact, every cross section of the shaft also rotates
about the ´ axis, although with lower values as cross sections become closer
to the built-in support where there is no rotation. The polar moment of inertia
JO plays an important role in determining the angle of twist �.

Figure 10.6
Examples of symmetric and nonsymmetric
shapes. Symmetric shapes have at least one axis
of symmetry (shown by dashed lines). The cir-
cular shape has an infinite number of axes of
symmetry, all of which pass through the center
of the circle. The product of inertia is zero for
symmetric shapes when one of the coordinate
axes is coincident with an axis of symmetry.

Product of inertia Ixy . The product of inertia measures the asymmetry of
an area with respect to the x and y axes. It can have positive, zero, or negative
value, depending on the shape of an area, the selection of the x and y direc-
tions, and the location of the origin of the xy coordinate system. A symmetric
shape has at least one axis of symmetry, a nonsymmetric shape has no axis of
symmetry, and some examples are shown in Fig. 10.6. In engineering design,
the vast majority of beams have symmetric cross section and are analyzed by
taking the x and/or y direction to be an axis of symmetry for the cross section;
under these circumstances Ixy D 0.

For a nonsymmetric cross section, Ixy is generally nonzero. Beams with
nonsymmetric cross section display complicated behavior. For example, if the
beam in Fig. 10.4 has the Z shape cross section shown in Fig. 10.6, then in
addition to deflecting in the �y direction due to load P , the tip deflects in the
�x direction! Such behavior is generally not desirable, hence beams are most
often designed with a symmetric cross-sectional shape. The theory of beams
with nonsymmetric cross sections is an advanced subject, and until you study
this topic, you will not need to use the product of inertia. Hence, methods for
evaluating Ixy are not discussed in this book.�

Radius of gyration

Rather than use area moments of inertia to quantify how an area is distributed,
it is sometimes convenient to use the radii of gyration, which are directly re-
lated to the area moments of inertia and are defined as

kx D

r
Ix

A
; ky D

r
Iy

A
; kO D

r
JO

A
; (10.5)

where

�A discussion of the product of inertia and behavior of beams with nonsymmetric cross section is
given in R. D. Cook and W. C. Young, Advanced Mechanics of Materials, 2nd ed., Prentice-Hall,
Englewood Cliffs, N.J., 1998.
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kx is the radius of gyration of the area about the x axis.

ky is the radius of gyration of the area about the y axis.

kO is the polar radius of gyration of the area about point O .

A is the area of the shape.

The radii of gyration have units of length and have a straightforward physical
interpretation, as discussed in Example 10.1.

Evaluation of moments of inertia using integration

Most of what was said in Chapter 7 with respect to evaluating the first mo-
ment of an area distribution [e.g., expressions

R
x̃ dA and

R
ỹ dA in Eq. (7.9)

on p. 397] also applies here, with one additional restriction. In this section, we
will always choose the area element dA so that all of the area within that ele-
ment has the same moment arm x̃, ỹ, or r̃ . Figure 10.7 shows some acceptable
choices of area elements for use in evaluating moments of inertia Ix and Iy ,
with the following comments:

Figure 10.7
Acceptable choices for selection of area ele-
ments dA for evaluation of area moments of in-
ertia Ix and Iy .

Helpful Information

Choice of area element dA. In this sec-
tion, to evaluate area moments of inertia
Ix and Iy using a single integration, it is
necessary to use an area element that
is parallel to the axis about which the
moment of inertia is being evaluated. Thus,
Ix requires an area element parallel to the
x axis, and Iy requires an area element
parallel to the y axis. These restrictions
can be relaxed after the parallel axis
theorem is introduced in Section 10.2. To
determine JO using a single integration,
an area element having a constant value
of radial position from point O is needed,
and this requires the use of a thin circular
area element as illustrated in Fig. 3 of
Example 10.2.

� The double integral approach shown in Fig. 10.7(a) has straightforward
expressions for dA, x̃, and ỹ. If you are comfortable with determining
limits of integration and evaluating double integrals, then this approach
is often very effective.

� To determine Ix using a single integration, an area element parallel to
the x axis should be selected as shown in Fig. 10.7(b) so that all of the
area within that element has the same moment arm ỹ D y. The width
w of the area element is generally a function of position y.

� To determine Iy using a single integration, an area element parallel to
the y axis should be selected as shown in Fig. 10.7(c) so that all of the
area within that element has the same moment arm x̃ D x. The height
h of the area element is generally a function of position x.

� In this section, we cannot use an area element parallel to the y axis to
determine Ix because Ix D

’
y2 dx dy ¤

R
ỹ2hdx where ỹ is the cen-

troid of vertical area element hdx. In words, the moment arm squared
(y2) for area element dx dy when integrated over y is not equal to the
average moment arm squared (ỹ2) for area element hdx. Similarly, we
cannot use an area element parallel to the x axis to determine Iy . In
Section 10.2, the parallel axis theorem is introduced, and this restriction
can be removed.

� To determine JO using a single integration, an area element having a
uniform value of radial position from point O is needed, and this re-
quires the use of a thin circular area element as illustrated in Fig. 3 of
Example 10.2. For this reason, only circular geometries may be consid-
ered if Eq. (10.3) is to be evaluated using a single integration.
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End of Sect ion Summary

In this section, area moments of inertia Ix , Iy , JO , and Ixy were defined to
be the second moments of an area distribution. Some of the key points are as
follows:

� Area moments of inertia are measures of how an area is distributed
about particular axes. Moments of inertia have dimensions of .length/4.

� The product of inertia Ixy is a measure of the asymmetry of an area
with respect to the x and y axes. The need for Ixy typically arises in
advanced subjects, so methods for evaluating this quantity are not dis-
cussed in this book.

� Radii of gyration are alternative measures of how an area is distributed.
The radii of gyration are easily determined if the area moments of inertia
are known, and vice versa.

� The definitions of the area moments of inertia involve integration over
the area of a shape. The use of single integration to evaluate these ex-
pressions requires an area element having uniform x̃, ỹ, or r̃ for every
point within the area element. Thus, evaluation of Ix and Iy requires
area elements parallel to the x and y axes, respectively, and evaluation
of JO requires a circular area element. In Section 10.2, the parallel axis
theorem is introduced and this restriction can be removed.
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E X A M P L E 10.1 Area Moments of Inertia Using Integration

A rectangular area with base b, height h, and centroid at point C is shown. Determine
the area moments of inertia Ix and Ix0 and the radii of gyration kx and kx0 .

Figure 1

S O L U T I O N

Road Map We will use Eq. (10.1) on p. 534 to determine the moments of inertia Ix
and Ix0 . For Ix integration will be carried out with respect to y. For Ix0 integration
will be carried out with respect to y0.

Ix

Governing Equations & Computation To determine Ix using a single integration,
expressions for dA and ỹ are needed, and these must be developed using an area ele-
ment parallel to the x axis, as shown in Fig. 2:

Figure 2
To determine Ix , an area element parallel to the
x axis is used to develop expressions for dA and
ỹ.

dA D b dy and ỹ D y: (1)

Substituting Eq. (1) into Eq. (10.1), the moment of inertia about the x axis is

Ix D

Z
ỹ2 dA D

hZ
0

y2b dy D
by3

3

ˇ̌̌h
0
D

bh3

3
: (2)

Ix0

Governing Equations & Computation The expression to determine Ix0 is the same
as Eq. (1) with y replaced by y0 and limits of integration from �h=2 to h=2. Thus,

Ix0 D

Z
ỹ2 dA D

h=2Z
�h=2

.y0/2b dy0 D
b.y0/3

3

ˇ̌̌h=2
�h=2

D
bh3

12
: (3)

Radii of gyration

Helpful Information

Rectangular shape. Beams often have
rectangular cross-sectional shape, or
shape consisting of rectangular com-
posite shapes. Thus, the results of this
example are frequently used, and most en-
gineers commit to memory the expression
Ix0 D bh

3=12.

Figure 3
If the entire cross-sectional area A D bh is re-
distributed into a thin strip parallel to the x axis,
the radius of gyration kx is the distance it must
be positioned from the x axis to have the same
moment of inertia as the original shape.

Governing Equations & Computation With the moments of inertia determined
above, and noting that the cross-sectional area is A D bh, the radii of gyration are
obtained from Eq. (10.5) on p. 536 as

kx D

r
Ix
A
D

s
bh3=3

bh
D

h
p
3
D .0:5774/h; (4)

kx0 D

r
Ix0

A
D

s
bh3=12

bh
D

h
p
12
D .0:2887/h: (5)

Discussion & Verification

� Comparing Eqs. (2) and (3), we see that Ix > Ix0 . In general, the moment of
inertia Ix about any x axis parallel to (but not coincident with) the centroidal x0

axis is larger than Ix0 . Similar remarks apply to the other moments of inertia.

� The physical interpretation of the radius of gyration is shown in Fig. 3 for the
case of Ix . If the area A D bh is redistributed into a thin strip, the strip must be
positioned at kx D .0:5774/h from the x axis if it is to have the same moment
of inertia about the x axis as the original shape shown in Fig. 1.

� To determine the moments of inertia Iy and Iy0 , this solution procedure is re-
peated using an area element parallel to the y axis (see Prob. 10.1).
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E X A M P L E 10.2 Area Moments of Inertia Using Integration

A circular area with outside radius ro is shown. Determine the area moment of inertia
Iy and the polar moment of inertia JO about point O .

Figure 1

S O L U T I O N

Road Map We will use Eq. (10.2) on p. 534 to determine Iy and Eq. (10.3) to deter-
mine JO .

Iy

Governing Equations & Computation To determine Iy using a single integration,
expressions for dA and x̃ are needed, and these must be developed using an area ele-
ment parallel to the y axis, as shown in Fig. 2:

Figure 2
To determine Iy , an area element parallel to the
y axis is used to develop expressions for dA and
x̃.

dA D h dx and x̃ D x: (1)

The height h of the area element is related to x and radius ro by the Pythagorean
theorem r2o D x

2 C .h=2/2, hence

h D 2

q
r2o � x

2: (2)

Substituting Eqs. (1) and (2) into Eq. (10.2), and using a table of integrals or computer
software to carry out the integration, the moment of inertia about the y axis is

Iy D

Z
x̃2 dA D

Z ro

�ro

x2 2

q
r2o � x

2 dx

D

"
�x

2

�
r2o � x

2
�3=2
C
r2ox

4

q
r2o � x

2 C
r4o
4

sin�1
�
x

ro

�# ˇ̌̌
ˇro
�ro

D
�r4o
4
: (3)

JO

Governing Equations & Computation To determine JO using a single integration,
an area element having a uniform value of r̃ is needed, and this necessitates the use
of a thin circular area element as shown in Fig. 3. With r being a radial coordinate,
expressions for dA and r̃ are obtained from Fig. 3 as

Figure 3
To determine JO , a circular area element is
used to develop expressions for dA and r̃ .

dA D 2�r dr and r̃ D r: (4)

Substituting Eq. (4) into Eq. (10.3), the polar moment of inertia about point O is

JO D

Z
r̃2 dA D

roZ
0

r2 2�r dr D
�r4o
2
: (5)

Discussion & Verification

� Because of symmetry of the circular shape in Fig. 1, it is obvious that Ix D Iy .

� Noting from Eq. (10.3) that JO D Ix C Iy , and that Ix D Iy as discussed
above, we could have obtained Eq. (5) by inspection from the result in Eq. (3),
or vice versa.
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E X A M P L E 10.3 Area Moments of Inertia Using Integration

The cross section of a turbine blade in a pump is shown. Determine the area moments
of inertia Ix and Iy .

Figure 1

Helpful Information

Notation. Throughout this problem, sub-
scripts are used to distinguish top and
bottom curves, and left and right curves,
as follows:

� Subscript t denotes “top.”

� Subscript b denotes “bottom.”

� Subscript r denotes “right.”

� Subscript l denotes “left.”

S O L U T I O N

Road Map This geometry was considered in Example 7.3 on p. 404 where the lo-
cation of the centroid was determined. In this example, the location of the centroid is
not needed, although knowledge of its approximate location may help with verifica-
tion of the area moments of inertia, as discussed below. The expressions developed in
Example 7.3 for quantities such as dA, x̃, and ỹ will be used again here.

Iy

Governing Equations & Computation To determine Iy using a single integration,
expressions for dA and x̃ are needed, and these must be developed using an area ele-
ment parallel to the y axis, as shown in Fig. 2:

Figure 2
To determine Iy , an area element parallel to the
y axis is used to develop expressions for dA and
x̃.

dA D .yt � yb/ dx D .3
p
x � 3

5x/ dx and x̃ D x: (1)

Substituting Eq. (1) into Eq. (10.2) on p. 534, the moment of inertia about the y axis is

Iy D

Z
x̃2 dA D

Z 25mm

0
x2.3
p
x � 3

5x/ dx

D

 
6x7=2

7
�
3x4

20

! ˇ̌̌25mm

0
D 8370mm4: (2)

Ix

Governing Equations & Computation To determine Ix using a single integration,
expressions for dA and ỹ are needed, and these must be developed using an area ele-
ment parallel to the x axis, as shown in Fig. 3:

Figure 3
To determine Ix , an area element parallel to the
x axis is used to develop expressions for dA and
ỹ.

dA D .xr � xl / dy D

 
5
3y �

y2

9

!
dy and ỹ D y: (3)

Substituting Eq. (3) into Eq. (10.1) on p. 534, the moment of inertia about the x axis is

Ix D

Z
ỹ2 dA D

Z 15mm

0
y2

 
5
3y �

y2

9

!
dy

D

 
5y4

12
�
y5

45

! ˇ̌̌15mm

0
D 4220mm4: (4)

Discussion & Verification

� By inspection of Fig. 1 (or by consulting the results of Example 7.3 on p. 404),
the centroid of the area is farther from the y axis than from the x axis, so we
expect Iy > Ix , and Eqs. (2) and (4) show this. Despite this observation, Iy ¤

Nx2A and Ix ¤ Ny
2A; Prob. 10.2 discusses this further.

� Knowing the moments of inertia about the centroidal x0 and y0 axes is also
desirable. This may be accomplished by rewriting Eqs. (1)–(4) with integrations
carried out with respect to x0 and y0, and with expressions for yt , yb , xr , and
xl written in terms of x0 and y0. Rather than do this, the parallel axis theorem
discussed in the next section will be more convenient for evaluating Ix0 and Iy0 .
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P R O B L E M S

Problem 10.1

For the rectangular area with base b, height h, and centroid at point C shown in Fig. 1
of Example 10.1 on p. 539, determine the area moments of inertia Iy and Iy0 and the
radii of gyration ky and ky0 .

Problem 10.2

In Example 7.3 on p. 404 the centroid Nx, Ny, and cross-sectional area A of a turbine
blade were determined, and in Example 10.3 on p. 541 the area moments of inertia Ix
and Iy were determined. Show that Ix ¤ Ny

2A and Iy ¤ Nx
2A, and discuss why area

moments of inertia may not be determined in this way.
Note: Concept problems are about explanations, not computations.

Problem 10.3

Figure P10.3

For the rectangular shape shown, determine the moments of inertia Ix and Iy .

Problems 10.4 and 10.5

Figure P10.4 and P10.5

The cross section of a hollow tube has rectangular shape with uniform wall thickness.

Problem 10.4 Determine the moments of inertia Ix and Iy .

Problem 10.5 Determine the centroidal moments of inertia Ix0 and Iy0 .

Problems 10.6 and 10.7

Determine Ix and Iy .

Figure P10.6 Figure P10.7

Problems 10.8 and 10.9

Determine Ix and Iy . Express your answers in terms of b and h.

Figure P10.8 Figure P10.9
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Problem 10.10

Figure P10.10

A circular area has outside radius ro and a concentric hole with inside radius ri . Show
that the polar moment of inertia about point O is JO D �.r

4
o � r

4
i /=2.

Problems 10.11 and 10.12

The area shown has outside radius ro. Determine Iy and JO . Comment on how your
answers compare with the results of Example 10.2 on p. 540.

Figure P10.11 Figure P10.12

Problems 10.13 and 10.14

Figure P10.13 and P10.14

A semicircular area has outside radius ro.

Problem 10.13 Determine Ix . Hint: The use of mathematical software is helpful,
but is not required.

Problem 10.14 Determine JA.

Problem 10.15

Consider two shafts having cross sections with the same area. The cross section for
the first shaft is solid, and the cross section for the second shaft has a concentric hole
whose inside radius is one-half its outside radius. Determine the ratio of the centroidal
polar moments of inertia for the two shafts Jhollow=Jsolid. Hint: Use the polar moment
of inertia given in the statement of Prob. 10.10.

Problem 10.16

Figure P10.16

The strength of long bones, as well as slender structural members in general, is directly
related to the area moments of inertia, such that if the moments of inertia increase, then
strength increases. From the point of view of the ratio of strength to weight, discuss
why most long bones in humans and animals, such as the human femur shown, are
hollow.
Note: Concept problems are about explanations, not computations.
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Problems 10.17 through 10.22

(a) Determine Ix .

(b) Determine Iy .

Figure P10.17 Figure P10.18

Figure P10.19 Figure P10.20

Figure P10.21 Figure P10.22

Problem 10.23

Figure P10.23

For the triangle shown, having base b and height h, show that the area moment of
inertia about the x axis is Ix D bh

3=12.

Problems 10.24 and 10.25

Figure P10.24 and P10.25

Determine constants c1 and c2 so that the curves intersect at x D a and y D b. Express
your answers in terms of a and b. Then determine the area moment of inertia indicated.

Problem 10.24 Determine Ix .

Problem 10.25 Determine Iy .
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10.2 Parallel Axis Theorem

The parallel axis theorem relates area moments of inertia Ix , Iy , JO , and Ixy
to the centroidal area moments of inertia Ix0 , Iy0 , JO0 , and Ix0y0 , where the x
and x0 axes are parallel and the y and y0 axes are parallel. The parallel axis
theorem is important and is used on a daily basis by most engineers.

Figure 10.8
An area A with centroid at point C . The x and
x0 axes are parallel with separation distance dx ,
and the y and y0 axes are parallel with separa-
tion distance dy .

Consider the area A with centroid C shown in Fig. 10.8. A centroidal
x0y0 coordinate system is defined, with origin O 0 positioned at the centroid of
the area. The x and y axes are parallel to the x0 and y0 axes, respectively, with
separation distances dx and dy . The parallel axis theorem relates the moments
of inertia with respect to the x and y axes to the centroidal moments of inertia
as follows:

Ix D Ix0 C d
2
xA;

Iy D Iy0 C d
2
yA;

JO D JO0 C d
2A;

Ixy D Ix0y0 C dxdyA:

(10.6)

(10.7)

(10.8)

(10.9)

To see how the above expressions are obtained, consider the example of
determining Ix for the area shown in Fig. 10.8. Beginning with the basic def-
inition of Ix given by Eq. (10.1) on p. 534, we use the area element shown in
Fig. 10.9 to write

Figure 10.9
Selection of an area element for determining the
moment of inertia about the x axis, Ix .

Ix D

Z
ỹ2 dA (10.10)

D

Z
.ỹ0 C dx/

2 dA (10.11)

D

Z
.ỹ0/2 dA„ ƒ‚ …
DIx0

C 2dx

Z
ỹ0 dA„ ƒ‚ …
D0

C d2x

Z
dA„ƒ‚…
DA

(10.12)

D Ix0 C d
2
x A: (10.13)

Equation (10.11) is obtained from Eq. (10.10) by noting in Fig. 10.9 that ỹ D
ỹ0Cdx . Equation (10.12) is obtained by expanding .ỹ0Cdx/

2, writing separate
integrals for each term, and bringing the constant dx outside the integrals. The
first integral in Eq. (10.12) is the same as Eq. (10.1) written in terms of a
centroidal coordinate, hence it yields the centroidal moment of inertia Ix0 . The
second integral is zero because y0 is measured from the centroid of the shape,
and the third integral is the areaA of the shape. The proof for the other parallel
axis theorems is similar to Eqs. (10.10)–(10.13).

Remarks

� It is clear from Eqs. (10.6)–(10.8) that Ix � Ix0 , Iy � Iy0 , and JO �
JO0 .

� When one is transforming the product of inertia, the signs of dx and
dy are important. Transformation of the product of inertia arises in ad-
vanced subjects and is not explored further in this book.

� The parallel axis theorem may also be used to obtain radii of gyration,
and Prob. 10.31 explores this further.
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Use of parallel axis theorem in integration

The parallel axis theorem may be used to remove the restriction on the orien-
tation and shape of the area element that was needed in Section 10.1. That is,
with the parallel axis theorem, the moments of inertia Ix and Iy may be deter-
mined using a single integration with area elements that are perpendicular to
the x and y axes, respectively. Example 10.4 illustrates this approach.

Use of parallel axis theorem for composite shapes
Figure 10.10
Use of composite shapes with the parallel axis
theorem to determine area moments of iner-
tia. (a) An area consisting of a semicircle and
two rectangles. (b) A possible set of composite
shapes. (c) Another possible set of composite
shapes where shape 3 has negative area.

Common Pitfall

Parallel axis theorem. Consider the paral-
lel axes x1, x2, and centroidal axis x0, such
as

where the centroid is at point C . If Ix1 is
known, a common error is to use the par-
allel axis theorem to directly determine Ix2 .
In the parallel axis theorem, one of the axes
is always a centroidal axis. Thus, with Ix1
known, the parallel axis theorem must be
used twice, the first time to determine Ix0 ,
and the second time to use Ix0 to deter-
mine Ix2 . See Prob. 10.40.

The most common use of the parallel axis theorem is for determining the mo-
ments of inertia using composite shapes. For example, consider the area shown
in Fig. 10.10 where Ix is desired. The parallel axis theorem, written for com-
posite shapes, becomes

Ix D

nX
iD1

�
Ix0 C d

2
x A

�
i

(10.14)

where n is the number of shapes, Ix0 is the moment of inertia for shape i about
its centroidal x0 axis, dx is the shift distance for shape i (i.e., the distance be-
tween the x axis and the x0 axis for shape i ), and A is the area for shape i .
Similar expressions may be written for Iy and JO . To use Eq. (10.14), it is
necessary to know the centroidal moment of inertia for each of the composite
shapes, and this generally must be obtained by integration, as was done in Sec-
tion 10.1. Fortunately, the centroidal moments of inertia for many basic shapes
have been tabulated, such as in the Table of Properties of Lines and Areas on
the inside back cover. Examples 10.5 and 10.6 illustrate this approach.

End of Sect ion Summary

In this section, the parallel axis theorem for area moments of inertia was pre-
sented. Some of the key points are as follows:

� The parallel axis theorem relates area moments of inertia Ix , Iy , JO ,
and Ixy to the centroidal moments of inertia Ix0 , Iy0 , JO0 , and Ix0y0 ,
where the x and x0 axes are parallel and the y and y0 axes are parallel.
A common error is to use the parallel axis theorem to relate moments of
inertia between two parallel axes where neither of them is a centroidal
axis.

� The parallel axis theorem has applications for determining area mo-
ments of inertia by integration, where it permits use of an area element
that is perpendicular to the axis about which the moment of inertia is
being determined.

� The most common application of the parallel axis theorem is for de-
termining area moments of inertia using composite shapes. For use of
composite shapes, the moment of inertia of each composite shape about
its centroidal axis must be known. This may always be determined by
using integration, but information for many basic shapes has been tabu-
lated, such as in the Table of Properties of Lines and Areas on the inside
back cover.
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E X A M P L E 10.4 Area Moments of Inertia Using Integration With the Parallel
Axis Theorem

Use integration with an area element perpendicular to the x axis to determine the area
moment of inertia about the x axis Ix .

Figure 1

S O L U T I O N

Road Map An area element perpendicular to the x axis, in conjunction with the par-
allel axis theorem, may be used to determine Ix . The strategy is to write an expression
for the moment of inertia of the area element about its centroidal axis, and to use the
parallel axis theorem to obtain the moment of inertia of this area element about the
x axis, followed by integration over all area elements to obtain the total moment of
inertia.

Governing Equations & Computation An area element perpendicular to the x axis
is shown in Fig. 2. In this approach, we evaluate the moment of inertia using

Figure 2
To determine Ix , an area element perpendicular
to the x axis may be used in conjunction with
the parallel axis theorem. Expressions for dA, ỹ
and h are needed.

Ix D

Z
dIx (1)

where dIx is the moment of inertia about the x axis for the area element shown in
Fig. 2. The area element is rectangular, and the parallel axis theorem, Eq. (10.6) on
p. 545, is used to write its moment of inertia about the x axis as

dIx D
1
12h

3 dx C ỹ2h dx: (2)

The first term in Eq. (2) is the moment of inertia of a rectangle about its centroid,
namely, .1=12/.base/.height/3 where the base of the area element in Fig. 2 is dx
and the height is h. The second term in Eq. (2) is the parallel axis shift, namely,
.shift distance/2.area/ where the shift distance is ỹ and the area is h dx. Letting yt
and yb be the expressions for the top and bottom curves, respectively, that define the
area in Fig. 2, we write

dA D .yt � yb/ dx D
�
3 �

x

2

�
dx; (3)

ỹ D 1
2 .yt C yb/ D

1
2

�
3C

x

2

�
; (4)

h D yt � yb D 3 �
x

2
; (5)

Substituting Eqs. (2)–(5) into Eq. (1) provides

Ix D

Z 6 in:

0

1
12

�
3 �

x

2

�3
dx C

Z 6 in:

0

h
1
2

�
3C

x

2

�i2 �
3 �

x

2

�
dx

D
81

2
in:4 D 40:5 in:4 (6)

Discussion & Verification To help judge if our answer is reasonable, we may com-
pare our result to that for a rectangular area with x and y dimensions of 6 in: by 3 in:
From the results of Example 10.1 on p. 539, or by consulting the Table of Properties of
Lines and Areas on the inside back cover, the moment of inertia of a rectangular area
about the axis through its base is Ix D .1=3/.base/.height/3 D .1=3/.6 in:/.3 in:/3 D
54:0 in:4, which as expected is somewhat larger than the result in Eq. (6). Hence, our
answer appears to be reasonable.
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E X A M P L E 10.5 Area Moments of Inertia Using Composite Shapes

The cross section of an I beam with cover plates welded to its flanges is shown. The
cross-sectional area is symmetric about the x and y axes. Determine the moment of
inertia about the x axis of the beam’s cross-sectional area with and without the cover
plates.

Figure 1

Interesting Fact

Strengthening beams. Usually, only
portions of a beam support large internal
forces. For example, a simply supported
beam with uniformly distributed load has
maximum moment at midspan and zero
moment at the supports (see Example 8.5
on p. 470). If the beam has a uniform cross
section, then the cross section must be
selected based on the maximum moment
(and possibly the shear). Selective rein-
forcement using cover plates is a simple
way to strengthen a beam.

S O L U T I O N

Road Map The cross-sectional area consists of rectangular shapes, so the use of com-
posite shapes for determining Ix will be convenient. We will first determine Ix for the
I beam without cover plates and will then determine Ix with cover plates.

I beam without cover plates

Governing Equations & Computation Two combinations of composite shapes are
shown in Fig. 2. Using Eq. (10.14) on p. 546 with the three shapes shown in Fig. 2(b),

Figure 2
(a) Cross-sectional area of an I beam without
cover plates. (b) and (c) Two combinations of
composite shapes to describe the area.

the moment of inertia about the x axis is

Ix D

3X
iD1

�
Ix0 C d

2
xA
�
i

(1)

D 1
12 .10mm/.150mm/3

C
h
1
12 .180mm/.12mm/3 C .81mm/2.180mm/.12mm/

i
2 (2)

D 3:12�107 mm4: (3)

In Eq. (2), the centroidal axis of shape 1 coincides with the x axis, so the parallel axis
shift for this shape is zero. Also, the contributions to Ix for shapes 2 and 3 are identical,
and thus the terms within square brackets are simply doubled.

Alternate solution We may also determine Ix using the three composite shapes shown
in Fig. 2(c), where the areas of shapes 2 and 3 are negative. Equation (10.14) provides

Ix D
1
12 .180mm/.174mm/3�

h
1
12 .85mm/.150mm/3

i
2 D 3:12�107 mm4; (4)

which is identical to Eq. (3). Note that the centroidal axis of each composite shape
coincides with the x axis, thus the parallel axis shift in Eq. (4) is zero for each shape.

I beam with cover plates

Figure 3
(a) Cross-sectional area of an I beam with cover
plates. (b) A combination of composite shapes.

Governing Equations & Computation Using Eq. (10.14) with the three shapes
shown in Fig. 3(b), the moment of inertia about the x axis is

Ix D

3X
iD1

�
Ix0 C d

2
xA
�
i

(5)

D 3:121�107 mm4

C
h
1
12 .240mm/.16mm/3 C .95mm/2.240mm/.16mm/

i
2 (6)

D 1:01�108 mm4: (7)

Discussion & Verification The addition of the cover plates increases the beam’s
cross sectional area by about 130%, yet Ix increases dramatically by about 220%.
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E X A M P L E 10.6 Area Moments of Inertia Using Composite Shapes

The cross section of a bar is symmetric about the x axis. Determine d so that the
origin of the coordinate system, point O , is positioned at the centroid of the area, and
determine the area moment of inertia about the y axis.

Figure 1

S O L U T I O N

Road Map The cross-sectional area consists of rectangular and semicircular shapes,
so use of composite shapes for determining the position of the centroid and Iy will be
convenient. Concepts from Section 7.1 will be used to locate the centroid, and then the
parallel axis theorem will be used to determine the centroidal moment of inertia Iy .

Centroid

Governing Equations & Computation A set of composite shapes is shown in Fig. 2,
where for purposes of locating the centroid, a convenient tn coordinate system is de-
fined. The area and centroidal position of each composite shape are collected in Table 1.

Figure 2
A combination of composite shapes and a tn
coordinate system for use in determining the lo-
cation of the centroid.

Table 1. Areas and centroidal positions for composite shapes in Fig. 2.

Shape no. Ai t̃i

1 .1:6 in:/.2:4 in:/ D 3:840 in:2 1:2 in:
2 �

2 .1:2 in:/2 D 2:262 in:2 2:4 in:C 4
3� .1:2 in:/ D 2:909 in:

Evaluating Eq. (7.8) on p. 397 for the location of the centroid Nt provides

Nt D

2P
iD1

t̃i Ai

2P
iD1

Ai

D
.1:2 in:/

�
3:840 in:2

�
C .2:909 in:/

�
2:262 in:2

�
3:840 in:2 C 2:262 in:2

D 1:834 in: (1)

Thus, the origin of the coordinate system in Fig. 1 should be located at d D 1:834 in:

Moment of inertia

Governing Equations & Computation To determine Iy , the same composite shapes
are used, and the distance from the centroid of each composite shape to the y axis is
shown in Fig. 3. From the Table of Properties of Lines and Areas on the inside back Figure 3

A combination of composite shapes to deter-
mine Iy , and distances from the centroid of
each composite shape to the y axis.

Helpful Information

Alternate strategy. Rather than evaluate
Iy directly as in Eq. (4), we could evaluate

In first (you should find In D 26:75 in:4)
and then use the parallel axis theorem to
determine Iy D In � d

2A D 26:75 in:4 �

.1:834 in/2.6:102 in:2/ D 6:23 in:4.

cover, the centroidal moments of inertia for each shape are

Iy0
1
D 1

12 .1:6 in:/.2:4 in:/3 D 1:843 in:4 (2)

Iy0
2
D

�
�

8
�

8

9�

�
.1:2 in:/4 D 0:2276 in:4 (3)

Using Eq. (10.14) on p. 546 with Eqs. (2) and (3), the moment of inertia about the
centroidal y axis is

Iy D

2X
iD1

�
Iy0 C d

2
yA

�
i
D 1:843 in:4 C .0:6336 in:/2

�
3:840 in:2

�
C 0:2276 in:4 C .1:076 in:/2

�
2:262 in:2

�
D 6:23 in:4 (4)

Discussion & Verification As a rough check if our answer is reasonable, the cen-
troidal moment of inertia of a rectangle with dimensions that approximate Fig. 1 is
.1=12/.1:6 in:/.3:6 in:/3 D 6:22 in:4, which agrees surprisingly well with Eq. (4).
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P R O B L E M S

Problems 10.26 and 10.27

Use integration with an area element perpendicular to the x axis to determine the area
moment of inertia Ix for the shape indicated.

Problem 10.26 Figure P10.20 on p. 544.

Problem 10.27 Figure P10.21 on p. 544.

Problems 10.28 and 10.29

The beam cross sections shown are symmetric about the x and y axes. Determine the
area moments of inertia Ix and Iy and the radii of gyration kx and ky .

Figure P10.28 Figure P10.29

Problem 10.30

Figure P10.30
The cross-sectional dimensions for a W10 � 22 wide-flange I beam are shown. By
idealizing the cross section to consist of rectangular shapes, determine the area moment
of inertia Ix , and compare this to the value of 118 in:4 reported in the AISC Steel
Construction Manual. Note: The value reported by AISC accounts for the effects of
small fillets where the web and flanges join.

Problem 10.31

Using Eq. (10.6) on p. 545, show that the parallel axis theorem for the radius of gyration
about the x axis is k2x D k

2
x0
C d2x .

Problem 10.32

Figure P10.32
For the T shape shown, determine the radius of gyration about the x axis.

Problem 10.33

Figure P10.33

For the channel shown, determine the radii of gyration about the x and y axes.

Problem 10.34

Let each of the beams shown in Fig. 10.2 on p. 534 be constructed of identical planks
of wood with 2 in: by 6 in: cross-sectional dimensions. Determine the area moments of
inertia for each beam’s cross-sectional area about the x and y axes.
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Problem 10.35

Figure P10.35

The cross sections of two beams are constructed by arranging the 2 cm by 16 cm strips
of wood as shown. Determine the area moments of inertia for each beam about the
horizontal and vertical axes passing through the centroid of each area.

Problems 10.36 through 10.39

Determine the area moments of inertia Ix and Iy .

Figure P10.36 Figure P10.37

Figure P10.38 Figure P10.39

Problem 10.40

Figure P10.40

(a) Determine Ix1 .

(b) Use the result of Part (a) with the parallel axis theorem to determine Ix2 . Hint: See
the common pitfall discussed on p. 546.

Problem 10.41

Figure P10.41

A circular hole is to be drilled through the side of a beam as shown. Describe where
the hole should be positioned so that the area moment of inertia about the centroidal x0

axis, at the cross section that passes through the hole, is reduced as little as possible.
Note: Concept problems are about explanations, not computations.
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Problems 10.42 through 10.47

The cross section of the bar shown is symmetric about either the x or y axis.

(a) Determine d so that the origin of the coordinate system, point O , is positioned at
the centroid of the area.

(b) Determine the area moment of inertia about the x axis.

(c) Determine the area moment of inertia about the y axis.

Hint: If you carried out some of the exercises from Section 7.1, beginning on p. 409,
you may have already solved Part (a) of Probs. 10.46 and 10.47.

Figure P10.42 Figure P10.43

Figure P10.44 Figure P10.45

Figure P10.46 Figure P10.47
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10.3 Mass Moments of Inertia

Concept Alert

Mass moments of inertia. Mass moments
of inertia are measures of how the mass
of an object is distributed about particular
axes. Mass moments of inertia depend on
the geometry of an object (size and shape),
the density of the material(s) it is made of,
and the axes you select.

Mass moments of inertia are measures of how an object’s mass is distributed
about particular axes. While mass and area moments of inertia have some
similarities they are different in that mass moments of inertia are inherently
volume- and density-related whereas area moments of inertia are area-related.
Before delving into the precise definitions of mass moments of inertia, we first
discuss an example to help you understand why a measure of mass dispersion
is useful and what this measure quantifies.

An example—figure skating

Figure 10.11
A figure skater spins with (a) her arms and leg
extended and (b) her arms drawn together over
her head and leg drawn close to her body. By
making her body more compact in (b), she re-
duces the mass moment of inertia of her body
about the axis that she spins, causing her to spin
at a higher rate.

Consider the figure skater shown in Fig. 10.11(a) as she spins on one skate
with her arms and leg extended from her body. If friction between her skate
and the ice is negligible, then she will spin at a constant rate. In Fig. 10.11(b)
she draws her arms together over her head and her leg closer to her body,
thus making her mass distribution more compact and thus reducing the mass
moment of inertia of her body about the axis that she spins. The reduction in
her mass moment of inertia between Fig. 10.11(a) and (b) causes her to spin
at a higher rate; exactly how fast she spins and how this relates to the mass
moment of inertia are addressed in dynamics.

Definition of mass moments of inertia

Figure 10.12
An object with mass m, density �, and volume
V ; r̃x , r̃y , and r̃´ are radial distances from the
x, y, and ´ axes, respectively, to the center of
mass for mass element dm.

The mass moments of inertia for the object shown in Fig. 10.12 are defined as

Ix D

Z
r̃2x dm D

Z
.ỹ2 C ˜́2/ dm;

Iy D

Z
r̃2y dm D

Z
.x̃2 C ˜́2/ dm;

I´ D

Z
r̃2´ dm D

Z
.x̃2 C ỹ2/ dm;

Ixy D

Z
x̃ỹ dm;

Iy´ D

Z
ỹ ˜́ dm;

Ix´ D

Z
x̃ ˜́ dm;

(10.15)

(10.16)

(10.17)

(10.18)

(10.19)

(10.20)

where

r̃x , r̃y , and r̃´ are defined in Fig. 10.12 as the radial distances (i.e.,
moment arms) from the x, y, and ´ axes, respectively, to the
center of mass for mass element dm.

x̃, ỹ, and ˜́ are defined in Fig. 10.12 as the x, y, and ´ distances,
respectively, to the center of mass for mass element dm.

Ix , Iy , and I´ are the mass moments of inertia about the x, y, and
´ axes, respectively.

Ixy , Iy´, and Ix´ are the products of inertia of the mass about the
xy, y´, and x´ axes, respectively.
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Remarks

� When referring to mass moments of inertia, we often omit the word
mass when it is obvious from the context that we are dealing with mass
moments of inertia as opposed to area moments of inertia.

Helpful Information

Additional products of inertia. When
you study the dynamics of bodies in three
dimensions, an advanced topic, you may
see that, in addition to the mass moments
of inertia cited in Eqs. (10.15)–(10.20),
products of inertia Iyx , I´y , and I´x
are also used. However, Ixy D Iyx ,
Iy´ D I´y , and Ix´ D I´x . Despite this
fact, these additional products of inertia
are often used because it provides for a
symmetry of notation that is convenient
when writing the equations that govern the
motion of a body.

� In each of Eqs. (10.15)–(10.17), two integral expressions are provided,
and each is useful depending on the geometry of the object under con-
sideration.

� The moments of inertia in Eqs. (10.15)–(10.20) measure the second mo-
ment of the mass distribution. That is, to determine Ix , Iy , and I´ in
Eqs. (10.15)–(10.17), the moment arms r̃x , r̃y , and r̃´ are squared. The
second integral in each of these expressions is obtained by noting that
r̃2x D ỹ2 C ˜́2, and similarly for r̃2y and r̃2´ . For the products of inertia
Ixy , Iy´, and Ix´ in Eqs. (10.18)–(10.20), the product of two different
moment arms is used.

� In Eqs. (10.15)–(10.20), x̃, ỹ, and ˜́ have dimensions of length, and
dm has dimension of mass. Hence, all mass moments of inertia have
dimensions of .mass/.length/2, such as slug�in:2 or kg�m2.

� When the x, y, and ´ axes pass through the center of mass of an object,
we sometimes define the axes as x0, y0, and ´0, and we refer to the mo-
ments of inertia as mass center moments of inertia with the designations
Ix0 , Iy0 , etc. In dynamics, moments of inertia about mass center axes are
especially useful.

� For any object with positive mass and finite volume, Ix , Iy , and I´
are always positive.� The products of inertia Ixy , Iy´, and Ix´ may be
positive, zero, or negative, as discussed below.

� Evaluation of moments of inertia using composite shapes is possible
using the parallel axis theorem discussed later in this section.

What are mass moments of inertia used for?

It is useful to discuss why there are six mass moments of inertia, what is
different about them, and what they are used for.

x

y

z

Figure 10.13
The International Space Station with a Space
Shuttle docked to it.

Moments of inertia Ix , Iy , and I´. In Fig. 10.13, the International Space
Station with a docked Space Shuttle is shown. Imagine that a moment Mx

about the x axis is applied to the Space Station. Assuming the Space Station
is rigid,� it will begin to undergo angular acceleration about the x axis. The
value of the angular acceleration is directly dependent on the mass moment
of inertia about the x axis Ix . Furthermore, the larger Ix is, the lower the
angular acceleration will be for a given value ofMx . Similar remarks apply to
moments applied about the y and ´ axes, and the influence that moments of
inertia Iy and I´ have on angular accelerations about these axes.

�For the thin rod shown in the Table of Properties of Solids on the inside back cover, Ix is in fact
positive, but since it is much smaller than Iy and I´, it is usually taken to be zero.

�The International Space Station is very flexible, as are most space structures. If a moment were
applied about the x axis shown in Fig. 10.13, then in addition to the rotations discussed above,
the structure would vibrate. Control of vibrations in space structures is very important and re-
ceives considerable attention.
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Products of inertia Ixy , Iy´, and Ix´. Products of inertia measure the
asymmetry of a mass distribution with respect to the x, y, and ´ axes. Products
of inertia can have positive, zero, or negative value, depending on the shape
and mass distribution of an object, the selection of the x, y, and ´ directions,
and the location of the origin of the xy´ coordinate system. An object is said
to be symmetric if it has at least one plane about which both the shape and
mass distribution are symmetric. For example, if an object is symmetric about
the xy plane, such as the mallet shown in Fig. 10.14, then Ix´ D Iy´ D 0 and
Ixy may be positive, zero, or negative. If an object is symmetric about at least
two of the xy, y´, and x´ planes, then all of the products of inertia are zero.
Thus the products of inertia are zero for a solid of revolution when one of the
x, y, or ´ axes coincides with the axis of revolution.

Figure 10.14
A mallet with a metal head and wood handle is
shown. If the mallet’s geometry and mass distri-
bution are both symmetric about the xy plane,
then the mallet is said to be a symmetric ob-
ject. If the mallet is also symmetric about the
yz plane, it may be called a doubly symmetric
object.

Objects that have one or more nonzero products of inertia may display
complicated dynamics in three-dimensional motions. For example, the Space
Station is unsymmetric about the xy´ axes shown Fig. 10.13, and it has
nonzero products of inertia. As a consequence, if a moment Mx about the
x axis is applied, the Space Station, in addition to rotating about the x axis,
will rotate about the y and/or ´ axes. The dynamics of objects with nonzero
products of inertia is an advanced subject and until you study this, you will not
need to use products of inertia. Hence, methods for evaluating Ixy , Iy´, and
Ix´ are not discussed in this book.

Radius of gyration

Rather than use mass moments of inertia to quantify how mass is distributed, it
is sometimes convenient to use the radii of gyration, which are directly related
to the mass moments of inertia and are defined as

kx D

r
Ix

m
; ky D

r
Iy

m
; k´ D

r
I´

m
; (10.21)

where

kx , ky , and k´ are the radii of gyration of the mass about the x, y,
and ´ axes, respectively.

m is the mass of the object.

The radii of gyration have units of length, and have a straightforward physical
interpretation, as discussed in Example 10.12.

Parallel axis theorem

Figure 10.15
An object with mass m and center of mass at
point G. The x and x0 axes are parallel with
separation distance dx , the y and y0 axes are
parallel with separation distance dy , and the ´
and ´0 axes are parallel with separation distance
d´.

The parallel axis theorem relates mass moments of inertia Ix , Iy , and I´ to
the mass center moments of inertia Ix0 , Iy0 ; and I´0 , where the x and x0 axes
are parallel, the y and y0 axes are parallel, and the ´ and ´0 axes are paral-
lel. The parallel axis theorem is important and is used often in dynamics and
vibrations.

Consider the object with massm and center of massG shown in Fig. 10.15.
An x0y0´0 coordinate system is defined, with origin at the center of mass of the
object. The x, y, and ´ axes are parallel to the x0, y0, and ´0 axes, respectively,
with separation distances dx , dy , and d´, respectively. The parallel axis theo-
rem relates the mass moments of inertia with respect to the x, y, and ´ axes to
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the mass center moments of inertia as follows:

Ix D Ix0 C d
2
xm;

Iy D Iy0 C d
2
ym;

I´ D I´0 C d
2
´m:

(10.22)

(10.23)

(10.24)

The derivation of these expressions is similar to that for the area moment of
inertia given by Eqs. (10.10)–(10.13) on p. 545.

Evaluation of moments of inertia using integration

Mass moments of inertia are volume- and density-related and hence are typ-
ically more difficult to evaluate by integration than area moments of inertia.
Figure 10.16 shows some strategies for determining the mass moments of in-
ertia for an object, using Iy as an example, with comments as follows.

Figure 10.16
Strategies for evaluating the mass moments of
inertia, using Iy as an example.

� Object with general shape. The triple integral approach shown in
Fig. 10.16(a) has straightforward expressions for dV , x̃, ỹ, and ˜́. This
approach is applicable to bodies with general geometry and density, and
it can be used to determine Ix , Iy , and I´. If you are comfortable with
determining limits of integration and evaluating triple integrals, then this
approach is robust and effective.

� Object of revolution—thin shell volume element. An object of revolu-
tion where the y axis is the axis of revolution is shown in Fig. 10.16(b).
To determine Iy using a single integration, a thin cylindrical shell vol-
ume element can be used. The key feature of this volume element is that
all material within the element has the same moment arm r̃y from the
y axis. The radius of the shell is taken to be x, and the thickness is dx
(these could just as well be taken as ´ and d´). Example 10.8 uses this
approach. The object shown in Fig. 10.16(b) also has mass moments of
inertia Ix and I´, and the strategy shown in Fig. 10.16(a) or (c) must be
used to determine these.

� Object of revolution—thin disk volume element. An object of revolu-
tion where the y axis is the axis of revolution is shown in Fig. 10.16(c).
To determine Iy using a single integration, a thin circular disk volume
element can be used. We consult a table of moments of inertia for com-
mon shapes, such as the Table of Properties of Solids on the inside back
cover, to obtain the mass moment of inertia for a thin circular plate,
which is mr2=2, where m is the mass of the plate and r is its radius;
this expression assumes the density of the plate is uniform. By taking
m and r in this expression to be the mass and radius of the thin disk
element, we obtain an expression for the mass moment of inertia for
the thin disk element, which we call dIy . Once an expression for dIy is
known, the moment of inertia for the entire object is obtained by

Iy D

Z
dIy ; (10.25)

which requires only a single integration. This volume element may also
be used to evaluate the moments of inertia Ix and I´. Examples 10.8
and 10.9 illustrate this.
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� Symmetric object—thin plate volume element. An object that is sym-
metric about both the xy and y´ planes is shown in Fig. 10.16(d). A thin
plate volume element is used, where the geometry of the plate depends
on the object’s geometry (Fig. 10.16(d) shows a rectangular plate). We
consult a table of moments of inertia for common shapes, such as the
Table of Properties of Solids on the inside back cover, to obtain the mass
moment of inertia for the volume element dIy and then use Eq.(10.25)
to obtain the moment of inertia for the entire object. This volume ele-
ment may also be used to evaluate the moments of inertia Ix and I´.
Example 10.10 illustrates this.

Evaluation of moments of inertia using composite shapes

Common Pitfall

Parallel axis theorem. Consider the paral-
lel axes x1 and x2, mass center axis x0,
and center of mass at point G, such as
shown below.

If Ix1 is known, a common error is to use
the parallel axis theorem to directly deter-
mine Ix2 . In the parallel axis theorem, one
of the axes is always a mass center axis.
Thus, with Ix1 known, the parallel axis the-
orem must be used twice, the first time to
determine Ix0 and the second time to use
Ix0 to determine Ix2 . See Example 10.11.

The parallel axis theorem, written for composite shapes, becomes

Ix D

nX
iD1

�
Ix0 C d

2
x m

�
i

(10.26)

where n is the number of shapes, Ix0 is the mass moment of inertia for shape
i about its mass center x0 axis, dx is the shift distance for shape i (i.e., the
distance between the x axis and the x0 axis for shape i ), and m is the mass for
shape i . Similar expressions may be written for Iy and I´. To use Eq. (10.26),
it is necessary to know the mass moment of inertia for each of the compos-
ite shapes about its mass center axis, and this generally must be obtained by
integration or, when possible, by consulting a table of moments of inertia for
common shapes, such as the Table of Properties of Solids on the inside back
cover. A common error is to use the parallel axis theorem to relate moments of
inertia between two parallel axes where neither of them is a mass center axis.
Example 10.12 illustrates this approach.

End of Sect ion Summary

In this section, mass moments of inertia Ix , Iy , I´, Ixy , Iy´, and Ix´ were
defined to be the second moments of a mass distribution. Some of the key
points are as follows:

� Mass moments of inertia are measures of how the mass for a particular
object is distributed. Moments of inertia have dimensions of
.mass/.length/2.

� The products of inertia Ixy , Iy´, and Ix´ are measures of the asymmetry
of an object’s mass distribution with respect to the x, y, and ´ axes. The
need for products of inertia typically arises in advanced subjects, so
methods for evaluating these quantities are not discussed in this book.

� Radii of gyration are alternative measures of the dispersion of mass. The
radii of gyration are easily determined if the mass moments of inertia
are known, and vice versa.
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E X A M P L E 10.7 Thin, Flat Plate-type Objects

A thin rectangular plate with base b, height h, thickness t , and uniform density � is
shown. Determine the mass moments of inertia Ix , Iy , and I´ about the center of mass
for the plate, expressing each in terms of the mass m of the plate.

Figure 1

S O L U T I O N

Road Map We will use Eqs. (10.15)–(10.17) on p. 553 to determine the three mo-
ments of inertia.

Ix

Governing Equations & Computation We begin with Eq. (10.15) with dm D � dV

Ix D

Z
.ỹ2 C ˜́2/� dV: (1)

If the plate is thin, then ˜́2 � ỹ2 and hence ˜́2 can be neglected. Using a volume
element parallel to the x axis as shown in Fig. 2, we obtain

Figure 2
To determine Ix , a volume element parallel to
the x axis is used to develop expressions for dV
and ỹ.

dV D bt dy and ỹ D y: (2)

Substituting Eq. (2) into Eq. (1), the moment of inertia about the x axis is

Ix D

Z
ỹ2 � dV D

Z h=2

�h=2
y2 �bt dy D �t

by3

3

ˇ̌̌h=2
�h=2

D �t
bh3

12
: (3)

While the above result is satisfactory, it is customary to report mass moments of inertia
in terms of the total mass of an object. The mass of the thin plate is m D �bht . We
express Eq. (3) in terms of mass m, using the following procedure:

Ix D �t
bh3

12

� m

�bht

�
„ ƒ‚ …
D1

D
mh2

12
: (4)

Iy

Governing Equations & Computation We begin with Eq. (10.16)

Iy D

Z
.x̃2 C ˜́2/� dV; (5)

where ˜́2 can be neglected because ˜́2 � x̃2. Using a volume element parallel to the
y axis as shown in Fig. 3, we obtain

Figure 3
To determine Iy , a volume element parallel to
the y axis is used to develop expressions for dV
and x̃.

dV D ht dx and x̃ D x: (6)

Substituting Eq. (6) into Eq. (5), the moment of inertia about the y axis is

Iy D

Z
x̃2 � dV D

Z b=2

�b=2
x2 �ht dx D �t

hx3

3

ˇ̌̌b=2
�b=2

D �t
hb3

12
: (7)

Expressing Eq. (7) in terms of mass m provides

Iy D �t
hb3

12

m

�bht
D

mb2

12
: (8)
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I´

Governing Equations & Computation We begin with Eq. (10.17)

I´ D

Z
.x̃2 C ỹ2/ � dV: (9)

For the geometry of the plate in this problem, x̃ and ỹ are of comparable size, so neither
can be neglected. This presents a difficulty if Eq. (9) is to be evaluated using a single
integration. However, some ingenuity provides a straightforward solution, as follows.
We break Eq. (9) into two separate integrals

I´ D

Z
x̃2 � dV C

Z
ỹ2 � dV: (10)

The first of the above integrals is identical to Eq. (7), and the second is identical to
Eq. (3). Hence,

I´ D
mb2

12
C
mh2

12
D

m

12
.b2 C h2/: (11)

In essence, the first and second integrals in Eq. (10) were evaluated using different
volume elements.

Discussion & Verification

� A thin plate is a common object in structures and machines. Hence, the results
obtained here are usually tabulated in handbooks and texts, such as the Table of
Properties of Solids on the inside back cover of this book.

� By letting h or b in Fig. 1 become small, the plate considered here becomes a
thin rod. For example, if h ! 0, then Eqs. (4), (8), and (11) become Ix D 0

and Iy D I´ D mb
2=12. You should verify that these mass moments of inertia

agree with those reported for a thin rod in the Table of Properties of Solids on
the inside back cover of this book (when making this comparison, you must note
that some coordinate directions and/or dimensions may be defined differently).

A Closer Look While mass moments of inertia and area moments of inertia are
generally quite different, they are related for thin flat plates, such as in this example.
To see this relationship, rewrite Eq. (3) as

Ix D

Z
ỹ2� dV D �t

Z
ỹ2 dA: (12)

The second integral is obtained by using dV D t dA and factoring �t outside of the
integral because the plate has uniform density and thickness. The second integral is
seen to be the definition of the area moment of inertia about the x axis (i.e., from
Eq. (10.1) on p. 534, .Ix/area D

R
ỹ2 dA). Hence

Ix D �t.Ix/area D �t
bh3

12
; (13)

where we have used the result from Example 10.1 on p. 539 that .Ix/area D bh3=12

for a rectangular area.
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E X A M P L E 10.8 Solid of Revolution—Moment of Inertia About Axis of
Revolution

Determine the mass moment of inertia about the x axis for the solid hemisphere of
radius r and uniform density �. Express the result in terms of the mass m of the object.

Figure 1

S O L U T I O N

Road Map We will show two solutions, the first using a thin shell volume element
and the second using a thin disk volume element. Note that the centroid of this object
was determined in Example 7.6 on p. 408, and the expressions for dV developed in this
solution are identical to those used earlier.

Solution 1—thin shell volume element

Governing Equations & Computation We begin with Eq. (10.15) with dm D � dV:

Ix D

Z
r̃2x � dV: (1)

The thin shell volume element shown in Fig. 2 is used to obtain expressions for dV
and r̃x . The merit of this volume element is that all the material in the element is at the
same radial distance r̃x from the x axis. With y being the radius of the shell,

Figure 2
A thin shell volume element is used to develop
expressions for dV and r̃x .

dV D 2�yx dy and r̃x D y: (2)

In Eq. (2), 2�y is the circumference of the shell, y is the radius, x is the length of the
shell, and dy is the thickness. Substituting Eq. (2) into Eq. (1), with x D

p
r2 � y2,

the moment of inertia about the x axis is

Ix D

Z r

0
y2 � 2�y

q
r2 � y2 dy D

2��

15
.y2�r2/3=2.2r2C3y2/

ˇ̌̌r
0
D
4��r5

15
: (3)

Using the expression for dV in Eq. (2), the mass m of a hemisphere is

m D

Z
� dV D

Z r

0
� 2�y

q
r2 � y2 dy D

2��

3
.y2 � r2/3=2

ˇ̌̌r
0
D
2��r3

3
: (4)

Finally, we express Eq. (3) in terms of mass m as follows:

Ix D
4��r5

15

� m

2��r3=3

�
D

2mr2

5
: (5)

Solution 2—thin disk volume element

Governing Equations & Computation We begin with Eq. (10.25) on p. 556

Figure 3
A thin circular disk volume element is used to
develop an expression for dIx .

Ix D

Z
dIx (6)

where dIx is the moment of inertia of the thin circular disk mass element shown in
Fig. 3 about the x axis. From the Table of Properties of Solids, or from Fig. 10.16(c),

dIx D
1
2 .mdisk/.rdisk/

2 D 1
2 .� �y

2 dx/.y/2 (7)

where y is the radius of the disk. Substituting Eq. (7) into Eq. (6), with y D
p
r2 � x2,

the moment of inertia about the x axis is

Ix D

Z r

0

1
2��

�
r2 � x2

�2
dx D ��

� r4x
2
�
r2x3

3
C
x5

10

�ˇ̌̌r
0
D
4��r5

15
; (8)

which is identical to Eq. (3). Hence, we obtain the same result, Ix D 2mr
2=5:

Discussion & Verification Knowing the mass moments of inertia for a cylinder and
cone, it is possible to show that the result obtained here is reasonable; see Prob. 10.59.
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E X A M P L E 10.9 Solid of Revolution—Additional Moments of Inertia

For the solid hemisphere of radius r and uniform density � considered in Example 10.8,
shown again in Fig. 1, determine the mass moments of inertia about the y and ´ axes.
Express the result in terms of the mass m of the object.

Figure 1

S O L U T I O N

Road Map Because of the symmetry of the object, Iy D I´, and hence we will
determine only one of these, arbitrarily choosing I´. Unlike Example 10.8 where we
had the choice of two volume elements, in this example we must use a thin circular
disk volume element (that is, if we are to determine I´ using a single integration).

Governing Equations & Computation We begin with Eq. (10.25) on p. 556 (writ-
ten in terms of ´)

Figure 2
A thin circular disk volume element is used to
develop an expression for dI´.

I´ D

Z
dI´ (1)

where dI´ is the moment of inertia of the thin circular disk mass element shown in
Fig. 2 about the ´ axis. Using the parallel axis theorem, Eq. (10.24) on p. 556, the
moment of inertia of the thin disk element about the ´ axis is

dI´ D dI´0 C d
2
´ dm (2)

where dI´0 is the moment of inertia of the disk element about the ´0 axis passing
through the disk’s mass center, dm is the mass of the disk, and d´ is the distance
between the ´ and ´0 axes. From the Table of Properties of Solids on the back inside
cover, the moment of inertia of a thin disk is

dI´0 D
1
4 .mdisk/.rdisk/

2 D 1
4 .��y

2 dx/.y/2 (3)

dm D ��y2 dx (4)

d´ D x (5)

where y is the radius of the disk. Using Eqs. (2)–(5) and noting that y D
p
r2 � x2,

Eq. (1) becomes

I´ D

Z r

0

��

4
.r2 � x2/2 dx C

Z r

0
x2 ��.r2 � x2/ dx

D
��

4

�
r4x �

2r2x3

3
C
x5

5

�ˇ̌̌r
0
C ��

� r2x3
3
�
x5

5

�ˇ̌̌r
0

D
4��r5

15
: (6)

Noting from Example 10.8 that the mass of the hemisphere is m D 2��r3=3, Eq. (6)
expressed in terms of m is

I´ D
4��r5

15

� m

2��r3=3

�
D

2mr2

5
: (7)

Discussion & Verification Because of symmetry, Iy D I´, hence Iy D 2mr2=5.
Comparing Iy and I´ found here with the results for Ix from Example 10.8 shows the
unexpected result that all three of these are equal.
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E X A M P L E 10.10 Symmetric Object

The tapered prism is made of aluminum and is symmetric about the xy and xz planes.
Determine the mass moments of inertia about the x and y axes.

Figure 1

S O L U T I O N

Road Map We will use a thin rectangular plate volume element, with the strategy
described in Fig. 10.16(d) on p. 556, to evaluate Ix and Iy .

Ix

Governing Equations & Computation We begin with Eq. (10.25) on p. 556 (writ-
ten in terms of x)

Figure 2
A thin rectangular plate volume element is used
to develop expressions for dIx and dIy .

Ix D

Z
dIx (1)

where dIx is the moment of inertia of the thin rectangular plate mass element shown
in Fig. 2 about the x axis. Note that the x axis and the x0 axis passing through the mass
center of the thin plate element coincide, and therefore no parallel axis shift is required.
From the Table of Properties of Solids on the inside back cover,

dIx D
1
12 .mplate/.b

2 C h2/: (2)

The dimensions b and h of the thin plate element are functions of position as follows:

b D 20mm � .0:2/x and h D 40mm � .0:4/x: (3)

The mass of the plate is the product of density � and the volume of the plate, hence

mplate D � bh dx: (4)

Combining Eqs. (1), (2), and (4) provides

Ix D

Z 50mm

0

1
12� bh.b

2 C h2/ dx: (5)

From Table 1.4 on p. 16, the density of aluminum is � D 2710 kg=m3 D 2:710�

10�6 kg=mm3. Substituting b and h from Eq. (3) and the value for � into Eq. (5) and
carrying out the integration yield

Ix D 7:00 kg�mm2: (6)

Iy

Governing Equations & Computation We begin with Eq. (10.25) on p. 556

Iy D

Z
dIy (7)

where dIy is the moment of inertia of the thin rectangular plate mass element shown
in Fig. 2 about the y axis. Since the y and y0 axes do not coincide, the parallel axis
theorem, Eq. (10.23) on p. 556, is used to write the moment of inertia of the thin plate
element about the y axis as

dIy D dIy0 C d
2
y dm (8)

where dIy0 is the moment of inertia of the plate element about the y0 axis passing
through its mass center, dm is the mass of the plate element, and dy is the distance
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between the y and y0 axes, namely, dy D x. From the Table of Properties of Solids on
the inside back cover, the moment of inertia of a thin plate is

dIy0 D
1
12 .mplate/.h/

2 (9)

where mplate is given by Eq. (4). Combining Eqs. (4) and (7)–(9) provides

Iy D

Z 50mm

0

1
12� bh h

2 dx C

Z 50mm

0
x2 � bh dx: (10)

Substituting b and h from Eq. (3) and the value for � into Eq. (10) and carrying out the
integration yield

Iy D 41:7 kg�mm2: (11)

Figure 3
A uniform rectangular prism with dimensions
that approximate those of the tapered prism
shown in Fig. 1.

Discussion & Verification A rough check of accuracy can be obtained by using the
Table of Properties of Solids on the inside back cover to evaluate the moments of inertia
for the uniform rectangular prism shown in Fig. 3, where dimensions have been chosen
to approximate the shape and volume of the tapered prism. For the uniform prism
shown in Fig. 3, you should verify that Ix D 5:72 kg�mm2 and Iy D 55:4 kg�mm2.
The results for the tapered prism in Eqs. (6) and (11) are in reasonable agreement with
these.
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E X A M P L E 10.11 Experimental Determination of Mass Moments of Inertia

A connecting rod from a gasoline engine weighs 3:28 lb and has its center of gravity at
point G. When the connecting rod is supported at point O and is allowed to oscillate
as a pendulum, 0:816 s is required for one full cycle of motion. Determine the mass
moments of inertia about points A and G.

Figure 1

Helpful Information

Experimental determination of mass
moments of inertia. The object shown
has mass m and center of gravity at point
G.

By supporting the object by a smooth pin at
pointO and allowing it to oscillate as a pen-
dulum, the mass moment of inertia about
the ´ axis through point O (i.e., perpendic-
ular to the figure) is

IO´ D
T 2mgL

4�2
(1)

where T is the time required for one full
cycle of motion. Thus, by locating the cen-
ter of gravity for an object and carefully
measuring T , m (or weight mg), and L,
the mass moment of inertia is easily deter-
mined.

Remark: You will be able to derive Eq. (1)
when you study dynamics. You may find this
surprising, but the time T required for one
full cycle of motion is independent of the
amplitude of motion provided the amplitude
is not too large.

S O L U T I O N

Road Map We will use Eq. (1), described in the margin note on this page, to deter-
mine IO´. We will then use the parallel axis theorem to determine the moments of
inertia about points A and G. Note that, as discussed in the margin note on p. 557, to
determine IA´ it is necessary to first know IG´.

IG´

Governing Equations & Computation Using Eq. (1), the mass moment of inertia
of the connecting rod about the ´ axis through point O is

IO´ D
.0:816 s/2.3:28 lb/.0:45 ft/

4�2
D 0:02489 ft�lb�s2: (2)

To express Eq. (2) in terms of the U.S. Customary mass unit (recall from the definition
in Table 1.1 on p. 9, 1 slug � 1 lb�s2=ft), we carry out the unit conversion

IO´ D
�
0:02489 ft�lb�s2�� slug

lb�s2=ft

�
D 0:02489 slug�ft2: (3)

The parallel axis theorem, Eq. (10.24) on p. 556, rearranged for the moment of
inertia about the ´ axis through the mass center G, is

IG´ D IO´ � d
2
´ m

D 0:02489 slug�ft2 � .0:45 ft/2
� 3:28 lb

32:2 ft=s2

�
D 0:02489 slug�ft2 � 0:02063 ft�lb�s2

� slug

lb�s2=ft

�
D 4:267�10�3 slug�ft2: (4)

IA´

Governing Equations & Computation With the moment of inertia about the mass
center known from Eq. (4), the parallel axis theorem can be used again to determine
the moment of inertia about the ´ axis through point A. Thus,

IA´ D IG´ C d
2
´m

D 4:267�10�3 slug�ft2 C .0:22 ft/2
� 3:28 lb

32:2 ft=s2

�
D 4:267�10�3 slug�ft2 C 4:930�10�3 ft�lb�s2

� slug

lb�s2=ft

�
D 9:20�10�3 slug�ft2: (5)

Discussion & Verification A rough check of accuracy can be obtained by approxi-
mating the connecting rod by a slender rod with the same mass and with length approxi-
mating that of the connecting rod. Problem 10.76 asks you to carry out this calculation.
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E X A M P L E 10.12 Composite shapes

The hammer consists of a cast iron head and wood handle. The iron head has 7000 kg=m3

density, and its shape is a rectangular prism with a circular hole. The wood handle has
500 kg=m3 density, and its shape is a circular cylinder. Determine the mass moment of
inertia about the ´ axis and the corresponding radius of gyration.

Figure 1

S O L U T I O N

Road Map The hammer consists of a rectangular prism and circular cylinder, so
it will be convenient to determine I´ using composite shapes with the parallel axis
theorem.

Governing Equations & Computation A combination of three composite shapes is
shown in Fig. 2, where the mass for shape 3 is negative. The mass of each composite

Figure 2
A combination of three composite shapes to de-
termine I´, and distances from the center of
mass of each composite shape to the ´ axis.
Note that m3 < 0.

shape is

m1 D �woodV1 D .500 kg=m3/�.0:010m/2.0:150m/ D 0:02356 kg; (1)

m2 D �ironV2 D .7000 kg=m3/.0:040m/.0:040m/.0:060m/ D 0:6720 kg; (2)

m3 D ��ironV3 D �.7000 kg=m3/�.0:010m/2.0:040m/ D �0:08796 kg: (3)

The parallel axis theorem for composite shapes, Eq. (10.26) on p. 557, is

I´ D

3X
iD1

�
I´0 C d

2
´ m

�
i
: (4)

For each composite shape, the Table of Properties of Solids on the inside back cover
of this book is used to obtain the mass moment of inertia about the appropriate axis
through the composite shape’s mass center. Note that when using such a table, it is
often the case that the xyz axes used in the table are different from the xyz axes used in
your particular problem. Hence, you must be careful to obtain the correct expressions.
Equation (4) becomes

I´ D
m1
12
Œ3.10mm/2 C .150mm/2�C .45mm/2m1

C
m2
12
Œ.40mm/2 C .60mm/2�C .100mm/2m2

C
m3
12
Œ3.10mm/2 C .40mm/2�C .100mm/2m3

D 6210 kg�mm2: (5)

Noting that the total mass of the hammer ism D m1Cm2Cm3 D 0:6076 kg, the
radius of gyration is easily determined using Eq. (10.21) on p. 555 as

k´ D

r
I´

m
D

s
6210 kg�mm2

0:6076 kg
D 101mm: (6)

Figure 3
The radius of gyration k´ is the distance from
the ´ axis that a point mass m should be posi-
tioned so that it has the same mass moment of
inertia I´ as the original object.

Discussion & Verification Imagine that all of the mass m of the hammer is concen-
trated at a point, as shown in Fig. 3. While it is physically impossible to do this, the
radius of gyration k´ has the interpretation of being the distance from the ´ axis to the
point so that the point mass has the same moment of inertia I´ as the original object.
Considering that the mass of the wood handle is small compared to the iron head, and
that the shift distance d´ for the wood handle in the parallel axis theorem is small com-
pared to that for the head, we expect the radius of gyration to locate a point close to the
center of mass of just the head. Thus, the value determined in Eq. (6) is reasonable.
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P R O B L E M S

Problem 10.48

Figure P10.48

The uniform slender rod has mass m and length l . Use integration to show that the
mass moment of inertia about the y axis is Iy D ml

2=12.

Problems 10.49 and 10.50

Figure P10.49 and P10.50

The uniform plate has thickness t , radius r , and density �.

Problem 10.49 Use integration with a thin cylindrical shell mass element to deter-
mine the mass moment of inertia about the x axis. Express your answer in terms of the
mass m of the plate.

Problem 10.50 Assuming t � r , use integration with a mass element parallel to
the y axis (as in Example 10.2 on p. 540) to determine the mass moment of inertia
about the y axis. Express your answer in terms of the mass m of the plate.

Problems 10.51 and 10.52

Figure P10.51 and P10.52

The uniform cylinder has length L, radius R, and density �.

Problem 10.51 Use integration with a thin cylindrical shell mass element to deter-
mine the mass moment of inertia about the x axis. Express your answer in terms of the
mass m of the cylinder.

Problem 10.52 Use integration with a thin disk mass element to determine the mass
moment of inertia about the y axis. Express your answer in terms of the mass m of the
cylinder.

Problems 10.53 and 10.54

Figure P10.53 and P10.54

For the uniform solid cone with length L and radius R, use integration to determine
the mass moment of inertia indicated, expressing your answer in terms of the mass m
of the cone.

Problem 10.53 Ix .

Problem 10.54 I´.

Problems 10.55 through 10.57

Figure P10.55 and P10.57

The tapered solid prism shown has density � and rectangular cross section. Use inte-
gration to determine the mass moment of inertia indicated, expressing your answer in
terms of the mass m of the prism and parameters such as a, b, and h.

Problem 10.55 Ix .

Problem 10.56 Iy .

Problem 10.57 I´.
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Problem 10.58

The Table of Properties of Solids appearing on the inside back cover of this book
shows the mass moments of inertia for a uniform sphere and hemisphere are both
I´ D 2mr2=5. If a sphere and hemisphere have the same radius and density, does
this mean their mass moments of inertia I´ are the same? Explain.
Note: Concept problems are about explanations, not computations.

Problem 10.59

In Example 10.8 on p. 560, the mass moment of inertia of a hemisphere about its axis
of revolution was found to be 2mr2=5. Show that this result is between those for a
cylinder and cone, both having radius r and length r (the mass moments of inertia for
these are given in the Table of Properties of Solids on the inside back cover of this
book). Discuss why this result is expected.
Note: Concept problems are about explanations, not computations.

Problems 10.60 and 10.61

Figure P10.60 and P10.61

The solid hemisphere is constructed of materials with densities �0 and �0=2 as shown.

Problem 10.60

(a) Fully set up the integrals, including limits of integration, that will yield the mass
moment of inertia about the x axis.

(b) Evaluate the integrals obtained in Part (a) using computer software such as Mathe-
matica, Maple, etc.

Problem 10.61

(a) Fully set up the integral, including limits of integration, that will yield the mass
moment of inertia about the y axis.

(b) Evaluate the integral obtained in Part (a) using computer software such as Mathe-
matica, Maple, etc.

Problem 10.62

Figure P10.62

For the solid of revolution shown, determine the mass moment of inertia about the x
axis. The material has specific weight � D 0:409 lb=in:3. Report your answer using
slugs and inches.

Problems 10.63 and 10.64

A solid of revolution is produced by revolving the area shown 360ı around the y axis.
Use integration to determine the mass moment of inertia about the axis of revolution
assuming the solid has uniform density. Express your answer in terms of the mass m
of the object.

Figure P10.63 Figure P10.64
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Problems 10.65 and 10.66

Figure P10.65 and P10.66

The solid shown has a cone-shaped cavity and has uniform density.

Problem 10.65

(a) Fully set up the integral, including limits of integration, that will yield the mass
moment of inertia about the x axis.

(b) Evaluate the integral obtained in Part (a) using computer software such as Mathe-
matica, Maple, etc. Express your answer in terms of the mass m of the object.

Problem 10.66

(a) Fully set up the integral, including limits of integration, that will yield the mass
moment of inertia about the y axis.

(b) Evaluate the integral obtained in Part (a) using computer software such as Mathe-
matica, Maple, etc. Express your answer in terms of the mass m of the object.

Problems 10.67 and 10.68

Figure P10.67 and P10.68

A thin-walled hollow cone has uniform density with thickness t1 at the left-hand end
and t2 at the right-hand end.

Problem 10.67

(a) If the cone’s thickness is uniform with t1 D t2 D t0, fully set up the integral,
including limits of integration, that will yield the mass moment of inertia about the
x axis.

(b) Evaluate the integral obtained in Part (a) using computer software such as Mathe-
matica, Maple, etc. Express your answer in terms of the mass m of the object.

Problem 10.68

(a) If the cone’s thickness varies linearly from t1 D 2t0 at the left-hand end to t2 D t0
at the right-hand end, fully set up the integral, including limits of integration, that
will yield the mass moment of inertia about the x axis.

(b) Evaluate the integral obtained in Part (a) using computer software such as Mathe-
matica, Maple, etc. Express your answer in terms of the mass m of the object.

Problems 10.69 and 10.70

Figure P10.69 and P10.70

A plastic part with 1100 kg=m3 density is produced by revolving the area shown 360ı

around an axis of revolution. Determine the mass moment of inertia about the axis of
revolution indicated. Express your answer in units of kg�cm2.

Problem 10.69 The axis of revolution is the x axis.

Problem 10.70 The axis of revolution is the y axis.
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Problems 10.71 through 10.74

Figure P10.71–P10.74

The solid hemisphere shown has a cone-shaped cavity and has uniform density.

Problem 10.71

(a) Fully set up the integral, including limits of integration, that will yield the mass
moment of inertia about the x axis.

(b) Evaluate the integral obtained in Part (a) using computer software such as Mathe-
matica, Maple, etc. Express your answer in terms of the mass m of the object.

Problem 10.72 Determine the mass moment of inertia about the x axis using com-
posite shapes. Express your answer in terms of the mass m of the object.

Problem 10.73

(a) Fully set up the integral, including limits of integration, that will yield the mass
moment of inertia about the ´ axis.

(b) Evaluate the integral obtained in Part (a) using computer software such as Mathe-
matica, Maple, etc. Express your answer in terms of the mass m of the object.

Problem 10.74 Determine the mass moment of inertia about the ´ axis using com-
posite shapes. Express your answer in terms of the mass m of the object.

Problem 10.75

Figure P10.75

A throwing toy is molded of uniform foam. It consists of an oblong-shaped portion, a
cylindrical portion, and four rectangular fins. The density of the oblong and cylindrical
shapes is 100 kg=m3, and each of the fins have 1:8�10�3 kg mass.

(a) Fully set up the integral, including limits of integration, that will yield the mass
moment of inertia about the x axis for the oblong-shaped portion.

(b) Evaluate the integral obtained in Part (a) using computer software such as Mathe-
matica, Maple, etc.

(c) You should find the result of Part (b) to be 79:8 kg�mm2. Using this value, deter-
mine the total mass moment of inertia about the x axis for the toy.

Problem 10.76

Approximate the connecting rod in Example 10.11 on p. 564 by a uniform slender rod.
Take the length of this rod to be 0:8 ft and the mass to be the same as that for the
connecting rod. Determine the mass moment of inertia of this rod about its end, and
compare to the value for IO´ found for the connecting rod in Example 10.11.

Problems 10.77 through 10.79

Figure P10.77–P10.79

A uniform rectangular prism with mass m is shown. Beginning with the appropriate
mass moment of inertia given in the Table of Properties of Solids on the inside back
cover of this book, use the parallel axis theorem to determine the mass moment of
inertia of the prism about the axis indicated.

Problem 10.77 The x axis.

Problem 10.78 The y axis.

Problem 10.79 The ´ axis.
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Problem 10.80

Figure P10.80

A handwheel for a machine has 0:8 kg mass and center of gravity at point G. When
the handwheel is supported at pointO and is allowed to oscillate as a pendulum, 1:12 s
is required for one full cycle of motion. Determine the mass moment of inertia about
the axis perpendicular to the figure and passing through point B . Hint: See the helpful
information margin note on p. 564.

Problem 10.81

Figure P10.81

A sector gear for a machine has 0:355 lb weight and center of gravity at pointG. When
the sector gear is supported at pointO and is allowed to oscillate as a pendulum, 0:379 s
is required for one full cycle of motion. Determine the mass moment of inertia about
the axis perpendicular to the figure and passing through point A. Hint: See the helpful
information margin note on p. 564.

Problem 10.82

The plate shown has uniform thickness and is made of material with specific weight
0:7 lb=in:2. Determine the mass moment of inertia about the axis perpendicular to the
plate and passing through point A.

Figure P10.82 Figure P10.83

Problem 10.83

An antenna is constructed of identical small-diameter uniform rods, each having
0:25 kg=m mass. Determine the mass moment of inertia of the antenna about the

(a) x axis.

(b) y axis.

(c) ´ axis.

Problem 10.84

Figure P10.84 An object is constructed by welding together three small-diameter uniform identical
rods, each having quarter-circular shape and 0:5 lb weight. Determine the mass moment
of inertia of the object about the x axis.

Problems 10.85 and 10.86

Figure P10.85 and P10.86

An object is constructed of a brass rod and aluminum cylinder having densities of
8500 kg=m3 and 2700 kg=m3, respectively. The brass rod fills the hole in the aluminum
cylinder. Determine the mass moment of inertia of the object about the

Problem 10.85 x axis.

Problem 10.86 y axis.
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Problem 10.87

Figure P10.87

The cam consists of a circular cylinder A with a circular hole to reduce its moment of
inertia and a circular shaft BC about which it rotates. If the cam is made of cast iron
with 7200 kg=m3 density, determine the mass moment of inertia about the ´ axis.

Problems 10.88 through 10.90

A bracket is constructed of a thin semicircular plate of uniform thickness having
0:05 lb=in:2 specific weight and a thick rectangular plate of uniform thickness having
0:25 lb=in:3 specific weight. The bracket is symmetric about the x´ plane. Determine
the mass moment of inertia of the object about the axis indicated. Report your answer
using slugs and inches.

Problem 10.88 x axis.

Problem 10.89 y axis.

Problem 10.90 ´ axis.

Figure P10.88–P10.90

Problems 10.91 and 10.92

Figure P10.91 and P10.92

An object with 6 lb weight consists of a cylinder and hemisphere of the same material.
Determine the mass moment of inertia of the object about the axis indicated. Report
your answer using slugs and inches.

Problem 10.91 x axis.

Problem 10.92 y axis.

Problems 10.93 through 10.95

Figure P10.93–P10.95

The object shown is made of uniform plastic and weighs 2:34 lb. Determine the mass
moment of inertia of the object about the axis indicated. Report your answer using
slugs and feet.

Problem 10.93 x axis.

Problem 10.94 y axis.

Problem 10.95 ´ axis.
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10.4 Chapter Review

Important definitions, concepts, and equations of this chapter are summarized.
For equations and/or concepts that are not clear, you should refer to the origi-
nal equation and page numbers cited for additional details.

Figure 10.17
An area A with centroid C . x̃ and ỹ are the x
and y positions, respectively, of the centroid of
area element dA. r̃ is the distance from pointO
to area element dA.

Area moments of inertia. The area moments of inertia for the area shown
in Fig. 10.17 are defined to be

Ix D

Z
ỹ2 dA;

Iy D

Z
x̃2 dA;

JO D

Z
r̃2 dA D Ix C Iy ;

Ixy D

Z
x̃ỹ dA;

Eqs. (10.1)–(10.4), p. 534

where

x̃, ỹ, and r̃ are defined in Fig. 10.17. Note that the definitions of
these are identical to those used in Chapter 7. For example,
x̃ is the distance (i.e., moment arm) from the y axis to the
centroid of area element dA.

Ix is the area moment of inertia about the x axis.

Iy is the area moment of inertia about the y axis.

JO is the polar moment of inertia of the area about point O .

Ixy is the product of inertia of the area about point O .

Area moments of inertia have dimensions of .length/4.

Area radius of gyration The radii of gyration of an area A are defined as

kx D

r
Ix

A
; ky D

r
Iy

A
; kO D

r
JO

A
;

Eq. (10.5), p. 536

where

kx is the radius of gyration of the area about the x axis.

ky is the radius of gyration of the area about the y axis.

kO is the polar radius of gyration of the area about point O .

A is the area of the shape.

Radii of gyration have units of length.
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Parallel axis theorem for area moments of inertia Consider the area A
with centroid C shown in Fig. 10.18. A centroidal x0y0 coordinate system is
defined, with origin O 0 positioned at the centroid of the area. The x and y
axes are parallel to the x0 and y0 axes, respectively, with separation distances
dx and dy . The parallel axis theorem relates the area moments of inertia with
respect to the x and y axes to the centroidal area moments of inertia as follows:

Figure 10.18
An area A with centroid at point C . The x and
x0 axes are parallel with separation distance dx ,
and the y and y0 axes are parallel with separa-
tion distance dy .

Ix D Ix0 C d
2
xA;

Iy D Iy0 C d
2
yA;

JO D JO0 C d
2A;

Ixy D Ix0y0 C dxdyA:

Eqs. (10.6)–(10.9), p. 545

The parallel axis theorem, written for composite shapes, is

Ix D

nX
iD1

�
Ix0 C d

2
xA
�
i

Eq. (10.14), p. 546

where n is the number of shapes, Ix0 is the area moment of inertia for shape i
about its centroidal x0 axis, dx is the shift distance for shape i (i.e., the distance
between the x axis and the x0 axis for shape i ), and A is the area for shape i .
Similar expressions may be written for Iy and JO .

A common error is to use the parallel axis theorem to relate moments of
inertia between two parallel axes where neither is a centroidal axis.

Figure 10.19
An object with mass m, density �, and volume
V ; r̃x , r̃y , and r̃´ are radial distances from the
x, y, and ´ axes, respectively, to the center of
mass for mass element dm.

Mass moments of inertia The mass moments of inertia for the object shown
in Fig. 10.19 are defined as

Ix D

Z
r̃2x dm D

Z
.ỹ2 C ˜́2/ dm;

Iy D

Z
r̃2y dm D

Z
.x̃2 C ˜́2/ dm;

I´ D

Z
r̃2´ dm D

Z
.x̃2 C ỹ2/ dm;

Ixy D

Z
x̃ỹ dm;

Iy´ D

Z
ỹ ˜́ dm;

Ix´ D

Z
x̃ ˜́ dm;

Eqs. (10.15)–(10.20), p. 553

where

r̃x , r̃y , and r̃´ are defined in Fig. 10.19 as the radial distances (i.e.,
moment arms) from the x, y, and ´ axes, respectively, to the
center of mass for mass element dm.
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x̃, ỹ, and ˜́ are defined in Fig. 10.19 as the x, y, and ´ distances,
respectively, to the center of mass for mass element dm.

Ix , Iy , and I´ are the mass moments of inertia about the x, y, and
´ axes, respectively.

Ixy , Iy´, and Ix´ are the products of inertia of the mass about the
xy, y´, and x´ axes, respectively.

Mass moments of inertia have dimensions of .mass/.length/2.

Mass radius of gyration The radii of gyration of an object with mass m
are defined as

kx D

r
Ix

m
; ky D

r
Iy

m
; k´ D

r
I´

m
;

Eq. (10.21), p. 555

where

kx is the radius of gyration of the mass about the x axis.

ky is the radius of gyration of the mass about the y axis.

k´ is the polar radius of gyration of the mass about ´ axis.

m is the mass of the object.

Radii of gyration have units of length.

Figure 10.20
An object with mass m and center of mass at
point G. The x and x0 axes are parallel with
separation distance dx , the y and y0 axes are
parallel with separation distance dy , and the ´
and ´0 axes are parallel with separation distance
d´.

Parallel axis theorem for mass moments of inertia Consider the object
with mass m and center of mass G shown in Fig. 10.20. An x0y0´0 coordinate
system is defined, with origin at the center of mass of the object. The x, y,
and ´ axes are parallel to the x0, y0, and ´0 axes, respectively, with separation
distances dx , dy , and d´, respectively. The parallel axis theorem relates the
mass moments of inertia with respect to the x, y, and ´ axes to the mass
center moments of inertia as follows:

Ix D Ix0 C d
2
x m;

Iy D Iy0 C d
2
y m;

I´ D I´0 C d
2
´ m:

Eqs. (10.22)–(10.24), p. 556

The parallel axis theorem, written for composite shapes, is

Ix D

nX
iD1

�
Ix0 C d

2
x m

�
i

Eq. (10.26), p. 557

where n is the number of shapes, Ix0 is the mass moment of inertia for shape
i about its mass center x0 axis, dx is the shift distance for shape i (i.e., the
distance between the x axis and the x0 axis for shape i), and m is the mass for
shape i . Similar expressions may be written for Iy and I´.

A common error is to use the parallel axis theorem to relate moments of
inertia between two parallel axes where neither of them is a mass center axis.
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R E V I E W P R O B L E M S

Problem 10.96

Figure P10.96

A semicircular area has outside radius ro and a concentric hole with inside radius ri .
Determine the polar moment of inertia of the area about point O .

Problems 10.97 and 10.98

(a) Fully set up the integral including limits of integration that will give the area mo-
ment of inertia about the y axis.

(b) Evaluate the integrals in Part (a).

Figure P10.97 Figure P10.98

Problems 10.99 and 10.100

Figure P10.99 and P10.100

Determine the constants c1, c2, and c3 so the curves pass through the points shown.

Problem 10.99

(a) Fully set up the integral including limits of integration that will give the area mo-
ment of inertia about the x axis.

(b) Evaluate the integral in Part (a).

Problem 10.100

(a) Fully set up the integral including limits of integration that will give the area mo-
ment of inertia about the y axis.

(b) Evaluate the integral in Part (a).

Problem 10.101

Figure P10.101 and P10.102

(a) Fully set up the integral including limits of integration that will give the area mo-
ment of inertia about the x axis.

(b) Evaluate the integral in Part (a).

Problem 10.102

(a) Fully set up the integral including limits of integration that will give the area mo-
ment of inertia about the y axis.

(b) Evaluate the integral in Part (a).
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Problems 10.103 and 10.104

Determine the area moments of inertia Ix and Iy .

Figure P10.103 Figure P10.104

Problem 10.105

Figure P10.105

The cross section of a symmetric W8 � 15 wide-flange I beam has area A D 4:44 in:2

and area moment of inertia about the x1 axis Ix1 D 121 in:4. Determine the moment
of inertia of the area about the x2 axis Ix2 .

Problem 10.106

Figure P10.106

(a) Determine d so that the origin of the coordinate system, point O , is positioned at
the centroid of the area.

(b) Determine the area moment of inertia about the x axis.

Problem 10.107

The cross section of the bar is symmetric about the x axis.

(a) Determine d so that the origin of the coordinate system, point O , is positioned at
the centroid of the area.

(b) Determine the area moment of inertia about the x axis.

(c) Determine the area moment of inertia about the y axis.

Figure P10.107
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Problems 10.108 and 10.109

Figure P10.108 and P10.109

For the uniform solid cone with height h and radius r , use integration to determine the
mass moment of inertia indicated, expressing your answer in terms of the mass m of
the cone.

Problem 10.108 I´.

Problem 10.109 Ix .

Problems 10.110 through 10.113

Figure P10.110–P10.113

The truncated cone shown has 2000 kg=m3 density. Report your answers for the prob-
lems that follow using kg and mm units.

Problem 10.110 Use integration to determine the mass moment of inertia about the
x axis.

Problem 10.111 Determine the mass moment of inertia about the x axis using
composite shapes.

Problem 10.112 Use integration to determine the mass moment of inertia about the
´ axis.

Problem 10.113 Determine the mass moment of inertia about the ´ axis using
composite shapes.

Problems 10.114 and 10.115

Figure P10.114 and P10.115

The object shown has 8000 kg=m3 density and has a conical hole. Use integration to
determine the mass moment of inertia about the

Problem 10.114 x axis.

Problem 10.115 y axis.

Problems 10.116 and 10.117

Figure P10.116 and P10.117

The solid of revolution consists of materials with densities �1 and �2.

Problem 10.116 Fully set up the integrals, including limits of integration, that will
yield the mass moment of inertia about the x axis. You are not required to evaluate the
integrals.

Problem 10.117 Fully set up the integrals, including limits of integration, that will
yield the mass moment of inertia about the y axis. You are not required to evaluate the
integrals.
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Problems 10.118 and 10.119

A solid of revolution is produced by revolving the area shown 360ı around the y axis.
Use integration to determine the mass moment of inertia about the axis of revolution
assuming the solid has uniform density of 2000 kg=m3.

Figure P10.118 Figure P10.119

Problems 10.120 and 10.121

Figure P10.120 and P10.121

A beam is constructed of three identical pieces of wood, each piece having 40mm by
160mm by 500mm dimensions, and 2 kg mass that is uniformly distributed. The cross
section of the beam is symmetric about the x and y axes.

Problem 10.120

(a) Determine the area moment of inertia for the cross section about the x axis.

(b) Determine the mass moment of inertia for the beam about the x axis.

Problem 10.121

(a) Determine the area moment of inertia for the cross section about the y axis.

(b) Determine the mass moment of inertia for the beam about the y axis.

Problems 10.122 through 10.124

Figure P10.122–P10.124

The object shown is made of thin plate with 0:02 lb=in2 specific weight. Determine the
mass moment of inertia about the

Problem 10.122 x axis.

Problem 10.123 y axis.

Problem 10.124 ´ axis.



A Technical Writing

In this appendix we use a short report as an example to discuss technical
writing. The report is written by Bucky Badger, mascot of the University of
Wisconsin–Madison.

A Short Guide to Technical Writing
January 1, 2007

by Bucky Badger
Dept. of Engineering Physics

University of Wisconsin–Madison

Abstract

This document is a brief overview of technical writing. It is written in a form
you can use as a model for short reports that are up to a few pages in length.
The abstract should briefly describe the problem you are considering and
should summarize important results. For short reports, the abstract is normally
only a few sentences in length.

1. Introduction

Effective written reports are necessary for communication and documentation
of your analysis or design and are an essential part of your work as an engi-
neer. Your most outstanding ideas are only as good as your ability to communi-
cate those ideas to others. Furthermore, reports archive your ideas and may be
needed in the future by you or others, to show how your design was developed,
to aid in modifications, to help support patent rights, for use in litigation, and
so on.

2. Technical Writing Tips

A technical report should be written using proper, simple English with correct
grammar, punctuation, and spelling. It should be typewritten using a font size
and line spacing that are easy to read. All pages should be numbered. The
report should not be one long narrative, but rather should use sections and pos-
sibly subsections to break the material into smaller logical units. You should
evaluate the intended audience and gage the technical level of your report ac-
cordingly.

The main body of your report should clearly summarize the assumptions
you made, your method of analysis, and important observations. It should also
discuss value decisions and economic and/or manufacturing considerations if
appropriate and very clearly spell out your design recommendations and spec-
ifications. You should provide convincing justification to the reader that your
findings and/or recommendations are accurate and reasonable. If equations are
included in the main body of your report, they should be numbered. However,
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very often most of the equations, detailed calculations, and/or raw data are
best placed in an appendix which should be referenced in the main body of
the report.

Any articles, books, reports, published data, etc. that you use in your work
should be referenced in the report using a standard format. References to
Internet websites are permissible, but may be short-lived as the addresses and
content of websites change frequently. Additional details on technical writing
can be found in Woolever (2002). Use the spell checker in your word processor
to check spelling, but be sure to thoroughly proofread your report, including
the final draft, before you submit it.

3. Figures, Graphs, and Tables

Figures, graphs, and tables can convey a considerable amount of information.
These should always be numbered so they can be easily referred to in your
report, and they should have comprehensive captions that explain what the
figure, graph, or table shows.

3.1 Figures. The time-honored Chinese proverb that “a picture is worth ten
thousand words” applies here. It is considerably more effective to use a figure
than to use a paragraph of text to describe what is probably self-evident in the
figure. For example, imagine you are designing a wooden clothespin and must
specify dimensions and the stiffness for the torsional spring. By including a
sketch of the clothespin where dimensions and important parts are identified,
as shown in Fig. A.1, your discussion will be considerably more straightfor-
ward and easier to comprehend.

Figure A.1. Clothespin design with important parts and dimensions and identified.

3.2 Graphs. Graphs should always have labeled axes, including appropriate
units. If the graph contains multiple curves, each of these should be labeled,
perhaps by use of a legend.

3.3 Tables. Rows and columns of a table should always be labeled, includ-
ing appropriate units.

4. Summary and Conclusions

In this final section of your report you should very clearly summarize your
findings and how you reached your conclusions. As a guide, if a person were
to read only this section, he or she should have a reasonable idea of your work.

References

Woolever, K. R., Writing for the Technical Professions, 2nd ed., Longman,
2002.
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Appendix

The appendix contains detailed calculations, raw data, and other ancillary
information. This is information the reader may choose not to consult, but
should be included to help support your remarks and claims. It can be neatly
handwritten.

End of Sect ion Summary

This appendix used an example report to present guidelines and tips for writing
short technical reports. Below is a summary of some of the most common
mistakes that students make when writing technical reports.

Technical Writing Pitfalls

� Your report should not be one long narrative. Use sections and possibly
subsections to break your report into logical units.

� Do not embellish your report with fictional company names, etc., or talk
about yourself as a statics/engineering student, etc. Write your report as
a professional document—short and to the point.

� Provide formal references for all sources of data (follow the format
given in the example report).

� The vast majority of the time (almost always!), a figure that helps de-
scribe the problem you are working on is very effective. It should be in
the main report.

� Very prominently and succinctly state your findings and/or design rec-
ommendations in the main body of the report. The reader should not
have to search for this information.

� Do not overreference the appendix. In a short report that is only a few
pages in length, you should probably reference the appendix no more
than a few times. Anything that is central to your discussion in the
main report (e.g., a table, graph, equation) should be present in the main
report.

� Figures, graphs, and tables should always be labeled.

� Graphs should have labeled axes, including units, and a legend if the
graph contains multiple curves.

� Your report should be easy to read and convincing. Ideally, a person
should be able to comprehend your report with one reading.

� Proofread your entire report one last time before submitting it. Do not
overrely on the spell checkers that most computer word processors have.
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B Answers to Selected Problems

The answers to most even-numbered problems are provided in a downloadable
PDF file at:

www/mhhe.com/pgc

Providing answers in this manner allows for more complex information than
would otherwise be possible. In addition to final numerical or symbolic an-
swers, selected problems have more extensive information such as free body
diagrams and/or shear and moment diagrams. For example, Prob. 6.60 and the
corresponding answer are shown below.

Problem 6.60

Figure P6.60

The hand brake for a bicycle is shown. PortionsDE and FG are free to rotate
on bolt A which is screwed into the frame BC of the bicycle. The brake is
actuated by a shielded cable where T1 is applied to point E and T2 is applied
to point G. A spring having 50N compressive force is placed between points
E and G so that the brake stays open when it is not being used. Assume the
change in the spring’s force is negligible when the brake is actuated to produce
the 200N forces at points D and F .

(a) Draw three FBDs, one each forDE and FG and boltA, labeling all forces.

(b) Determine the necessary cable forces T1 and T2.

(c) Determine the forces exerted by DE and FG on bolt A.

Problem 6.60 (b) T1 D 283N; T2 D 283N; (c) A1x D 260N; A1y D
�225N; A2x D �260N; A2y D 225N:
(a)

This feature not only provides more complete answers in selected circum-
stances, but also provides the modeling kick-start needed to get you started
on some homework problems. Furthermore, the multitude of FBD answers
provided give you ample opportunity to practice constructing FBDs on your
own for extra problems and to enhance your ability to draw FBDs.
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A

Absolute location, 27, 48
Absolute pressure, 434
Acceleration defi ned, 7, 22
Acceleration due to gravity, 16, 23
Accessory belts, 521, 524–25
Accuracy of numbers, 12
Addition of vectors. See Vector addition
Airbus A300 failure, 20–21
Aircraft landing gear, 295–97
Aircraft service vehicles, 374, 375
Algebraic equations for particles in three-dimensional 

equilibrium, 148–49
Allowable loads, 163–65, 176
All-terrain vehicles, 207
Aluminum alloy, 19
Aluminum channels, 402
American Concrete Institute, 314
American Gear Manufacturers Association, 251
American Institute of Aeronautics and 

Astronautics, 314–15
American Institute of Steel Construction, 314
American National Standards Institute, 315
American Society of Mechanical Engineers, 314
Amontons, Guillaume, 497
Anchoring blocks for cranes, 514–15
Angle of friction, 501, 529
Angle of twist, 536
Angle of wrap, 521, 525
Angles between vectors, 76, 78, 81–82
Angular measure, units of, 11–12
Anisotropic friction, 502
Anticommutative property of vector cross 

product, 92
Archimedes, 3
Arcs, centroids of, 406–7
Area moments of inertia

basic concepts, 533–35, 572
composite shape examples, 548–49
evaluating, 537
integration examples, 539–41, 547
parallel axis theorem, 545–46, 573

radii of gyration and, 536–37
thin fl at plate example, 559

Areas
centroids of, 397, 400, 402, 404–5
of surfaces of revolution, 425, 451

Aristotle, 3
Associative property of vector addition, 31
Associative property of vector multiplication, 

32, 76, 92
Astronomy, 4–5
Atmospheric pressure, 442
Axes of revolution, 403, 425, 451
Axes of symmetry, 399, 536
Axial forces in slender members, 458, 459
Axial springs, 271, 272, 322

B

Backpack hoist example, 124
Baltimore trusses, 351
Bars

allowable loads, 163, 165
basic modeling of, 117–19
common assumptions about, 136
internal and external forces on, 62–63
three-dimensional example problems, 152–55
two-dimensional example problems, 

122–23, 126–27
Base units, 9
Basketball hoops, 380–81
Bead-and-cord examples, 84–86
Beams

area moments of inertia example, 534
design criteria, 482
distributed forces on, 432–33, 439, 451–52
equilibrium approach to internal force 

calculations, 467–73, 491
equivalent forces on, 228
free body diagrams, 297, 298
Galileo’s studies, 4
integration approach to internal force calculations, 

479–81, 483–87, 491
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Beams—(contd.)
leveling with wedges, 516–17
moments of couples on, 213
in multispan bridges, 378
rectangular shapes in cross section, 539
shear, moment, and distributed force relations, 

478, 481, 491
strengthening, 548
two-dimensional idealization example, 258

Bearings, 292–94, 304–5
Belts, 521–22, 524–25, 530
Belt tensioner example, 192
Bending, 335, 461, 474
Bending moments, 458, 459
Bicycle wheels, 75
Bifurcations, 352
Bodies defi ned, 6
Body forces, 8, 432, 451
Boeing 787 Dreamliner, 281
Bookshelf example, 439
Booms

failure criteria examples, 122–23, 152–53
pin and cable support example, 302–3
socket and cable support example, 300–301
space trusses as, 366, 368

Bottle openers, 461
Boundary lubrication, 501
Bowling balls, 18
Brakes, 204
Bridges

example problems, 378–79
examples of failure, 20, 354
truss types, 330

Briefcase latch example, 140–41
Buckling, 165, 351–53, 389. See also Failure
Built-in supports, common reaction forces, 293
Bulletin board diagrams, 252, 253

C

Cable–supported cantilevers, 295, 296
Cable car example, 125
Cables

allowable loads, 163, 165, 166–67
basic approaches to analyzing, 270, 271
basic modeling of, 117–19

common assumptions about, 135–36
contacting cylindrical surfaces, 521–22, 530
modeling as springs, 286
structure of, 165
tensile force vector example, 65
three-dimensional example problems, 

152–53, 300–303
in trusses, 339
two-dimensional example problems, 122–27

Calculations, accuracy in, 12
Calculus, 15
Canning, 442
Cantilevers

cable-supported, 295, 296
shear and moment, 472–73
two-dimensional idealization example, 258

Capacity ratings, 316–17
Cartesian coordinate system

basic features, 5
for vectors in three dimensions, 60–63, 105
for vectors in two dimensions, 44–48, 104

Cartesian representation, 45, 77–78, 92–93
Cart handle example, 284–85
Castings, equivalent forces on, 231
Center of gravity

basic concepts, 395–97
defi ned, 16, 396, 413, 450
determining, 414–16, 450–51
example problems, 418–20

Center of mass
defi ned, 397, 413, 450
determining, 413–14, 450
example problems, 417
moments of inertia about, 554

Center of pressure, 396
Centroidal moments of inertia, 535, 545, 549
Centroids

center of gravity versus, 396
of cones, 420
defi ned, 397, 413, 450
example problems, 402–8
methods of determining, 397–400, 450

Channels (freshwater), 440–41
Clamped supports, 293
Clamping devices, 256–57
Closed force polygons, 126–27
Coast Guard icebreakers, 510
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Coast Guard rescue craft example, 54–55
Codes, 3, 314
Coeffi cient of kinetic friction, 499, 500, 529
Coeffi cient of static friction, 499, 500, 529
Coeffi cients of friction, 499–500
Coil springs, 136. See also Springs
Collars

position and force vector example, 70–71
reaction forces, 126, 247
summing forces on, 154–55

Commercially manufactured beams, 482
Commutative property of vector addition, 31
Commutative property of vector 

multiplication, 76
Complete fi xity

in plane trusses, 349, 350
in rigid bodies, 273, 322
in space trusses, 365

Complex trusses, 351, 389
Components. See Scalar components; 

Vector components
Composite shapes method

for area moments of inertia, 546, 548–49
center of mass and gravity examples, 417–19
determining centroids via, 397, 399, 402–3
for mass moments of inertia, 557, 565
use with distributed load problems, 433

Compound trusses, 351, 389
Compressive loads, 122–23, 165
Concrete blocks, 486
Concrete smoother example, 216
Concrete traffi c barriers, 505
Concurrent design, 312
Concurrent force systems

defi ned, 111, 224, 225
three-force members subjected to, 278, 279

Cones, center of gravity and centroid, 420
Connecting rod example, 564
Constant velocity, 4
Consumer Product Safety Commission, 315
Contact forces, 8, 9
Contact surfaces

multiple, 501–2, 506–7, 513–17
roughness, 497, 498

Contraction, 135
Conversion factors, 10
Coordinates, 5, 44

Coordinate systems
absolute location and, 27
common uses, 5
in free body diagrams, 115, 116
for structures in equilibrium, 249

Coplanar force systems, 186, 224, 225
Cosine law, 32–33, 34–35, 104
Coulomb, Charles Augustin de, 498
Coulomb’s law

elements of, 499, 529
for tensile forces on cylindrical surfaces, 521–22
in three dimensions, 502

Couples, moments of, 208–12, 239–40
Cover plates, 548
Cranes

anchoring blocks for, 514–15
direction angle example problem, 64
space trusses in, 366, 368
support reactions of pulleys in, 282–83

Crop planting positioners, 298, 299
Cross products

basic concepts, 91–96, 107
evaluation examples, 97–100

Cross sections, 402, 404–5, 539
Cubes, moments of couples on, 214–15
Curved lines, centroids of, 406–7
Curved link support example, 256–57
Curved members

centroids of, 404–5
fl uid forces on, 436–37
in trusses, 330, 335, 338–39

Cuts
in free body diagrams, 112, 114
in method of sections, 346

Cylinder volume and surface area, 428, 429
Cylindrical gates, 441
Cylindrical surfaces, belt friction, 521–22, 530

D

Da Vinci, Leonardo, 4, 497
Deer Isle bridge, 20
Deformation

defi ned, 135
internal forces, 458–59
measuring, 8
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Deformation—(contd.)
negating force transmissibility, 222
representing as springs, 136–39

Degree measure, 11–12
Density, 17, 19, 23
Derived units, 9
Design. See Engineering design
Design analysis, 314
Design codes, 3, 314
Determinants, 93–95
Die springs, 142
Differential forces causing tides, 29
Dimensions, units versus, 9
Direction angles

examples determining, 64, 66, 68–69
methods of determining, 60–61, 105

Direction cosines, 61
Direction convention for moments, 301
Discontinuities in shear and moment diagrams, 

469, 484, 485
Distributed forces

contact forces as, 8
erroneous replacement by equivalent force, 471
example problems, 439–42
idealizing as point forces, 432–38, 451–52
major types, 432, 451
relation to shear and moment in beams, 

478, 481, 491
Distributive property, 32, 76, 92
Documenting designs, 314
Dot products

basic concepts, 76–80, 105–6
example problems, 81–86, 154–55
for summing forces in three dimensions, 

150, 155, 176
Double-headed arrows, 183
Doubly symmetric objects, 555
D ring vector example, 34–35
Drop hammers, 142, 142–43
Drum mixers, 261–62
Dump trucks, 306–7
Dynamics, 2, 5

E

Eiffel Tower, 363
Elastic cord force examples, 84–86

Elasticity, 137
Electric transmission tower example, 356–57
Elongation, 135
Empirical equations, 500
Engine accessory belts, 521, 524–25
Engine connecting rods, 564
Engineering design

basic concepts, 162–65, 312
cable selection example, 166–67
codes and standards, 314–15
criteria for beams, 482
defi ned, 161
forklift example, 316–17
friction considerations, 502–3
objectives, 161–62
process steps, 312–14
trusses, 351–53, 354
water cooler support example, 168–69

Equals sign, 9
Equation counting

for plane trusses, 349–50, 389
for rigid bodies, 274–76, 322–23
for space trusses, 364–65

Equilibrium
equations for rigid bodies, 245–46, 292, 321
geometry of structures in, 135
of particles in three dimensions, 148–50, 175
of particles in two dimensions, 111–20
rigid bodies in three dimensions, 292–99
rigid bodies in two dimensions, 246–55, 270–79

Equilibrium approach, internal force determination, 
467, 480, 491

Equivalent couples, 210, 240
Equivalent force systems

erroneous replacement of distributed force 
by, 471

example problems, 228–33
in method of sections, 348–49
overview, 211, 221–24, 226, 240–41
special types, 224–26, 241

Equivalent vectors, 31
Error checking, 149
Escambia Bay bridge, 20
Euler, Leonhard, 5
Evaluation in design, 312–13
Exam scores, 533–34
Exercise machines, 340, 341
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Experimental determination of mass moments 
of inertia, 564

Expo Center, 363
External effects of forces, 221
External forces, 62–63, 115
Extruded aluminum channels, 402
Eyebolts, 50–53

F

Factors of safety, 50, 164–65, 176
Failure. See also Buckling

determining for bars and cables in three 
dimensions, 152–53

determining for bars and cables in two 
dimensions, 122–24

factors of safety and, 50, 164–65
famous examples, 20–21, 354
house-on-slope example, 98–99
multiple criteria in free body diagrams, 

122, 123
in statically determinate structures, 354

Failure strength, 164–65
Fatigue, working loads and, 50
Feasibility studies, 313
Field forces, 8, 9
Figure skating, 553
Final designs, 314
Finite element method, 100, 364
Fink trusses, 351
First law of motion (Newton), 7, 22
First moments, 397
Fixity

determining in three dimensions, 300
elements of, 273–74, 322
in plane trusses, 349, 350
in space trusses, 365

Flat surfaces, fl uid forces on, 435–36
Flexibility of cables, 135–36
Fluids, 433–37, 440–41, 452
Foam packaging, 138–39
Folding desk diagrams, 252, 253
Foot-pounds, 183
Force. See also Equivalent force systems; Moments

defi ned, 6, 8
internal and external, 62–63

major types, 8–9
transmissibility, 221–22

Force due to gravity, 15
Force polygons

basic concepts, 34, 38, 39–40
example problems, 126–27

Force vectors
examples determining, 65, 68–71
lines of action, 79
position vectors with, 62

Forklifts, 316–17
Four-point bending, 474
Frames

defi ned, 372, 390
example problems, 378–83
free body diagrams, 372–77
when to model as, 331, 364

Free body diagrams
fl uid and gas pressures, 436
for frames and machines, 372–77
for particles in equilibrium, 112–16, 175
procedures for drawing, 113, 248, 373
for rigid bodies in three dimensions, 295–99
for rigid bodies in two dimensions, 248–50, 252–55

Free vectors, 210, 211–12, 240
Freshwater channel examples, 440–41
Friction forces

belts and cables on cylindrical surfaces, 521–22, 530
defi ned, 8
design considerations, 502–3
example problems, 504–7, 514–17
factors determining, 497, 498–501, 529
with multiple contact surfaces, 501–2, 513
on wedges, 502

Full fi xity
in plane trusses, 349, 350
in rigid bodies, 273, 322
in space trusses, 365

Full Moon, 29
Functionally graded material, 420
Furnace door example, 304–5

G

Gage pressure, 434, 442, 452
Galilei, Galileo, 4
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Gambrel trusses, 360
Gases, 433–35, 437–38, 442, 452
Gas springs, 136
Gates in freshwater channels, 440–41
Gears, 251, 261–62
General multiforce members, 277, 323
Generating areas, 426, 451
Generating curves, 425, 428, 451
Grand Canyon Skywalk, 459
Gravitational attraction

example problems, 14, 18
ocean tide illustration, 28–29
overview of Newton’s law, 15–17, 23

Gravity gradient satellites, 415
Grinding, 502
Guldin, Paul (Guldinus), 425, 426, 451
Gyratory compactors, 236

H

Hammer mass moment of inertia 
example, 565

Hand saws, 462
Hand truck diagrams, 252, 254
Hanging on basketball rims, 380
Hazards, minimizing in design, 161–62
Heads of vectors, 28
Head-to-tail addition of vectors, 31
High-tension sides of cables, 521, 530
Hinges, 293, 295, 296
History of statics, 3–5
Hoover Dam, 395
Horizontal area elements, centroids of, 404–5
House-on-slope example, 98–99
Howe trusses, 330
Hurricane Ivan, 20
Hydraulic cylinders, 306–7
Hydrostatic pressure, 434

I

I beams. See also Beams
minimizing defl ection with, 534
strengthening, 548
support reaction example, 286
trolley mounted on, 260

Icebreakers, 510
Impending motion, 498
Inertial forces, designing for, 168
Inextensibility, 135, 136
Integrations

for center of gravity example, 420
determining centroids with, 398, 399, 404–8
determining internal forces in beams with, 

479–81, 483–85, 491–92
evaluating area moments of inertia with, 

537, 539–41, 547
evaluating mass moments of inertia with, 

556–57
use with distributed load problems, 433

Interaction diagrams, 108
Internal effects of forces, 221
Internal forces

basic concepts, 62–63, 457–59, 491
equilibrium approach to determining, 

467–73, 480
excluding from free body diagrams, 115
integration approach to determining, 479–81, 

483–85, 491–92
shear and moment example problems, 483–87
three-dimensional example problems, 463
two-dimensional example problems, 461–62

International Organization for Standardization 
(ISO), 315

International Space Station, 554, 555
Interstate 35W bridge, 354
Inverse cosine function (calculators), 64
Isotropic friction, 502
Iterative nature of design, 312, 314

J

Joints. See also Method of joints
defi ned, 330, 388
in space trusses, 363
treating forces not at joints, 348–49

K

Kansas City Hyatt Regency Hotel, 21
Keweenaw Peninsula, 54
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Kinematics, 502, 513
Kinetic friction force, 498
Kites, 417
K trusses, 330

L

Ladders, 382–83
Landing gear, 295–97
Latches, 140–41
Law of cosines, 32–33, 34–35, 104
Law of sines, 32–33, 34–35, 104
Law of universal gravitational attraction, 

15–17, 28–29
Leaf springs, 139
Leibniz, Gottfried Wilhelm, 15
Leonardo da Vinci, 4, 497
Lids, reaction forces on, 295, 296
Lifting machine diagrams, 252, 253
Linear functions, expressions for, 420
Linearity of springs, 137, 175–76
Linearly independent equations, 67
Line forces, 432, 451
Line integrals, 398
Lines, centroids of, 397–98, 400, 406–7
Lines of action

defi ned, 28
determining angle between, 76, 78, 81–82
determining moments at different points 

along, 188–89
Load center, 316
Load lumping, 338
Load paths, 142
Lock washers, 138
Loose-fi tting gears example, 261
Lotus Sport Exige 240R, 521
Low-tension sides of cables, 521, 530
Lubrication, 501
Lucky Peak Reservoir, 330

M

Machine control diagrams, 254, 255
Machine handle moment example, 

188–89

Machines
defi ned, 329, 372, 390
free body diagrams, 372–77

Magnitude of vectors, 28, 45–46, 60, 104
Mass

center of, 397, 413–14, 450
defi ned, 6
weight versus, 9, 98

Mass center moments of inertia, 554, 555–56
Mass moments of inertia

applications, 554–55
basic concepts, 553–54, 573–74
defi ned, 533, 553
evaluating, 556–57
example problems, 558–65
parallel axis theorem, 555–56, 574

Matrices, 93–95
Mechanical advantage, 506
Mechanics of materials, 2, 5
Mechanisms in trusses, 349, 351
Method of joints

plane truss analysis by, 331–33, 336–41, 388
space truss analysis by, 366–67

Method of sections
plane truss analysis by, 346–48, 355–57, 388
space truss analysis by, 368–69

Microelectromechanical system machines, 372
Minivan rear door example, 259
Minors, expanding determinants with, 94
Misuse, designing for, 162
Mixer gears, 261–62
Modeling, 116, 117
Moment arm, 182, 192, 238
Moment diagrams. See Shear and moment diagrams
Moment equilibrium equations, 246, 250–51
Moment-resisting collars, 247
Moments

about a line or direction, 198–99, 201–3, 239
couple example problems, 213–16
of couples, 208–12, 239–40
direction convention, 301
eliminating in bearings, 292–94
errors in summing, 303
maximizing example, 192
overview, 181–82
relation to shear and distributed forces in beams, 

478, 481, 491
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Moments—(contd.)
scalar and vector approaches, 182–85, 186, 238–39
selecting summation points, 250
three-dimensional example problems, 190–91
two-dimensional example problems, 187–89
Varignon’s theorem, 185, 238–39
of weight distributions, 397

Moon, 27, 28–29
Mores Creek bridge, 330
Motion laws of Newton, 7–8
Mud slides, 98–99
Multiple contact surfaces, 501–2, 506–7, 513–17
Multiplication of vectors by scalars, 31–32
Multistory buildings as springs, 138, 139
Mutual attraction, forces of, 18

N

Neap tides, 29
Negative wrenches, 225
New Moon, 29
Newton, Isaac, 4–5, 7–8
Newtonian physics, 1
Newton-meters, 183
Newtons (SI units), 9
Newton’s laws

overview, 7–8, 22
static equilibrium of particles under, 111–12
universal gravitational attraction, 15–17, 23
in vector and scalar form, 150

Nodes of fi nite elements, 100
Nonfl at surfaces, fl uid forces on, 436–37
Nonlinear responses of springs, 139
Nonsymmetric shapes, 536
Normal direction, 95, 100
Normal forces in slender members, 458

O

Objects of revolution, 425–26, 556
Obtuse angles, 33
Occupational Safety and Health Administration 

(OSHA), 315
Ocean tides, 27, 28–29
Optimization, 39–40

Orientation of vectors, 45–46, 104
Origins coordinate system, 44, 45
Overdetermined problems, 67

P

Paper cutters, 162
Pappus of Alexandria, 425, 426, 451
Parallel axis theorem

with area moments of inertia, 545–46, 573
example problems, 547–49
with mass moments of inertia, 555–56, 557, 574

Parallel force systems
defi ned, 224, 225
three-force members subjected to, 278, 279

Parallelogram addition of vectors, 31
Parallelogram areas, 95
Parallel vector components, 38, 78, 106
Parthenon, 3
Partial fi xity

in plane trusses, 349, 350
in rigid bodies, 273, 322
in space trusses, 365

Particles
defi ned, 6
three-dimensional equilibrium, 148–50
two-dimensional equilibrium, 111–20

Pascals, 432
Perfect fl exibility, 135–36
Perfectly aligned bearings, 292, 294
Perigean spring tides, 29
Perpendicular vector components, 38, 79–80, 106
Philosophers, 3
Pickup tools, 374, 375
Pickup truck free body diagrams, 252, 254
Pin and cable support example, 302–3
Pin supports

example problems, 302–3
free body diagrams in frames and machines, 382
reaction forces in three dimensions, 293
reaction forces in two dimensions, 247, 248

Pipe, 164, 165, 418
Pitch radii, 251
Planes of symmetry, 306
Plane trusses, 330, 332, 388. See also Trusses
Play structure movement examples, 36–37
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Pliers, 221
Pneumatic tires as springs, 138, 139
Point forces, 432–38
Point mass, 6
Polar moment of inertia, 534, 535, 536
Polar radius of gyration, 537
Pool ladders, 382–83
Position, 6, 22, 48
Position vectors

applications, 54–55, 65–67, 70–71
basic concepts, 48
in three dimensions, 61–62, 105

Positive wrenches, 225
Pratt trusses, 330
Precision of calculations, 12
Prefi xes, 10, 11
Pressure angles, 251
Pressure cookers, 442
Principia, 4–5
Principle of moments, 185, 238–39
Principle of transmissibility, 221–22, 240
Problem evaluation in design, 312–13
Problem identifi cation in design, 312
Problem solving, 117
Products of inertia

in area moments of inertia, 534, 536
in mass moments of inertia, 553, 555

Pruners, 375–77
Pulleys

basic approaches to analyzing, 270, 271
basic modeling of, 119
belt friction against, 521, 524–25
free body diagrams in frames, 375, 376
effects on cable strength, 165
examples, 118
support reactions of, 282–83
in trusses, 339

Pump turbine blades, 404–5, 541
Pythagorean theorem, 33, 104, 398

R

Radians, 11–12
Radii of gyration

for areas, 536–37, 572
for masses, 555, 565, 574

Ramps, 504
Range-of-motion analysis, 306–7
Ratchet pruners, 375–77
Reaction forces

basic modeling of, 120, 121
cantilevered beam example, 258
curved link support example, 256
defi ned, 112
directions in free body diagrams, 249, 302
irrelevance to equivalent force 

determinations, 228
for particles in three-dimensional equilibrium, 148
for particles in two-dimensional equilibrium, 

114, 115, 126, 140
on rigid bodies in three dimensions, 292, 293
on rigid bodies in two dimensions, 126–27, 

246–48, 277–79
Rectangular cross section shapes, 539
Reference points of vectors, 27–28
Refrigerator supports, 506–7
Reports, technical, 167
Request for proposals, 312
Rescue craft position vector example, 54–55
Resolution into vector components, 33, 36–37
Restaurant sign example, 418–19
Resultant couple moments, 211, 216, 240
RFPs (request for proposals), 312
Right-hand Cartesian coordinate system, 60
Right-hand rule for cross products, 91–92
Rigid bodies

defi ned, 6
equations in static equilibrium, 245–46, 321
equilibrium in three dimensions, 292–99
equilibrium in two dimensions, 246–55, 270–79
idealizing structures as, 222, 245, 270
transmissibility of forces in, 222, 240

Rigid body motion, 273–74
Rockers, 247
Rollers, 247, 260
Roof trusses, 330
Rough surfaces, common reaction forces, 293

S

Safety as design priority, 161–62
Safety factors, 50, 164–65, 176
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Satellites, 415
Saws, 462
Scalar approaches

for equilibrium forces on rigid bodies, 294–95
for moment about a line, 199, 239
for moment about a point, 182–84, 186, 191, 238
for moments of couples, 209, 240

Scalar components, 45, 104
Scalar form, 112, 150
Scalar product, 76. See also Dot products
Scalars, 6, 22, 31–32
Scalar triple products, 95–96, 107
Scrapers, 375, 376
Screws, 442, 502
Second law of motion (Newton), 7, 22
Second moments of an area, 535
Sections. See Method of sections
Selective reinforcement of beams, 548
Self-aligning bearings, 292, 294
Self-locking, 519
Shafts, 536
Shear and moment diagrams

basic features, 467
discontinuities in, 469, 484, 485
equations for, 478
example problems, 486–87
tips for drawing, 481–82

Shear forces
relation to moment and distributed forces in 

beams, 478, 481, 491
in slender members, 458, 459

Sheet metal fabrication examples, 82, 142–43
Shift distance, 546, 557
Shifting forks, 297, 298, 463
Sign conventions

in cable and bar free body diagrams, 118, 119
for internal force problems, 458–59, 467
for moment problems, 185, 187, 292, 301
spring law, 137, 175, 272

Simple space trusses, 364
Simple trusses, 351, 389
Sine law, 32–33, 34–35, 104
SI unit system, 9
Slender members, 335, 457, 458–59. 

See also Beams
Sliding motions, 504–7, 513, 514–15
Slip, 524–25

Slope failure example, 98–99
Slugs, 9
Smallest-distance problems, 86
Society of Automotive Engineers, 314
Sockets, 293, 300–301
Solid-fuel rocket motors, 428–29
Solids, centers of gravity and mass, 413, 414, 415
Solids of revolution

defi ned, 403
determining volume, 426, 451
example problems, 428–29, 560–61

Solution checking, 149
Space, defi ned, 5
Space shuttle position vector example, 66–67
Space Station, 554, 555
Space trusses

basic features, 363–64, 389–90
design considerations, 364–65
example problems, 366–69

Specifi c weight, 16–17, 19, 23
Spring law, 137, 175–76, 271, 272
Springs

basic approaches to analyzing, 271–72
basic properties, 136–39, 175–76, 321–22
example problems, 140–43, 281
modeling cables as, 286

Spring stiffness, 137, 272, 322
Spring tides, 29
Spur gears, 251
Square roots, negative, 64
Stability in space trusses, 364
Standard deviation, 533, 534
Standards

engineering design, 314–15
for gears, 251
use in determining safety factors, 165

Statically determinate structures
defi ned, 274, 322
identifying bodies as, 274–76, 322–23
plane trusses as, 349–50, 353, 354, 355, 389
space trusses as, 365

Statically indeterminate structures
defi ned, 142, 274, 322
example problems, 142–43, 286
identifying bodies as, 274–76, 322–23
plane trusses as, 349–50, 353, 389
space trusses as, 365
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Static equilibrium. See also Equilibrium
conditions of particles in, 111–12, 175
defi ned, 8, 22, 112

Static friction force, 498
Statics

basic principles, 5–8
defi ned, 1, 2
historical development, 3–5

Steel bars, 163, 165. See also Bars
Steel cables, 62–63, 163, 165. See also Cables
Steel pipe, 164, 165
Steering linkage example, 203
Steering wheels, 181–82, 198
Stick, non-sliding condition, 498
Stiffness of springs, 137, 272, 322
Storage chests, 295, 296
Strength, 459
Structural design codes, 3, 314
Structural members, internal and external 

forces on, 62–63
Structured problem solving approach, 117
Structures, defi ned, 329
Struts, 259
Subtraction of vectors, 32
Summation of forces in directions other than 

x, y, or z, 150, 154–55
Sun, 29
Superposition, 272–73, 472–73
Supports

basic reaction force concepts, 120
common three-dimensional reactions, 

292, 293
common two-dimensional reactions, 121, 

246–48, 277–79
example problems, 300–307, 418–19
fi xity of, 273–74, 322

Surface forces, 432, 451
Surfaces

center of gravity for, 415–16
center of mass for, 413, 414

Surfaces of revolution, 426, 451
Swimming pool ladders, 382–83
Symmetric geometry

centroids, 399
moments of inertia with, 536, 555, 

557, 562–63
simplifi ed analysis with, 306

T

Tables, equivalent forces on, 230
Tacoma Narrows bridge, 20
Tails of vectors, 28
Tapered prism example, 562–63
Technical reports, 167
Tensile forces

in belts and cables on cylindrical surfaces, 
521–22, 524–25, 530

deformation under, 135
position and force vector examples, 

65, 70, 84
sign conventions for cables and bars, 118, 124

Tensile loads in cables and bars, 
135–36, 163, 164, 165

Tension, notation for, 124
Testing for coeffi cients of friction, 500
Test scores, 533–34
Theodolites, 73
Thin, fl at plate-type objects, 558–59
Thin disk volume elements, 408, 556, 560, 561
Thin shell volume elements, 408, 556, 560
Third law of motion (Newton), 7, 22
Three-force members

example problems, 284–85
features of, 276–77, 278, 279, 323

Thrust bearings, 294
Tidal bulges, 29
Tides, 27, 28–29
Time, 5
Tipping motions, 505
Tires as springs, 138, 139
Torque, 459
Torsional springs, 272, 322
Tractions, 451
Tractor removal examples, 38–40, 83
Traffi c barriers, 505
Traffi c signal cables, 166–67
Traffi c signal poles, 373, 374
Transformation of vectors, 53, 58
Transmissibility of a force, 221–22, 240
Transmission tower example, 356–57
Tribology, 497–98. See also Friction forces
Trivial solutions, 352
Trolley examples, 260
Tropicana Casino parking garage, 21



Trusses
approximating structures as, 338–39, 355
basic features, 329–30, 388
designing, 351–53, 354
example problems, 336–41, 355–57, 366–69
forces not at joints, 348–49
idealizing structures as, 331
method of joints, 331–33, 336–41, 388
method of sections, 346–48, 355–57, 388
static determinacy and indeterminacy, 349–50
three-dimensional, 363–65
typical members in, 335

Turbine blades, 404–5, 541
Two-force members

defi ned, 63
features of, 276–79, 323
identifying in FBDs, 373, 378

U

U.S. Customary system, 9
Uniform gravity fi elds, 414
Unintended uses, designing for, 162
Units

basic concepts, 9–12
conversion, 9–10, 13–14
omitting, 13

Unit vectors
defi ned, 44, 104
with dot products, 78, 79

Universal gravitation. See Gravitational attraction
Universal gravitational constant, 14

V

Variance, 533, 534
Varignon’s theorem, 185, 238–39
Vector addition

basic approaches, 31
distributive property of dot product with 

respect to, 76
with laws of sines and cosines, 

32–33, 34–35, 104
using Cartesian components, 

47–48, 50–51

Vector approaches
for equilibrium of rigid bodies, 294–95
for moment about a line, 198–99, 239
for moment about a point, 183, 183–85, 186, 238
for moments of couples, 209, 239–40

Vector components
Cartesian representation, 45, 104
defi ned, 33
optimization and, 39–40
parallel and perpendicular, 38
resolution into, 33, 36–37
using dot product, 78–80, 83–85, 106

Vector form, 112, 150
Vector polygons, 31, 34, 38, 39–40
Vector product. See Cross products
Vectors

basic concepts, 27–33
Cartesian three-dimensional representation, 

60–63, 105
Cartesian two-dimensional representation, 

44–48, 104
cross product concepts, 91–96, 107
defi ned, 6, 22
dot product concepts, 76–80, 105–6
free, 210, 211–12, 240
notation for, 30, 208
resolution into components, 52–53

Vector transformation, 53, 58
Velocity, 4, 6–7, 22
Vertical area elements, centroids of, 404, 405
Vibrations, isolating with springs, 142
Volume forces, 432, 451
Volumes

centroids, 398–99, 403, 408
solids of revolution, 426, 428–29, 451

W

Warren trusses, 330
Water cooler support example, 168–69
Wedges, 502, 506–7, 516–17
Weight

calculating, 15, 18, 23
designing for inertial effects on, 168
mass versus, 9, 98

Weldments, 244
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Wires
center of gravity for, 415–16
center of mass for, 414
internal and external forces on, 62–63

Working loads, 50, 51, 164
Wrench force systems, 225–26, 232–33

Y

Yielding, 164. See also Failure

Z

Zero-force members
benefi ts in trusses, 353, 388
defi ned, 277, 323
identifying in trusses, 333–34, 

336, 388
Zero vectors, 45, 93
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